Supporting Information for

Spatial and Temporal Pattern of Pesticides in the Global Atmosphere

Chubashini Shunthirasingham^{1,2}, Catherine E. Oyiliagu¹, Xiaoshu Cao¹, Todd Gouin¹, Frank Wania^{1,2*}, Sum-Chi Lee³, Karla Pozo³, Tom Harner³, Derek C.G. Muir⁴

¹ Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4, ² Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A3, ³ Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4, ⁴ Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6

Table S1	Sampling site information, site classification, latitude, longitude and length of sampling period in days for each sampling site.	S2
Text	Detailed Information on Analytical Method and QA/QC	S4
Table S2	Concentrations and MDLs of selected current use pesticides in globally deployed passive air samplers.	
	1 st sampling year	S6
	2 nd sampling year	S7
	3 rd sampling year	S 8
	4 th sampling year	S9
Table S3	Concentrations and MDLs of selected organochlorine pesticides in globally deployed passive air samplers.	
	1 st sampling year	S11
	2 nd sampling year	S12
	3 rd sampling year	S13
	4 th sampling year	S14
Table S4	Results of randomized block design ANOVA test for the concentrations of OCPs.	S16
Table S5	Results of the regression analysis between the levels of OCPs and time (2005 to 2008) for 15 sites.	S17
Fig. S1-1	Distribution of hexachlorocyclohexanes in the global atmosphere during the first 4 years of GAPS.	S18
Fig. S1-2	Distribution of cis- and trans-chlordane in the global atmosphere during the first 4 years of GAPS.	S19
Fig. S1-3	Distribution of α -endosulfan in the global atmosphere during the first 4 years of GAPS.	S20
Fig. S1-4	Distribution of chlorothalonil, pendimethalin and trifluralin in the global atmosphere during the first 4 years of GAPS.	S21
Fig. S2	Box-and-whisker plot of the pesticide concentrations in passive air samplers (ng/PAS) deployed at 15 sites around the globe for all four sampling years.	S22
Fig. S3	Time trends in pesticide concentrations at the 15 sites that had passive air samplers during all four sampling years.	S23
Fig. S4	Histogram of logarithm of the PAS concentration for hexachlorobenzene, γ -hexachlorocyclohexane, and α -endosulfan.	S24
Text	International partners under the GAPS network	S25

^{*}To whom correspondence should be addressed: frank.wania@utoronto.ca, Tel. +1-416-287-7225

Table S1 Sampling site information, site classification (AG = Agricultural, BA = Background, PO = Polar, RU = Rural and UR = Urban), latitude, longitude and length of sampling period in days for each sampling site.

					Sampling length				
Country	Location ¹		Latitude	Longitude	1 st	2 nd	3 rd	4 th	
·				8	year	year	year	year	
North Ameri	ca								
Canada	Bratt's Lake, SK	AG	50° 12' N	104° 42' W	371	359	344	371	
Canada	Toronto, ON	RU	43° 46' N	79° 28' W	393	380	350	362	
Canada	Whistler, BC	BA	50° 03' N	122° 57' W		315	344	375	
Canada	Lasqueti Island, BC	BA	49° 29' N	124° 21' W		397	323	355	
Canada	Little Fox Lake, YT	РО	61° 21' N	135° 38' W			227	387	
Canada	Sable Island, NS	BA	43° N	60° W			368	377	
Canada	Fraserdale, ON	BA	49° 53' N	81° 34' W			347	357	
Canada	Alert, NU	РО	82° 27' N	63° 30' W			365		
Canada	Ucluelet, BC	BA	48° 54' N	125° 32' W			292	375	
USA	Barrow, AK	РО	71° 18' N	156° 44' W	399	367	359		
USA	St. Lawrence Island, AK	РО	63° 42' N	170° 29' W	365				
USA	Athens, GA	AG	33° 22' N	83° 28' W	359				
USA	Dyea, AK	BA	59° 31' N	135° 21' W		372	98	391	
USA	Point Reyes, CA	BA	33° 14' N	122° 19' W			341	366	
USA	Mauna, Hilo	BA	19.54° N	155.58° W			325	362	
USA	Tula, AS	BA	14.24° S	170.57° W			299	341	
USA	Sydney, FL	UR	27° 57' N	82° 12' W			296	370	
Bermuda	Tudor Hill	BA	32° 22' N	64° 39' W	386	327	343	364	
Mexico and O	Central America								
Costa Rica	Tapanti National Park	BA	9 ° 46' N	83° 47' W	365	351	356	392	
Mexico	Veracruz	UR	19 ° 25' N	96° 10' W	398				
Mexico	Tlahuac	UR	19°14' N	99° 00' W		183	355		
South Ameri	ca								
Colombia	Arauca	RU	7° 00' N	70° 44' W	391	368	290	624	
Bolvia	Huayna Potosi La Paz	BA	16° 16' S	68° 08' W	327	380			
Chile	Chungura Lake	BA	18°13'S	69°10' W	452				
Chile	Coyhaique	BA	45°35' S	72° 02' W	419		365		
Brazil	Indaiatuba	RU	23° 09' S	47° 10' W	277	366	295	316	
Brazil	St. Peter & St. Paul Rocks	BA	17° 37' S	47° 47' W				369	
Argentina	Bahia Blanca	AG	38° 45' S	62° 15' W		326			

Table S1 continued

Europe								
Finland	Hollola	RU	61° 3' N	25° 39' E	365			
Finland	Pallas	BA	68° 00' N	24° 14' E		365	351	362
Czech Republic	Košetice	BA	49° 35' N	15° 05' E	370	354	347	369
Norway	Ny-Ålesund	PO	78° 54' N	11° 53' E	371		272	
Poland	Pomlewo	RU	54° 12' N	18° 22' E	349	365	348	
Turkey	Izmir	UR	38° 25' N	27° 08' E	365	372		
Iceland	Stórhöfði	BA	63° 24' N	20° 17' W	405	361	366	359
Ireland	Malin Head	BA	55° 23' N	7° 22' W	414	363	343	365
Spain	Barcelona	UR	41° 23' N	2° 11' E	365			
France	Paris	UR	48° 51' N	2° 21' E	365	321	363	362
Italy	Isola Marettimo	RU	37° 58' N	12° 04' E	365			
Russia	Danki	RU	54° 54' N	37° 48' E		343	355	367
Australia								
Australia	Cape Grim	BA	40° 41' S	144° 41' E	366	295	342	391
Australia	Darwin	RU	12° 22' S	130° 51' E	370	343	358	362
Africa								
Botswana	Kalahari	BA	25°'52' S	22° 54' E	345	482	250	366
South Africa	DeAar	BA	30° 40' S	24° 00' E	401	364	346	364
Ghana	Accra	RU	8° 00' N	2° 00' W	365	365		
Canary Islands	Telde, Las Palmas	RU	28° 59' S	15° 22' W	369	370	275	
Egypt	Cairo	RU	30° 08' N	31° 37' E		398		
Asia								
India	Delhi-C	AG	28° 40' N	77° 14' E	263	317	319	
India	Delhi-D	AG	28° 40'N	77° 14' E	263	317	319	
India	Coimbatore	BA	11° N	77° E			353	
Nepal	Dhulikhel	BA	27° 37'N	75 ° 32' E			145	
Malaysia	Danum Valley	BA	4° 95' N	117° 85' E	372	363	329	364
Kuwait	Abdaly	BA	29° 58' N	47° 42' E			344	382
Kuwait	Kuwait City	UR	29° 34' N	47° 90' E	365	358		
The Philippines	Manila	UR	14° 39'	121° 04' E	347	351		
The Philippines	Tagaytay City	BA	14° 08'	121° 00' E			352	368
Indonesia	Bukit Kototabang	BG	0.20° S	100.32° E		365	281	345
Korea	Pohang	RU	36° 0'N	129° 19' E			352	
Korea	Seoul	UR	37° 35' N	127° 10' E			346	
Korea	Gosan, Jeju Island	BA	33° 24' N	126° 00' E			205	
China	Nam Co. Tibet	BA	30° 46' N	90° 57' E			180	366
Antarctica								
	Mario Zucchelli Station, Italy	РО	74° 41' S	164° 07' E	365			

Detailed Information on Analytical Method and QA/QC

Sample Preparation. Soxhlet extracted XAD-2 resin was filled into mesh cylinders in a clean room at the National Water Research Institute in Burlington, Ontario, Canada, as described previously (Wania et al., 2003). During the third and fourth year, pre-cleaned XAD (Supelpak 2, Supelco, Bellefonte, PA) was used instead.

Extraction and Clean-up of PAS Samples. The XAD-2 resin from the samplers was transferred into an extraction thimble (cellulose) which had been pre-cleaned with dichloromethane (DCM) in a Soxhlet for 4 hours. After adding recovery standards, the resin was Soxhlet extracted with 350 ml of DCM for 20 hours. Extracts were volume reduced using a rotary evaporator and concentrated to around 1 ml using a gentle stream of nitrogen. The extracts from the first year samples were cleaned on a column with 1 g of 6% deactivated alumina (baked at 450 °C overnight) and 0.5 cm of sodium sulfate. The samples were eluted with 20 ml of DCM: petroleum ether (5:95; v/v). After reduction to 3 ml using a rotary evaporator, the extracts from the second, third and fourth year samples were passed through sodium sulfate (baked at 450 °C overnight) columns to remove water residues, but they were not cleaned using alumina. Extracts were again concentrated to 1 ml using a stream of nitrogen and then solvent-exchanged into iso-octane. The final volume of the extracts was 1 ml, and 100 ng of mirex was added to the samples for volume correction.

Analysis of Extracts. The extracts were analyzed for α - and γ -HCH, HCB, cis- (CC) and transchlordane (TC), trans-nonachlor (TN), heptachlor (HEPT), heptachlor exo-epoxide (HEPX), aldrin, dieldrin, endrin, p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE, o,p'-DDE, α - and β endosulfan (α -ES, β -ES), endosulfan sulphate (ESS), trifluralin (TF), chlorothalonil (CT), dacthal (DT), and pendimethalin (PM) using an Agilent 6890 gas chromatograph (GC) coupled to a 5973 mass selective detector with a negative chemical ionization source in selected ion mode. A DB-5 column (60 m, 0.25 mm i.d., 0.3 μ m film thickness) was used for separation. Helium was used as the carrier gas at a flow rate of 1.2 ml min⁻¹. The GC oven temperature program was: 70 °C held for 0.5 min then increased at 15 °C·min⁻¹ to 160 °C, then increased at 2 °C·min⁻¹ to 250 °C and finally increased at 20 °C·min⁻¹ to 270 °C and held for 5 min.

Quality Control and Assurance measures were used to monitor all analytical procedures. Field blanks were collected each year as additional XAD-PAS were shipped to several sampling sites. During the one-year deployment, mesh cylinders with resin were kept in the sealed sample holders, which were mounted on the post holding the sampler housing. These field blanks thus underwent

the same shipping, handling, and storage as the exposed XAD-PAS, except that the blanks were never exposed to air. Laboratory and field blanks were processed in the same way as the samples to determine the contamination introduced during extraction and clean-up, and by handling, shipping and storage, respectively. Very low blank concentrations indicated that no contamination had occurred during transport, storage or analysis. All data are blank-corrected using the average of 6 to 12 lab and 4 to 10 field blanks. Method detection limits (MDLs) were calculated as three times the standard deviation of the blanks. For those pesticides that were not detected in the blanks, MDLs were calculated by using three times the signal-to-noise ratio of the lowest calibration standard. The MDLs are included in the tables reporting the concentration data (Tables S2 and S3).

Recoveries of surrogates ($d_6-\gamma$ -HCH, ${}^{13}C_{10}$ -HEPX, ${}^{13}C_{10}$ -TN, ${}^{13}C$ -Dieldrin, ${}^{13}C$ -*p*,*p*'-DDT) were between 72 and 105 %. The XAD had not been spiked with surrogates for the CUPs. To test for the loss of these compounds during the extraction and clean-up procedure, six replicates of 20 g of XAD-2 were spiked with five pesticides (CT, DT, PM, TF, chlorpyrifos) and then extracted and cleaned up in the same way as the samples. Recovery was between 76 to 111 % and thus sufficiently high to report concentrations. The recovery of the pesticides before clean-up with an alumina column ranged from 85 to 103 %. The reported data are not corrected for recovery.

Less persistent pesticides, such as chlorpyrifos, PM and TF, may be lost from the resin during the one year deployment as a result of degradation. In the case of chlorpyrifos we judged that possibility to be so high as to compromise the interpretation of its concentration in GAPS samples (Gouin et al., 2008). Therefore no chlorpyrifos data are being reported here. Although we can not rule out the possibility of degradation loss for PM and TF, extensive calibration studies suggested that their levels measured in XAD-PAS exposed for one year are sufficiently reliable to be interpreted with confidence (Hayward et al., 2010).

Table S2Concentrations and method detection limits (MDL) in ng/PAS of selected currentuse pesticides (TF: trifluralin, CT: chlorothalonil, DT: dacthal, PM: pendimethalin, ES: Endosulfan,ESS: Endosulfan sulfate) in globally deployed passive air samplers. (ND: not detected, BD: belowmethod detection limit).

Location	TF	СТ	DT	PM	a-ES	β-ES	ESS
North America							
Bratt's Lake, Canada	16.5	66.0	0.6	ND	5.2	0.4	ND
Toronto, Canada	6.8	78.2	8.4	2.8	42.9	4.3	0.5
Barrow, USA	BD	0.2	BD	ND	2.5	ND	ND
St. Lawrence Island, USA	BD	ND	ND	ND	0.1	ND	ND
Georgia, USA	1.9	22.1	2.3	4.2	11.6	2.1	0.7
Tudor Hill, Bermuda	0.2	2.3	0.5	55.2	3.5	0.1	ND
Mexico and Central America							
Tapanti, Costa Rica	ND	ND	ND	ND	1.9	ND	ND
Veracruz, Mexico	3.0	170	1.8	ND	216	48.2	5.8
South America							
Arauca, Columbia	0.1	0.6	0.5	ND	48.4	4.5	0.9
Huayna Potosi, Bolivia	ND	0.2	BD	ND	34.8	5.1	0.4
Chungura, Chile	ND	0.7	BD	ND	61.9	0.9	0.9
Coyhaique, Chile	ND	BD	BD	ND	1.0	ND	ND
Indaiatuba, Brazil	3.4	6.2	BD	ND	53.8	14.7	2.0
Europe							
Hollola, Finland	2.9	2.0	0.2	ND	2.8	0.1	ND
Košetice, Czech Rep.	89.1	8.2	0.2	103	10.3	1.5	ND
Ny-Ålesund, Norway	ND	0.2	0.1	ND	2.7	ND	ND
Pomlewo, Poland	19.0	0.3	BD	6.7	3.1	1.1	0.3
Izmir, Turkey	8.2	6.1	0.3	ND	26.6	8.9	0.4
Stórhöfði, Iceland	BD	3.2	0.2	ND	3.2	ND	0.1
Malin Head, Ireland	17.5	4.0	0.8	3.9	3.9	0.1	0.1
Barcelona, Spain	1.8	23.8	5.9	3.8	138	34.1	3.8
Paris, France	188	168	3.1	28.9	213	61.5	1.9
Isola Marettimo, Italy	0.5	15.1	3.0	ND	55.8	8.0	1.6
Australia							
Cape Grim, Australia	9.6	1.0	0.8	ND	9.0	0.6	0.1
Darwin, Australia	BD	0.9	0.1	ND	3.5	0.1	ND
Africa							
Kalahari, Botswana	0.3	6.8	0.3	ND	10.4	0.3	1.0
DeAar, South Africa	0.1	5.0	0.2	ND	14.3	1.9	1.1
Accra, Ghana	ND	BD	BD	ND	330	113	24.5
Telde, Las Palmas, Spain	0.5	3.4	0.1	0.7	60.2	12.7	0.2

Part 1 First sampling year (late 2004 to late 2005)

Asia							
Delhi- C, India	1.4	ND	ND	2.5	755	56.1	6.7
Delhi-D, India	1.4	1.0	0.2	7.1	391	23.6	3.8
Danum Valley, Malaysia	ND	0.7	0.1	ND	6.9	0.4	0.1
Kuwait City, Kuwait	0.2	49.6	0.4	ND	21.7	7.7	1.5
Manila, The Philippines	0.1	0.3	0.1	0.7	2.3	ND	ND
Antarctica							
Mario Zucchelli Station, Italy	ND						
MDL	0.08	0.13	0.04	0.09	0.09	0.03	0.02

Part 2 Second sampling year (late 2005 to late 2006)

Location	TF	СТ	DT	PM	α-Ε	B-E	ESS
North America							
Bratt's Lake, Canada	6.5	232	2.3	ND	6.2	0.5	0.2
Toronto, Canada	7.0	135	4.5	3.0	23.4	4.5	0.5
Barrow, USA	ND	BD	BD	ND	1.9	ND	ND
Dyea, USA	BD	BD	BD	ND	BD	ND	ND
Lasqueti Island, Canada	1.0	12.2	0.5	ND	4.8	1.1	0.2
Tudor Hill, Bermuda	0.2	5.9	0.2	ND	3.2	BD	0.1
Whistler, Canada	ND	9.4	0.7	ND	8.3	0.8	0.3
Mexico & Central America							
Tapanti, Costa Rica	ND	1.7	ND	ND	5.6	0.5	0.2
Tlahuac, Mexico	6.0	278	0.5	ND	170	34.9	4.2
South America							
Arauca, Columbia	ND	BD	BD	ND	24.4	5.3	1.3
Huayna Potosi La Paz, Bolivia	0.2	2.3	BD	ND	34.4	0.3	0.7
Indaiatuba, Brazil	3.8	54.0	BD	ND	175	34.9	6.6
Bahia Blanca, Argentina	18.5	1.3	BD	ND	149	28.0	9.1
Europe							
Pallas, Finland	ND	17.7	0.2	ND	2.8	BD	0.1
Košetice, Czech Rep.	172	233	0.9	106	17.4	2.1	0.7
Danki, Russia	BD	3.2	BD	2.2	2.4	BD	0.1
Pomlewo, Poland	21.7	84.4	0.6	15.2	9.9	1.1	0.3
Izmir, Turkey	15.7	27.7	0.6	ND	42.2	20.2	2.1
Stórhöfði, Iceland	ND	12.0	0.4	ND	3.2	BD	0.1
Malin Head, Ireland	13.4	49.0	1.2	3.2	4.2	0.3	0.1
Paris, France	247	466	3.8	29.2	166	49.2	3.8
Australia							
Cape Grim, Australia	1.9	4.2	0.9	ND	4.8	0.4	0.2
Darwin, Australia	BD	5.1	BD	2.1	2.9	0.3	0.1

Africa							
Kalahari, Botswana	ND	5.0	0.3	ND	14.6	2.2	1.0
DeAar, South Africa	BD	6.8	0.6	ND	19	2.2	1.1
Accra, Ghana	BD	BD	BD	ND	353	119	23.3
Telde, Las Palmas, Spain	ND	47.3	0.6	ND	70	14.4	1.7
Cairo, Egypt	ND	13.0	0.6	ND	35	3.8	1.1
Asia							
Delhi-C, India	1.3	11.4	ND	ND	384	160	22.0
Delhi-D, India	0.9	6.8	ND	ND	430	159	20.1
Danum Valley, Malaysia	ND	2.3	BD	ND	4.9	0.4	0.3
Kuwait City, Kuwait	ND	56.7	0.2	ND	16.4	5.6	1.5
Manila, The Philippines	ND	4.7	ND	ND	4.5	0.5	0.1
Bukit Kototabang, Indonesia	ND	BD	BD	ND	6.9	0.8	0.4
MDL	0.05	1.16	0.19	0.28	0.54	0.05	0.03

Part 3 Third sampling year (late 2006 to late 2007)

Location	TF	СТ	DT	PM	A-E	β-Ε	ESS
North America							
Bratt's Lake, Canada	10.0	111	2.1	ND	5.8	0.7	0.2
Toronto, Canada	2.7	185	7.7	4.0	33.5	7.9	0.9
Whistler, Canada	ND	6.7	1.7	ND	8.3	1.2	0.4
Lasqueti Island, Canada	0.2	4.7	ND	ND	1.8	0.4	0.1
Little Fox Lake, Canada	ND	ND	ND	ND	1.6	BD	ND
Sable Island, Canada	ND	12.9	1.0	ND	4.2	0.5	0.2
Fraserdale, Canada	ND	13.3	1.0	ND	4.2	0.4	0.3
Ucluelet, Canada	ND	0.7	ND	ND	1.1	BD	BD
Alert, Canada	ND	ND	ND	ND	1.6	ND	ND
Barrow, USA	ND	ND	BD	ND	1.1	ND	ND
Dyea, USA	ND	0.9	ND	ND	0.3	ND	ND
St. Lawrence Island, USA	ND	ND	ND	ND	ND	ND	ND
Point Reyes in California, USA	ND	3.5	0.9	ND	1.5	BD	0.1
Hilo, USA	ND	0.9	ND	ND	4.9	0.2	0.6
Tula in American Samo, USA	ND	ND	ND	ND	0.6	ND	ND
Sydney in Florida, USA	14.9	272	ND	54.3	369	117	14.8
Tudor Hill, Bermuda	ND	4.1	0.3	ND	2.9	0.1	0.1
Mexico and Central America							
Tapanti, Costa Rica	ND	1.7	ND	ND	6.3	0.8	0.4
Tlahuac, Mexico	2.3	109	0.7	ND	112	20.0	2.8
South America							
Arauca, Columbia	ND	ND	ND	ND	5.7	1.2	0.3
Chungura, Chile	ND	ND	0.2	ND	4.0	ND	0.1
Indaiatuba, Brazil	0.9	33.0	ND	ND	52.2	11.1	2.5

Supplementary Material (ESI) for Journal of Environmental Monitoring	
This journal is © The Royal Society of Chemistry 2010	

Europe							
Pallas, Finland	ND	3.2	0.2	ND	1.7	BD	BD
Košetice, Czech Rep.	104	161	1.1	259	14.7	2.2	0.8
Ny-Ålesund, Norway	ND	0.9	0.1	ND	1.1	ND	ND
Pomlewo, Poland	8.9	46.6	0.6	11.0	7.1	1.0	0.3
Stórhöfði, Iceland	ND	10.6	0.5	ND	3.1	0.1	0.1
Malin Head, Ireland	1.9	13.3	0.5	1.5	1.9	ND	BD
Paris, France	111	312	3.2	34.1	52.3	13.4	1.5
Danki, Russia	0.2	5.0	ND	ND	2.0	0.2	0.1
Australia							
Cape Grim, Australia	7.9	2.6	0.6	ND	7.1	0.6	0.3
Darwin, Australia	ND	2.5	ND	ND	4.6	0.9	0.2
Africa							
Kalahari, Botswana	0.1	2.0	0.3	ND	5.2	0.7	0.4
DeAar, South Africa	0.1	3.9	1.1	ND	21.0	2.0	1.3
Telde, Las Palmas, Spain	ND	15.6	0.4	ND	27.6	0.2	0.7
Asia							
Delhi- C, India	ND	39.8	ND	ND	846	230	22.7
Delhi-D, India	0.3	ND	ND	4.4	312	103	10.7
Danum Valley, Malaysia	ND	1.1	ND	ND	1.7	0.2	0.1
Kuwait City, Kuwait	ND	7.7	ND	ND	11.8	4.5	2.4
Manila, The Philippines	ND	1.9	ND	ND	7.6	0.4	0.3
Bukit Kototabang, Indonesia	ND	ND	ND	ND	4.3	0.3	0.2
Coimbatore, India	0.3	5.5	ND	9.0	676	207	19.5
Kuntabesi, Nepal	ND	ND	ND	ND	337	86	11.5
Pohang, Korea	0.2	92.7	ND	ND	263	59.8	8.0
Seoul, Korea	0.4	99.6	ND	12.3	225	53.9	5.8
Jeju Island, Korea	0.7	110	ND	504.6	483	150	24.8
Tibet, China	ND	0.6	ND	ND	26.8	0.1	0.7
MDL	0.09	0.17	0.08	0.07	0.12	0.06	0.05

Part 4	Fourth sampling year	(late 2007 to late 2008)
--------	----------------------	--------------------------

Location	TF	СТ	DT	PM	α-Ε	β-Ε	ESS
North America							
Bratt's Lake, Canada	6.0	54.9	1.61	ND	6.7	0.7	0.9
Toronto, Canada	1.1	74.6	3.2	1.6	24.1	5.1	3.0
Whistler, Canada	ND	3.5	0.6	ND	5.6	0.7	0.9
Lasqueti Island, Canada	0.1	3.4	BD	ND	1.8	0.2	ND
Little Fox Lake, Canada	ND	0.4	BD	ND	2.2	ND	ND
Sable Island, Canada	ND	7.3	0.6	ND	4.6	0.3	0.6
Fraserdale, Canada	ND	11.0	0.7	ND	3.2	0.2	0.8
Ucluelet, Canada	ND	0.8	BD	ND	1.9	ND	ND

Dvea. USA	ND	0.5	BD	ND	0.4	ND	ND
Point Reves in California, USA	ND	2.3	1.3	ND	1.7	ND	ND
Hilo, USA	ND	0.5	BD	ND	2.0	ND	1.4
Tula American Samo, USA	0.1	0.5	BD	ND	2.1	ND	ND
Sydney in Florida, USA	2.9	262	1.7	12.0	438	139	73.7
Tudor Hill, Bermuda	ND	1.8	0.2	ND	2.4	ND	0.4
Tapanti, Costa Rica	BD	1.7	ND	ND	7.7	0.9	1.8
South America							
Arauca, Columbia	ND	ND	ND	ND	3.7	0.6	0.9
St. Peter and St. Paul Rocks, Brazil	ND	0.4	ND	ND	206	34.7	32.3
Indaiatuba, Brazil	0.3	70.8	ND	ND	7.4	0.3	0.7
Europe							
Pallas, Finland	ND	1.3	BD	ND	1.2	ND	ND
Košetice, Czech Rep.	47.5	120	0.8	92.3	5.9	0.6	1.5
Stórhöfði, Iceland	ND	8.3	0.4	ND	3.2	ND	ND
Malin Head, Ireland	0.2	30.6	0.6	ND	2.2	ND	ND
Paris, France	18.0	135	1.9	9.9	11.2	2.2	1.7
Danki, Russia	ND	1.6	BD	ND	1.1	ND	ND
Australia							
Cape Grim, Australia	1.3	1.5	0.5	ND	6.9	0.5	1.3
Darwin, Australia	ND	1.0	0.2	ND	3.6	0.3	0.9
Africa							
Kalahari, Botswana	ND	1.9	0.4	ND	15.3	2.5	5.6
DeAar, South Africa	BD	2.1	0.8	ND	19.6	1.9	5.6
Asia							
Danum Valley, Malaysia	ND	0.8	BD	ND	3.5	0.2	0.8
Kuwait City, Kuwait	ND	4.0	BD	ND	9.7	2.3	7.9
Manila, The Philippines	ND	1.0	BD	ND	5.5	0.2	1.6
Bukit Kototabang, Indonesia	ND	ND	ND	ND	5.4	ND	1.0
Tibet, China	ND	ND	ND	ND	39.1	0.2	5.9
MDL	0.08	0.12	0.09	0.1	0.1	0.05	0.05

Table S3Concentrations and method detection limits (MDL) in ng/PAS of selected pesticides in globally
deployed passive air samplers (ND: not detected, BD: below method detection limit.).

Location	<i>α-</i> НСН	γ- НСН	НСВ	CC	ТС	TN	НЕРТ	HEPX	Diel- drin	<i>o,p</i> '- DDE	<i>p,p</i> '- DDE	<i>o,p`-</i> DDT
North America												
Bratt's Lake, Canada	8.6	7.0	32.8	0.5	0.6	0.6	ND	2.8	ND	ND	ND	ND
Toronto, Canada	7.0	4.5	28.1	2.1	2.0	2.0	0.5	1.8	4.4	ND	7.2	ND
Barrow, USA	13.5	1.7	34.9	0.4	0.2	0.4	ND	0.2	ND	ND	ND	ND
St. Lawrence Island, USA	7.6	0.9	19.2	0.2	0.1	0.2	ND	ND	ND	ND	ND	ND
Georgia, USA	6.2	8.4	240	3.1	4.8	1.6	2.3	2.5	1.7	ND	ND	ND
Tudor Hill, Bermuda	3.4	1.3	74.2	1.2	1.3	1.1	ND	0.6	6.7	ND	ND	ND
Mexico & Central Am	erica											
Tapanti, Costa Rica	0.3	2.3	7.2	0.1	0.1	0.1	ND	ND	ND	ND	ND	ND
Veracruz, Mexico	14.1	47.5	164	1.6	2.0	1.2	ND	2.5	BD	ND	ND	ND
South America												
Arauca, Columbia	1.6	3.7	111	0.3	0.2	0.1	ND	ND	ND	ND	8.1	ND
Huayna Potosi La Paz, Bolivia	0.9	0.5	8.9	ND	BD	BD	ND	ND	ND	ND	ND	ND
Chungura, Chile	1.2	1.4	16.3	ND	BD	BD	ND	ND	ND	ND	ND	ND
Coyhaique, Chile	0.3	0.3	15.7	BD	BD	ND	ND	ND	ND	ND	ND	ND
Indaiatuba, Brazil	3.5	5.3	9.4	0.3	0.8	0.2	1.0	ND	BD	ND	8.1	ND
Europe												
Hollola, Finland	5.7	2.6	28.0	0.3	0.2	0.3	ND	0.1	ND	ND	ND	ND
Košetice, Czech Rep.	9.5	13.2	78.1	0.3	0.3	0.4	ND	ND	ND	0.4	8.2	1.3
Ny-Ålesund, Norway	6.2	1.1	27.0	0.3	0.2	0.4	ND	0.3	ND	ND	ND	ND
Pomlewo, Poland	7.2	5.8	32.9	0.3	0.2	0.3	ND	0.4	ND	ND	4.2	ND
Izmir, Turkey	17.7	8.7	36.5	0.3	0.3	0.4	ND	0.7	ND	ND	7.5	ND
Stórhöfði, Iceland	9.6	2.0	36.3	0.6	0.3	0.5	ND	0.5	ND	0.5	ND	ND
Malin Head, Ireland	7.6	4.1	39.9	0.5	0.3	0.4	ND	0.6	1.5	ND	ND	ND
Barcelona, Spain	8.1	18.8	42.0	1.4	3.3	0.8	ND	4.0	3.9	0.8	8.0	ND
Paris, France	16.5	118	57.1	1.7	1.9	1.9	1.7	7.4	7.2	ND	2.9	1.7
Isola Marettimo, Italy	8.6	8.2	54.5	0.7	0.5	0.6	ND	1.6	1.5	0.7	5.7	8.8
Australia												
Cape Grim, Australia	0.4	0.2	31	0.2	0.2	0.1	ND	ND	ND	ND	ND	ND
Darwin, Australia	0.5	1.1	54.7	1.5	6.1	3.3	4.0	1.9	7.6	ND	ND	ND
Africa												
Kalahari, Botswana	2.0	1.8	80.7	0.3	0.3	0.1	ND	ND	ND	ND	ND	ND
DeAar, South Africa	44.2	16.4	33.0	0.2	0.2	0.2	ND	ND	ND	ND	ND	ND
Accra, Ghana	0.6	24.5	12.2	ND	0.1	ND	ND	ND	ND	ND	ND	ND
Telde, Las Palmas	4.9	22.9	33.6	0.8	0.9	0.6	0.9	0.6	4.2	2.0	23	2.6

Part 1 First sampling year (late 2004 to late 2005).

Supplementary Material (ESI) for Journal of Environmental Monitoring
This journal is © The Royal Society of Chemistry 2010

Asia												
Delhi- C, India	306	731	184	2.5	8.0	0.8	54.0	ND	ND	10	66	27
Delhi-D, India	221	321	254	1.4	7.4	0.6	ND	ND	ND	9.0	42	22
Danum Valley, Mal.	1.0	0.6	8.7	0.1	0.2	0.2	ND	ND	2.0	ND	ND	ND
Kuwait City, Kuwait	14.4	17.6	110	1.3	1.5	1.1	ND	ND	2.0	1.9	5.4	ND
Manila, Philippines	1.6	3.6	21	23.9	35.8	17.8	13.2	1.6	6.9	1.0	5.9	1.7
Antarctica												
Mario Zucchelli Station, Italy	ND	ND										
MDL	0.14	0.1	0.95	0.06	0.04	0.09	0.20	0.12	0.46	0.34	0.34	1.2

Part 2 Second sampling year (late 2005 to late 20)06).
---	-------

Location	α- HC H	γ- НСН	НСВ	CC	ТС	TN	НЕРТ	НЕРХ	Diel drin	<i>o,p</i> '- DDE	<i>p,p</i> '- DDE	<i>o,p'-</i> DDT
North America												
Bratt's Lake, Canada	5.1	3.4	33.6	0.2	0.3	0.3	ND	2.2	ND	ND	ND	ND
Toronto, Canada	2.5	1.5	22.6	0.7	0.8	0.8	ND	1.1	ND	ND	5.0	ND
Barrow, USA	5.3	0.8	26.2	0.1	ND	0.2	ND	ND	ND	ND	ND	ND
Dyea, USA	2.0	0.2	12.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lasqueti Island, Canada	5.1	0.7	25.7	0.2	0.2	0.2	ND	ND	ND	ND	ND	ND
Tudor Hill, Bermuda	1.1	0.5	19.7	0.5	ND	0.6	ND	ND	9.4	ND	ND	ND
Whistler, Canada	5.0	0.9	24.5	0.2	ND	0.1	ND	ND	ND	ND	ND	ND
Mexico and Central A	nerica											
Tapanti, Costa Rica	BD	BD	7.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tlahuac, Mexico	4.1	19.2	37.4	0.9	1.3	0.9	ND	ND	ND	ND	ND	ND
South America												
Arauca, Columbia	0.3	0.5	11.0	ND	0.5	0.1	ND	ND	ND	ND	6.3	ND
Huayna Potosi, Bolivia	0.7	0.7	16.0	ND	0.2	ND	5.8	ND	ND	ND	ND	ND
Indaiatuba, Brazil	2.7	3.9	11.4	0.2	0.5	0.1	1.3	ND	ND	ND	ND	ND
Bahia Blanca, Argentina	0.5	0.7	21.4	ND	0.2	ND	ND	ND	ND	ND	5.2	ND
Europe												
Pallas, Finland	2.9	1.0	26.3	ND	0.1	0.1	ND	ND	ND	ND	ND	ND
Košetice, Czech Rep.	4.9	7.2	57.6	0.2	0.1	0.2	ND	0.9	ND	0.4	10.2	ND
Danki, Russia	5.9	2.5	25.4	ND	0.1	0.1	ND	ND	ND	ND	ND	ND
Pomlewo, Poland	4.7	4.9	37.5	0.2	0.1	0.2	ND	ND	ND	ND	ND	ND
Izmir, Turkey	10.0	4.7	45.0	0.2	0.1	0.2	ND	ND	ND	ND	6.2	ND
Stórhöfði, Iceland	6.8	1.4	53.9	0.3	0.2	0.3	ND	ND	ND	0.5	ND	ND
Malin Head, Ireland	4.1	3.3	37.3	0.3	0.2	0.2	ND	0.7	ND	ND	ND	ND
Paris, France	8.3	71.9	30.6	0.7	0.9	1.1	1.3	10.3	9.0	ND	7.3	ND

Australia												
Cape Grim, Australia	BD	ND	22.8	ND	0.1	ND	ND	1.4	ND	ND	ND	ND
Darwin, Australia	BD	0.3	13.0	0.8	3.0	0.9	3.2	ND	9.4	ND	ND	ND
Africa												
Kalahari, Botswana	1.0	1.7	10.9	0.1	0.1	0.1	ND	ND	ND	ND	ND	ND
DeAar, South Africa	41.1	18.7	19.4	0.1	0.2	0.1	ND	ND	ND	ND	ND	ND
Accra, Ghana	0.4	14.2	11.0	ND	0.1	ND	ND	ND	ND	ND	ND	ND
Cairo, Egypt	2.6	12.7	58.6	0.4	0.3	0.3	ND	ND	ND	ND	ND	ND
Telde, Las Palmas, Spain	14.0	5.9	32.4	0.3	0.4	0.2	ND	0.8	ND	ND	15.1	ND
Asia												
Delhi-C, India	204	491	158	1.0	3.7	0.5	ND	ND	ND	ND	80.0	ND
Delhi-D, India	127	219	172	0.8	4.5	0.3	30.7	ND	ND	ND	45.2	ND
Danum Valley, Malaysia	0.4	0.4	14.3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Kuwait City, Kuwait	4.3	4.6	46.1	0.6	0.6	ND	ND	ND	ND	ND	ND	ND
Manila, The Philippines	0.7	4.4	25.0	9.9	16.2	11.0	8.8	1.5	10.9	ND	ND	ND
Bukit Kototabang, Indonesia	0.4	2.0	13.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
MDL	0.17	0.19	0.52	0.07	0.03	0.04	0.4	0.4	0.9	0.50	0.55	1.5

Part 3 Third sampling year (late 2006 to late 2007).

Location	α- HCH	γ- НСН	НСВ	CC	ТС	TN	HEPT	HEPX	Diel- drin	<i>o,p</i> '- DDE	<i>p,p</i> '- DDE	<i>o,p'-</i> DDT
North America												
Bratt's Lake, Canada	3.3	2.8	20.3	0.2	0.3	0.3	ND	2.1	2.2	ND	ND	ND
Toronto, Canada	3.5	2.3	21.7	1.2	1.3	1.1	ND	ND	ND	ND	ND	ND
Whistler, Canada	5.1	0.7	22.8	0.1	ND	0.1	ND	ND	ND	ND	ND	ND
BC, Canada	3.3	0.3	9.6	0.1	ND	BD	ND	ND	ND	ND	ND	ND
Lasqueti Island, Canada	2.4	0.4	9.8	0.1	ND	BD	ND	ND	ND	ND	ND	ND
Little Fox Lake, Canada	4.6	0.5	17.5	0.1	ND	BD	ND	ND	ND	ND	ND	ND
Sable Island, Canada	15.3	1.5	34.0	0.4	0.4	0.4	ND	ND	1.2	ND	ND	ND
Fraserdale, Canada	4.8	0.8	18.2	0.3	ND	0.3	ND	20.7	ND	ND	40.6	ND
Ucluelet, Canada	3.3	0.3	9.6	0.1	ND	BD	ND	ND	ND	ND	ND	ND
Alert, Canada	3.0	0.3	15.8	0.1	ND	0.1	ND	ND	ND	ND	ND	ND
Barrow, USA	5.0	0.5	13.7	0.1	ND	BD	ND	ND	ND	ND	ND	ND
Dyea, USA	1.1	0.4	4.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
Reyes, California, USA	4.3	0.4	12.9	0.3	0.3	0.2	ND	ND	ND	ND	ND	ND
Hilo, USA	2.3	0.4	22.2	0.1	ND	0.1	ND	ND	ND	ND	ND	ND
Tula, American Samo	ND	ND	7.4	BD	ND	0.1	ND	ND	ND	ND	ND	ND
Sydney, Florida, USA	1.1	2.2	16.2	4.3	6.9	4.7	ND	ND	4.3	ND	ND	ND
Tudor Hill, Bermuda	1.3	0.7	13.5	0.4	1.2	0.5	ND	ND	6.5	ND	ND	ND

Mexico and Central Ame	rica											
Tapanti, Costa Rica	ND	16.9	6.4	ND								
Tlahuac, Mexico	2.6	8.9	15.9	0.5	0.8	0.5	ND	ND	ND	ND	ND	ND
South America												
Arauca, Columbia	ND	ND	4.4	ND								
Chungura, Chile	ND	ND	8.7	ND								
Indaiatuba, Brazil	1.2	2.3	5.5	0.1	0.3	BD	ND	ND	ND	ND	ND	ND
Europe												
Pallas, Finland	2.5	0.6	16.9	0.1	BD	0.1	ND	ND	ND	ND	ND	ND
Košetice, Czech Rep.	5.6	7.2	49.0	0.3	BD	0.2	ND	ND	ND	ND	15.9	ND
Ny-Ålesund, Norway	2.1	0.3	12.6	ND	ND	0.1	ND	ND	ND	ND	ND	ND
Pomlewo, Poland	4.3	3.2	23.2	0.1	BD	0.2	ND	ND	ND	ND	ND	ND
Stórhöfði, Iceland	5.8	6.2	30.7	0.4	BD	0.3	ND	ND	ND	ND	ND	ND
Malin Head, Ireland	2.4	1.9	18.8	0.2	BD	0.1	ND	ND	ND	ND	ND	ND
Paris, France	7.8	52.4	23.3	0.6	0.9	1.1	1.2	15.8	8.8	ND	ND	ND
Danki, Russia	ND	ND	20.9	0.1	ND	BD	ND	ND	ND	ND	ND	ND
Australia												
Cape Grim, Australia	ND	ND	13.7	ND								
Darwin, Australia	ND	ND	7.4	0.6	3.1	0.7	3.2	1.0	7.1	ND	ND	ND
Africa												
Kalahari, Botswana	0.7	1.5	9.0	BD	ND	BD	ND	ND	ND	ND	ND	ND
DeAar, South Africa	18.4	8.9	13.4	0.1	ND	0.1	ND	ND	ND	ND	ND	ND
Telde, Las Palmas	1.4	6.3	14.5	0.2	0.4	0.1	ND	6.6	3.3	ND	ND	ND
Asia												
Delhi- C, India	212	797	384	0.9	3.5	0.4	ND	45.5	ND	ND	78.7	ND
Delhi-D, India	58	143	151	0.6	3.3	0.2	19.2	29.2	ND	ND	43.4	ND
Danum Valley, Malaysia	ND	ND	4.6	BD	ND							
Kuwait City, Kuwait	4.1	5.1	40.7	0.3	ND	0.3	ND	ND	ND	ND	ND	ND
Manila, Philippines	1.0	0.8	20.5	1.2	2.0	1.1	ND	ND	ND	ND	ND	ND
Bukit Kototabang, Indonesia	0.3	9.9	5.7	ND								
Coimbatore, India	31.7	51.1	23.3	ND	0.8	0.1	ND	17.2	ND	ND	28.5	ND
Kuntabesi, Nepal	50.8	18.3	8.7	ND	ND	ND	ND	19.3	ND	ND	31.7	36.4
Pohang, Korea	8.8	4.0	45.3	0.4	ND	0.3	ND	ND	ND	ND	ND	ND
Seoul, Korea	12.0	19.1	63.9	0.3	0.7	0.3	ND	ND	ND	ND	ND	ND
Jeju Island, Korea	5.6	1.8	27.4	0.4	ND	0.3	ND	ND	ND	ND	ND	ND
Nam Co., Tibet, China	5.9	1.7	11.7	ND								
MDL	0.12	0.17	0.35	0.06	0.08	0.09	0.25	0.28	0.42	0.38	0.40	1.4

Part 4 Fourth sampling year (late 2007 to late 2008).

Location	α- НСН	γ- НСН	HCB	CC	ТС	TN	HEPT	HEPX	Diel- drin	<i>o,p</i> '- DDE	<i>p,p</i> '- DDE	<i>o,p`-</i> DDT
North America												

Bratt's Lake, Canada	4.2	2.1	29.5	0.2	0.3	0.4	ND	3.0	2.0	ND	ND	ND
Toronto, Canada	1.8	1.3	15.4	0.9	0.9	1.0	ND	ND	ND	ND	ND	ND
Whister, Canada	6.0	0.7	9.5	0.1	0.2	ND	ND	ND	ND	ND	ND	ND
Lasqueti Island, Canada	2.2	0.4	7.4	0.1	ND	ND						
Little Fox Lake, Canada	5.2	0.4	23.6	0.1	ND	ND						
Sable Island, Canada	13.5	1.6	37.5	0.5	0.5	0.6	ND	ND	ND	ND	ND	ND
Fraserdale, Canada	4.1	0.8	20.2	0.2	ND	0.2	ND	19.3	0.8	ND	38.1	ND
Ucluelet, Canada	5.3	0.3	21.0	0.1	ND	ND						
Dyea, USA	1.5	0.3	7.3	ND	ND							
Reyes, California, USA	4.0	0.4	17.8	0.2	0.3	0.2	ND	ND	ND	ND	ND	ND
Hilo, USA	3.0	0.4	25.0	0.1	ND	ND						
Tula, American Samo	0.2	BD	15.9	ND	ND							
Sydney, Florida, USA	1.0	2.0	18.0	4.0	5.4	4.3	ND	ND	3.9	ND	ND	ND
Tudor Hill, Bermuda	1.1	0.8	18.7	0.4	0.7	0.8	ND	ND	6.0	ND	ND	ND
Mexico and Central Ame	erica											
Tapanti, Costa Rica	0.8	92.4	12.6	ND	0.2	ND	ND	ND	ND	ND	ND	ND
South America												
Arauca, Columbia	0.2	ND	8.6	ND	ND							
St. Peter & St. Paul Rocks, Brazil	1.5	2.8	17.8	ND	0.3	ND	ND	ND	ND	ND	ND	ND
Indaiatuba, Brazil	1.2	2.9	9.8	0.1	0.4	ND	ND	ND	ND	ND	ND	ND
Europe												
Pallas, Finland	2.2	0.5	14.9	0.1	ND	ND						
Košetice, Czech Rep.	3.5	5.7	45.8	0.3	ND	ND	ND	ND	ND	ND	14.6	ND
Stórhöfði, Iceland	5.0	1.6	45.3	ND	ND							
Malin Head, Ireland	2.3	1.7	23.0	0.2	ND	ND						
Paris, France	6.8	39.0	20.1	0.5	0.7	0.8	1.0	7.8	8.4	ND	ND	ND
Danki, Russia	4.7	2.3	17.0	0.1	ND	ND						
Australia												
Cape Grim, Australia	BD	BD	13.5	ND	ND							
Darwin, Australia	BD	BD	11.0	0.4	2.0	0.4	3.0	0.8	6.8	ND	ND	ND
Africa												
Kalahari, Botswana	0.8	1.4	11.6	ND	ND							
DeAar, South Africa	18.0	14.1	14.2	0.1	ND	ND						
Asia												
Danum, Malaysia	BD	BD	8.7	ND	ND							
Kuwait City, Kuwait	2.9	4.4	38.2	0.4	0.3	0.4	ND	ND	ND	ND	ND	ND
Manila, Philippines	1.1	0.7	22.0	0.4	0.9	0.5	ND	ND	ND	ND	ND	ND
Bukit Kototabang, Indonesia	0.3	BD	10.1	ND	ND							
Nam Co., Tibet, China	8.8	2.6	23.7	ND	ND							
MDL	0.11	0.14	0.40	0.06	0.07	0.08	0.22	0.25	0.40	0.36	0.38	1.1

Table S4Results of randomized block design ANOVA test for the concentrations of HCHs,
 α -endosulfan, HCB and total chlordanes in North America, South and Europe for the
year 2005 to 2008. p < 0.05 indicates that the levels of OCPs significantly differ among
the four years sampling (2005 to 2008) or between two years (e.g. 2005 and 2006).

Yea	ar	Location				р	
From	То		α-HCH	ү-НСН	HCB	α -endosulfan	Total chlordane
		North America					
All four	· years		0.03	0.05	0.25	0.72	0.02
2005	2006		0.056	0.086	0.47	0.73	0.02
	2007		0.04	0.10	0.24	0.98	0.063
	2008		0.04	0.05	0.38	0.82	0.04
2006	2007		0.99	0.99	0.94	0.89	0.74
	2008		0.99	0.95	0.99	0.99	0.94
2007	2008		1.00	0.90	0.98	0.95	0.95
		South					
All four	· years		0.26	0.03	0.004	0.49	0.21
2005	2006		0.98	0.79	0.02	0.82	0.35
	2007		0.39	0.06	0.006	0.98	0.27
	2008		0.38	0.05	0.01	0.77	0.24
2006	2007		0.59	0.27	0.95	0.62	0.99
	2008		0.58	0.24	0.99	0.99	0.99
2007	2008		1.00	1.00	0.99	0.55	1.00
		Europe					
All four	· years		0.00	0.33	0.03	0.40	0.04
2005	2006		0.002	0.68	0.65	0.99	0.15
	2007		0.001	0.49	0.04	0.64	0.075
	2008		0.00	0.29	0.08	0.44	0.03
2006	2007		0.89	0.98	0.21	0.87	0.96
	2008		0.30	0.87	0.39	0.60	0.75
2007	2008		0.65	0.97	0.96	0.98	0.95

Table S5Results of the regression analysis between the levels of OCPs and time (2005 to 2008) for fifteen sites. p < 0.05 and negative
correlation (bold font) indicate that the levels of OCPs are significantly different from years 2005 to 2008 and decreasing
during the sampling period.

Sites	α-НСН		ү-НСН		Total Chlordane		НСВ		α-endosulfan	
	slope	р	slope	р	slope	р	slope	р	slope	р
Bratt's Lake, Canada	negative	0.006	negative	0.02	negative	0.55	positive	0.79	negative	0.53
Toronto, Canada	negative	0.01	negative	0.01	negative	0.04	negative	0.61	negative	0.34
Tudor Hill, Bermuda	negative	0.23	negative	0.47	negative	0.34	negative	0.22	negative	0.007
Tapanti, Costa Rica							positive	0.30	positive	0.03
Arauca, Columbia							negative	0.19	negative	0.05
Indaiatuba, Brazil	negative	0.05	negative	0.14	negative	0.14	negative	0.76	positive	0.47
Košetice, Czech Rep.	negative	0.13	negative	0.13	negative	0.05	negative	0.06	negative	0.59
Stórhöfði, Iceland	negative	0.08	negative	0.04	negative	0.02	negative	0.15	negative	0.18
Malin Head, Ireland	negative	0.05	negative	0.79	negative	0.05	positive	0.95	negative	0.74
Paris, France	negative	0.15	negative	0.04	negative	0.13	negative	0.09	negative	0.01
Cape Grim, Australia							negative	0.05	negative	0.70
Darwin, Australia					negative	0.11	negative	0.20	positive	0.64
Kalahari, Botswana	negative	0.01	negative	0.01			negative	0.23	positive	0.85
DeAar, South Africa	negative	0.08	negative	0.31	negative	0.05	negative	0.11	positive	0.24
Danum Valley, Malaysia							negative	0.69	negative	0.20

Figure S1-1 The distribution of hexachlorocyclohexanes in the global atmosphere during the first four years of GAPS.

Figure S1-2 The distribution of *trans*- and *cis*-chlordane in the global atmosphere during the first four years of GAPS.

Figure S1-3 The distribution of α -endosulfan in the global atmosphere during the first four years of GAPS.

Figure S1-4 The distribution of trifluralin, chlorothalonil, and pendimethalin in the global atmosphere during the first four years of GAPS.

Figure S2 Box-and-whisker plot of the pesticide concentrations in passive air samplers (ng/PAS) deployed at the 15 GAPS sites that had PAS installed during all four sampling years. The number next to each box indicates the number of sampling sites. If that number decreases from year to year, it is because the levels at some sites dropped below the limit of detection. (Sites with non-detected level was assigned with random value of method of detection limit).

Figure S3 Time trends in pesticide concentrations at the 15 GAPS sites that had PAS installed during all four sampling years. Toronto and Bratt's Lake also had samplers deployed in 2000/1.^{28,29} (Sites with non-detected level was assigned with random value of method of detection limit).

Figure S4 Histogram of logarithm of the PAS concentration for hexachlorobenzene, γ -hexachlorocyclohexane, and α -endosulfan.

International Partners

Accra, Ghana

Emmanuel Frempong, Department of Biological Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

De Aar, South Africa

Ernst-Günther Brunke, Cape Point GAW Station, South African Weather Service, Republic of South Africa Danie Ferreira, De Aar BSRN Station and Weather Office, South African Weather Service, Republic of South Africa Gerrie J.R. Coetzee, South African Weather Service, Republic of South Africa

Kalahari, South Africa

Henk Bouwman and Rialet Pieters, School of Environmental Sciences and Development North-West University (Potchefstroom Campus) Potchefstroom, South Africa

Cairo, Egypt

Tamer Shoeib, Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UK and Department of Chemistry, British University in Egypt, El Sherouk, Cairo, Egypt

Telde, Las Palmas, Canary Islands

Javier Arístegui and Minerva Espino, Departamento de Biología, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Islas Canarias, Spain

Nam Co., Tibet, China

Shichang Kang and Qianggong Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Mark Loewen, Freshwater Institute, Department of Fisheries and Oceans, Winnipeg, Manitoba, Canada

Bawana and East Arjun Nagar, Delhi, India

B. Sengupta, Central Pollution Control Board, East Arjun Nagar, Delhi

Coimbatore, India

V. Geethalakshmi, Agro Climate Research Centre, Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, India

Dhulikhel, Nepal

Subodh Sharma and Roshan M. Bajracharya, Kathmandu University, Dhulikhel, Kavre, Nepal Mark Loewen, Freshwater Institute, Department of Fisheries and Oceans, Winnipeg, Manitoba, Canada

Bukit Kototabang, Indonesia

Herizal Hamzah, Badan Meteorologi dan Geofisika, Bukit Kototabang Global GAW Station, West Sumatera, Indonesia

Pohang and Seoul, Republic of Korea

Sung-Deuk Choi, Song-Yee Baek and Yoon-Seok Chang, School of Environmental Science & Engineering, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea

Gosan, Jeju Island, Republic of Korea

Prof. Chang-Hee Kang and Sangbum Hong, Department of Chemistry, Cheju National University, Jeju, Republic of Korea

JiYi Lee, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Kuwait City and Abadali, Kuwait

Bondi Gevao, Department of Environmental Science, Kuwait Institute for Scientific Research, Safat, Kuwait

Danum Valley, Malaysia

Lim Sze Fook, Malaysian Meteorological Department, Petaling Jaya, Selangor, Malaysia Leong Chow Peng, Acid Deposition and Oxidant Research Centre, Niigata, Japan

Manila and Tagaytay City, Philippines

Evangeline C. Santiago, Mylene G. Cayetano, Laarni Tumolva and Raian Lapresca, Research and Analytical Services Laboratory Natural Sciences Research Institute University of the Philippines Diliman, Quezon City

Cape Grim, Tasmania, Australia

Jill Cainey, John Gorman and staff, Cape Grim Baseline Air Pollution Station, Tasmania, Australia

Darwin, Australia

David Parry, Tropical Futures: Mineral Program, School of Environmental and Life Sciences, Charles Darwin University, Darwin, Australia Judy Manning, Faculty of Education, Health and Science, Charles Darwin University, Darwin, Australia

Tudor Hill, Bermuda

Andrew J. Peters, Bermuda Institute of Ocean Sciences (BIOS), Bermuda

Tapanti National Park, Costa Rica

Luisa Eugenia Castillo and Clemens Ruepert, Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica

Veracruz, Mexico

Victor Alvarado, Beatriz Cárdenas and Henry Wöhrnschimmel, Centro Nacional de Investigación y Capacitación Ambiental (CENICA), Instituto Nacional de Ecologia, México, D.F Felipe Ángeles, Universidad Autonoma Metropolitana-Iztapalapa, Iztapalapa, México, D.F.

Tlahuac, Mexico

Victor Alvarado, Beatriz Cárdenas, and Henry Wöhrnschimmel, Centro Nacional de Investigación y Capacitación Ambiental (CENICA), Instituto Nacional de Ecologia, México, D.F

Kosetice, Czech Republic

Milan Vana, Jan Cech and Jaroslava Cervenkova, Czech Hydrometeorological Institute, Kosetice Observatory, Kosetice, Czech Republic

Hollola, Finland Anna-Lea Rantalainen, University of Helsinki, Dept. of Ecological and Environmental Sciences, Lahti, Finland

Pallas, Finland

Sirkka Leppänen, Air Quality Research, Finnish Meteorological Institute, Helsinki, Finland

Paris, France

Elodie Moreau Guigon, Hélène Blanchoud, Marc Chevreuil and Donatienne Ollivon, EPHE, UMR 7619 Sisyphe, UPMC - Paris, France

Storhofdi, Iceland

Óskar J. Sigurðsson, Stórhöfði, Heimaey, Vestmannaeyjar / Westman Islands, Iceland Elvar Ástráðsson, Veðurstofa Íslands / Icelandic Meteorological Office, Reykjavík, Iceland

Malin Head, Ireland

Martin Haran and Paddy Delaney, Met Éireann, Malin Head, Ireland Stephan Leinert, EPA Regional Inspectorate, Richview, Dublin, Ireland

Isola Marettimo, Italy

Silvano Focardi and Guido Perra, Dipartimento di Scienze Ambientali, Universita degli Studi di Siena, Siena, Italy

Ny-Ålesund, Norway

Wenche Aas and Ove Hermansen, Norwegian Institute for Air Research (NILU), Kjeller, Norway Jane Helen Carlsen and Dorothea Schulze, Norwegian Polar Institute, Ny-Ålesund, Norway

Pomlewo, Poland

Jerzy Falandysz, Department of Environmental Chemistry, University of Gdańsk, Gdańsk, Poland

Danki, Russian Federation

Elena Mantseva, Meteorological Synthesizing Centre-East (MSC-E) of EMEP, Moscow, Russian Federation Vera Aleksandrovna Ableyeva, Prioksko-Terrasny State Nature Biosphere Reserve, Serpukhov, Moscovskaya Oblast, Russian Federation

Barcelona, Spain

Jordi Dachs, Department of Environmental Chemistry, Institute for Chemical and Environmental Research (IIQAB-CSIC), Barcelona, Catalunya, Spain

Izmir, Turkey

Mustafa Odabasi, Dokuz Eylul University, Faculty of Engineering, Department of Environmental Engineering, Buca-Izmir, Turkey

Barrow, Alaska, USA

Daniel J. Endres, Teresa Winter, Steve Grove and Jason Johns, Barrow Observatory, National Oceanic & Atmospheric Administration (NOAA), Barrow, Alaska, USA

St. Lawrence Island, Alaska, USA Pamela K. Millerand and Vi Waghiyi, Alaska Community Action on Toxics (ACAT), Anchorage, Alaska, USA

Dyea, Alaska, USA

David Schirokauer, National Park Service, Skagway Alaska USA

Alert, Nunavut, Canada

Andrew Platt, Maria Vavro, Brad Hansen, Christian Wilde, Adrienne Glover and Hayley Hung, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Bratt's Lake, Saskatchewan, Canada

Don Waite, Jason Slobodian and David Halliwell, Science and Technology Branch, Environment Canada, Regina, Saskatchewan, Canada

Little Fox Lake, Yukon, Canada Pat Roach, Indian and Northern Affairs Canada, Whitehorse, Yukon, Canada

Sable Island, Nova Scotia, Canada

Gerry Forbes, Meteorological Service of Canada, Environment Canada, Nova Scotia, Canada

Fraserdale, Ontario, Canada

Doug Worthy, Robert Kessler and Andre Leclerc, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Downsview, Ontario, Canada Karla Pozo and Sum Chi Lee, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Lasqueti Island, British Columbia, Canada

Patrick Shaw, Pacific and Yukon Water Quality Monitoring Office, Science and Technology Branch, Environment Canada, Pacific and Yukon Region, Vancouver, British Columbia, Canada

Ucluelet, British Columbia, Canada

Brian Congdon, Subtidal Adventures (www.subtidaladventures.com), Ucluelet, British Columbia, Canada

Whistler, British Columbia, Canada

Anne Marie Macdonald, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada Juniper Buller, Whistler Blackcomb & Blackcomb Helicopters, Whistler, British Columbia, Canada Anton Horvath, Whistler Blackcomb Ski Patrol, Whistler, British Columbia, Canada

Pont Ryes, California, USA

Patrick Kleeman and Gary Fellers, U.S. Geological Survey, Western Ecological Research Center, Point Reyes National Seashore, Point Reyes, California, USA

Sydney, Florida, USA

Foday M. Jaward, Environmental and Occupational Health, College of Public Health, University of South Florida, Tampa, Florida, USA

Mauna, Hawaii, USA

John Barnes, Mauna Loa Observatory, Hilo, Hawaii, USA

Tula, American Samoa, USA

Mark Cummingham, NOAA American Samoa Observatory, Tutuila, America Samoa, USA

Athens, Georgia, USA

Aaron Fisk, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA

Bahia Blanca, Argentina

Norma Tombesi, Química Ambiental, Depto. de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina

Huayna Potosí 5200 m a.s.l, La Paz, Bolivia

Victor Hugo Estellano, Muricio Zavalla and Margot Franken, Unidad de Calidad Ambiental, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia Maria Galarza Coca, Programa Nacional de POPs (PRONACOPs), La Paz, Bolivia

Indaiatuba, Brazil

Wilson F. Jardim and Matheus Paes Paschoalino, Universidade Estadual de Campinas - UNICAMP Laboratorio de Quimica Ambiental, Campinas, Sao Paulo, Brazil Pedro S. Fadini, Pontificia Universidade Católica, Campinas, Sao Paulo, Brazil

St. Peter & St. Paul Rocks, Brazil

Joao Paulo Machado Torres and Rodrigo Ornellas Meire, Institute of Biophysics, Centro de Ciencias da Saude – UFRJ, Rio de Janeiro, Brazil

Chungara Lake, Chile Roberto Urrutia, Centro EULA-Chile, Universidad de Concepción, Concepcion, Chile

Coyhaique, Chile

Oscar Parra, Centro EULA-Chile, Universidad de Concepción, Concepcion, Chile

Arauca, Colombia

Myriam Lugo Rugeles, Universidad Nacional de Colombia, Arauca, Colombia Jhon Hamel Ruiz, Universidad Nacional de Colombia, Biblioteca Sede Orinoquia, Arauca, Colombia Germán Joaquín Lopez Forero, Ingeniero Quimico, Universidad Nacional de Colombia, Sede Orinoquia, Arauca, Colombia

Mario Zucchelli Station, Antarctica (Italy)

Silvano Focardi, Dipartimento di Scienze Ambientali, Universita degli Studi di Siena, Siena, Italy