Table S1. Summary of target PCB congeners. Numbers are BZ numbers (Ballschmiter and Zell, 1980) listed in order of elution from an HT8-PCB column.

Homologue	BZ#	Homologue	BZ#		Homologue	BZ#
Mono-CBs	#1	Penta-CBs	#104	•	Hepta-CBs	#188
	#2		#96			#184
D: CD	#3		#103			#179
D1-CBs	#10		#100			#176
	#4 #9		#94 #102/#93			#180 #178
	#7		#98/#95			#175
	#6		#88			#182/#187
	#8/#5		#91			#183
	#14		#121			#185
	#11		#92			#174
	#15/#12		#89			#177
Tri-CBs	#19	•	#90			#171
	#30		#101			#173
	#18		#113			#172
	#17		#99			#192
	#24 #27		#112/#119 #83			#180 #193
	#32		#108			#191
	#16		#86			#170
	#23		#117/#97			#190
	#34		#125/#116			#189
	#29		#87/#115		Octa-CBs	#202
	#25		#111 #85			#200
	#31		#120/#110			#197
	#28		#82			#199
	#21		#124			#198
	#20/#33		#109/#107			#201
	#36		#125			#203
	#39		#118			#195
	#38		#114			#194
	#35		#122			#205
Tetra-CBs	#37		#105 #127		Nona-CBs	#208 #207
reau ebs	#50		#126			#206
	#53	Hexa-CBs	#155		Deca-CBs	#209
	#51		#150			
	#45 #46		#152 #145			
	#52/#69		#136			
	#73		#148			
	#43		#154			
	#49		#151			
	#03/#73		#135 #144			
	#62		#147			
	#44		#149/#139			
	#59		#140			
	#42		#143			
	#64 #72		#134 #142			
	#71		#131			
	#41		#133			
	#68		#165			
	#40		#146			
	#57		#132			
	#63		#101 #153			
	#58		#168			
	#61		#141			
	#74		#137			
	#70 #76		#130			
	#76		#104/#105 #138			
	#66		#160			
	#55		#158			
	#60		#129			
	#56		#166			
	#/9 #78		#159 #128			
	#81		#162			
	#77		#167			
		-	#156			
			#157			
			#109	•		

K. Ballschmiter and M. Zell, Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography, Fresenius' Journal of Analytical Chemistry, 1980, 302, 20-31.

	$\log K_{\rm OW}$ ^a	Rate constant for chemical uptake vi the respiratory surface $(k_1)^b$	Rate constant for overall chemical elimination $(k_2)^c$	Rate constant for chemical uptake via ingestion of suspended and bottom sediment $(k_{sed})^{d}$		
		$L kg^{-1} d^{-1}$	d ⁻¹	d^{-1}		
				Average	day 14	day 28
#101	6.38	652	0.007	0.0061	0.0061	0.0062
#99	6.39	648	0.007	0.0025	0.0038	0.0013
#118	6.46	619	0.006	0.0035	0.0038	0.0032
#87/#115	6.47	615	0.006	0.0010	0.0012	0.0007
#132	6.58	569	0.004	0.0038	0.0040	0.0037
#151	6.64	543	0.004	0.0036	0.0016	0.0055
#135	6.64	543	0.004	0.0021	_ e	0.0021
#105	6.65	539	0.004	0.0019	0.0018	0.0019
#149/#139	6.67	531	0.004	0.0017	_ e	0.0017
#120/#110	6.69	523	0.003	0.0038	0.0047	0.0030
#128	6.74	502	0.003	0.0009	_ e	0.0009
#138	6.83	464	0.002	_ e	e	e
#164/#163	7.01	391	0.002	0.0026	_ e	0.0026

Table S2. List of rate constants that were used for mass-balance analysis

^aHawker and Connell (1988)

^b The rate constant k_1 was estimated using data from a bioconcentration study of the dioxin-like PCBs (tetra- to hepta-chlorinated, non-*ortho*-, and mono-*ortho*-substituted PCB congeners; the congeners had log Kow values of 6.36–7.71 [Hawker and Connell, 1988]) in marbled sole (Fishery Agency, 2003). We analyzed the data by using our own analysis of the reported data based on first-order kinetics. We used reliable k_1 values for congeners with K_{OW} values ranging from 6.36 to 7.71; a good linear relationship was observed between k_1 and log K_{OW} (see Fig. S1).

^cThe rate constant k_2 was estimated using the empirical equation based on K_{OW} (Equation 7) proposed by Hawker and Connell (1988).

^dFor each congeners, we used the average, minimum, and maximum k_{sed} values that were obtained at days 14 and 28.

^eThe rate constant k_2 could not be calculated for #135, #149/#139, #128, #138, and #164/#163 because their $C'_{\text{F-W}}$ values were greater than their C'_{F} values.

Fig. S1. Relationship between k_1 and log K_{OW} . The reference rate constant k_1 was obtained by our own analysis of the data from a bioconcentration study of the dioxin-like PCBs (tetra- to hepta-chlorinated, non-*ortho*- and mono-*ortho*-substituted PCB congeners; the congeners had log *K*ow values of 6.36–7.71 [Hawker and Connell, 1988]) in marbled sole (Fishery Agency, 2003). Based on these reference k_1 , we established a regression equation between k_1 and log K_{OW} ($k_1 = -418 \log K_{OW} + 3318$). We calculated the k_1 values that were used in the mass-balance analysis by using this regression equation.

Fig. S2a. Comparison of the proportions of each congener in the total accumulated PCBs among the different fish tissues CT: Control Tank

BST: Bottom Sediment Tank

Fig. S2b. Comparison of the proportions of each congener in the total PCBs between the fish samples and other media (food, water, and sediment)

CT: Control Tank

BST: Bottom Sediment Tank