Table S1. Summary of target PCB congeners. Numbers are BZ numbers (Ballschmiter and Zell, 1980) listed in order of elution from an HT8-PCB column.

Homologue	BZ\#
Mono-CBs	\#1
	\#2
	\#3
$\overline{\text { Di-CBs }}$	\#10
	\#4
	\#9
	\#7
	\#6
	\#8/\#5
	\#14
	\#11
	\#13/\#12
	\#15
$\overline{\text { Tri-CBs }}$	\#19
	\#30
	\#18
	\#17
	\#24
	\#27
	\#32
	\#16
	\#23
	\#34
	\#29
	\#26
	\#25
	\#31
	\#28
	\#21
	\#20/\#33
	\#22
	\#36
	\#39
	\#38
	\#35
	\#37
$\overline{\text { Tetra-CBs }}$	\#54
	\#50
	\#53
	\#51
	\#45
	\#46
	\#52/\#69
	\#73
	\#43
	\#49
	\#65/\#75
	\#48/\#47
	\#62
	\#44
	\#59
	\#42
	\#64
	\#72
	\#71
	\#41
	\#68
	\#40
	\#57
	\#67
	\#63
	\#58
	\#61
	\#74
	\#70
	\#76
	\#80
	\#66
	\#55
	\#60
	\#56
	\#79
	\#78
	\#81
	\#77

Homologue		Homologue	BZ\#
Penta-CBs	\#104	Hepta-CBs	\#188
	\#96		\#184
	\#103		\#179
	\#100		\#176
	\#94		\#186
	\#102/\#93		\#178
	\#98/\#95		\#175
	\#88		\#182/\#187
	\#91		\#183
	\#121		\#185
	\#92		\#174
	\#84		\#181
	\#89		\#177
	\#90		\#171
	\#101		\#173
	\#113		\#172
	\#99		\#192
	\#112/\#119		\#180
	\#83		\#193
	\#108		\#191
	\#86		\#170
	\#117/\#97		\#190
	\#125/\#116		\#189
	\#87/\#115	Octa-CBs	\#202
	\#111		\#200
	\#85		\#204
	\#120/\#110		\#197
	\#82		\#199
	\#124		\#198
	\#109/\#107		\#201
	\#123		\#196
	\#106		\#203
	\#118		\#195
	\#114		\#194
	\#122		\#205
	\#105	Nona-CBs	\#208
	\#127		\#207
	\#126		\#206
Hexa-CBs	\#155	Deca-CBs	\#209
	\#150		
	\#152		
	\#145		
	\#136		
	\#148		
	\#154		
	\#151		
	\#135		
	\#144		
	\#147		
	\#149/\#139		
	\#140		
	\#143		
	\#134		
	\#142		
	\#131		
	\#133		
	\#165		
	\#146		
	\#132		
	\#161		
	\#153		
	\#168		
	\#141		
	\#137		
	\#130		
	\#164/\#163		
	\#138		
	\#160		
	\#158		
	\#129		
	\#166		
	\#159		
	\#128		
	\#162		
	\#167		
	\#156		
	\#157		
	\#169		

K. Ballschmiter and M. Zell, Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography, Fresenius' Journal of Analytical Chemistry, 1980, 302, 20-31.

Table S2. List of rate constants that were used for mass-balance analysis

	$\log K_{\mathrm{OW}}{ }^{\mathrm{a}}$	Rate constant for chemical uptake via the respiratory surface $\left(k_{1}\right)^{b}$	Rate constant for overall chemical elimination $\left(k_{2}\right)^{\text {c }}$	Rate constant for chemical uptake via ingestion of suspended and bottom sediment$\left(k_{\mathrm{sed}}\right)^{\mathrm{d}}$		
		L kg ${ }^{-1} \mathrm{~d}^{-1}$	d^{-1}	d^{-1}		
				Average	day 14	day 28
\#101	6.38	652	0.007	0.0061	0.0061	0.0062
\#99	6.39	648	0.007	0.0025	0.0038	0.0013
\#118	6.46	619	0.006	0.0035	0.0038	0.0032
\#87/\#115	6.47	615	0.006	0.0010	0.0012	0.0007
\#132	6.58	569	0.004	0.0038	0.0040	0.0037
\#151	6.64	543	0.004	0.0036	0.0016	0.0055
\#135	6.64	543	0.004	0.0021	- ${ }^{\text {e }}$	0.0021
\#105	6.65	539	0.004	0.0019	0.0018	0.0019
\#149/\#139	6.67	531	0.004	0.0017	- ${ }^{\text {e }}$	0.0017
\#120/\#110	6.69	523	0.003	0.0038	0.0047	0.0030
\#128	6.74	502	0.003	0.0009	- ${ }^{\text {e }}$	0.0009
\#138	6.83	464	0.002	- ${ }^{\text {e }}$	- ${ }^{\text {e }}$	- ${ }^{\text {e }}$
\#164/\#163	7.01	391	0.002	0.0026	$-{ }^{\text {e }}$	0.0026

${ }^{\mathrm{a}}$ Hawker and Connell (1988)
${ }^{\mathrm{b}}$ The rate constant k_{1} was estimated using data from a bioconcentration study of the dioxin-like PCBs (tetra- to hepta-chlorinated, non-ortho-, and mono-ortho-substituted PCB congeners; the congeners had log Kow values of 6.36-7.71 [Hawker and Connell, 1988]) in marbled sole (Fishery Agency, 2003). We analyzed the data by using our own analysis of the reported data based on first-order kinetics. We used reliable k_{1} values for congeners with $K_{\text {OW }}$ values ranging from 6.36 to 7.71; a good linear relationship was observed between k_{1} and $\log K_{\text {OW }}$ (see Fig. S1).
${ }^{\mathrm{c}}$ The rate constant k_{2} was estimated using the empirical equation based on $K_{\text {OW }}$ (Equation 7) proposed by Hawker and Connell (1988).
${ }^{\mathrm{d}}$ For each congeners, we used the average, minimum, and maximum $k_{\text {sed }}$ values that were obtained at days 14 and 28.
${ }^{\mathrm{e}}$ The rate constant k_{2} could not be calculated for \#135, \#149/\#139, \#128, \#138, and \#164/\#163 because their $C^{\prime}{ }_{\mathrm{F}-\mathrm{W}}$ values were greater than their $C^{\prime}{ }_{\mathrm{F}}$ values.

Fig. S1. Relationship between k_{1} and $\log K_{\text {Ow. }}$. The reference rate constant k_{1} was obtained by our own analysis of the data from a bioconcentration study of the dioxin-like PCBs (tetra- to hepta-chlorinated, non-ortho- and mono-ortho-substituted PCB congeners; the congeners had log Kow values of 6.36-7.71 [Hawker and Connell, 1988]) in marbled sole (Fishery Agency, 2003). Based on these reference k_{1}, we established a regression equation between k_{1} and $\log K_{\text {OW }}$ ($k_{1}=-418$ $\log K_{\mathrm{OW}}+3318$). We calculated the k_{1} values that were used in the mass-balance analysis by using this regression equation.

Fig. S2a. Comparison of the proportions of each congener in the total accumulated PCBs among the different fish tissues

CT: Control Tank
BST: Bottom Sediment Tank

Fig. S2b. Comparison of the proportions of each congener in the total PCBs between the fish samples and other media (food, water, and sediment)

CT: Control Tank
BST: Bottom Sediment Tank

