1	Supplementary information
2	
3	Estrogenic activity profiles and risks in surface water and sediments of the
4	Pearl River system, South China, assessed by chemical analysis and in vitro
5	bioassay
6	
7	Jian-Liang Zhao, Guang-Guo Ying *, Feng Chen, You-Sheng Liu, Li Wang, Bin Yang,
8	Shan Liu, Ran Tao
9	
10	State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese
11	Academy of Sciences, Guangzhou 510640, P R China
12	
13	* Corresponding author. Tel.:+86 020 85290200; fax: +86 020 85290200. Email address:
14	guangguo.ying@gmail.com (GG Ying)
15	

16 **Quality control and quality assurance**

17 Recoveries in river water were obtained by spiking 1 L of reservoir water with 5, 100, and 18 200 ng of seven selected phenolic compounds, while recoveries in sediments were obtained by 19 adding 20, 100, and 500 ng of each compound to 5 g of reservoir sediment. The recoveries in 20 river water for 4-t-OP, 4-NP, BPA, E1, DES and EE2 were between 70%-120% at three spiked 21 concentrations, but E2 had slightly higher recoveries. The limits of detection (LODs) and the 22 limits of quantitation (LOQs) for analytes in river water were defined as 3 and 10 times the 23 standard deviation (SD) of 7 spiked samples at 5 ng/L respectively. LODs were below 1 ng/L and 24 LOQs were below 2 ng/L for most compounds, except for 4-NP which had a higher LOD and 25 LOQ. While the recoveries in sediments were between 70%-120% for most compounds, and the 26 LODs and LOQs were below 1.0 ng/g and 3.0 ng/g for most compounds, the LOD and LOQ of 27 4-NP were 1.5 ng/g and 4.9 ng/g, respectively. Detailed recoveries, LODs and LOQs data are available in Table S2. 28

29 As a quality control, duplicate blank samples and duplicate spiked control samples were 30 analysed simultaneously with the unspiked field samples. Spiked control samples for river water 31 and reservoir sediment were obtained by spiking 1 L of Milli-Q water with 100 ng of each 32 compound, and spiking 5 g of reservoir sediment with 100 ng of each compound. The recoveries 33 for target compounds in the control samples were between 70% -120% in each batch of 34 experiments. For the YES bioassay, spiked control samples were obtained by spiking 1 L of 35 Milli-Q water and 5 g of reservoir sediment with 54.48 ng of E2. The EEQs (estradiol equivalent) 36 for the control samples in water and sediment were between 45 ng to 65 ng in each batch of YES 37 (recombinant yeast estrogen screening) bioassay.

38

39

40 Measured EEQ and calculated EEQ

The calculation approaches for measured EEQs and calculated EEQs were developed from the published methods.¹ In brief, it was assumed that the real sample had the same dose-effect curve as E2; hence it shared the same dose-effect equation as E2. The dose-effect curve of E2 is expressed as the arithmetic means with standard derivations of corrected absorbance data (blank value was subtracted) toward Logarithm of dose (equivalent amount at ng/L). The dose-effect equation of E2 was then fitted using log-logistic model. The equation is expressed as the following:

48
$$Y = A_2 + \frac{(A_1 - A_2)}{1 + (x/EC_{50})^p}.$$

Here, *Y* is the corrected absorbance at 540 nm, A_1 is the minimum absorbance, A_2 is the maximum absorbance, EC_{50} is half dose-effect concentration, and *p* is the Hill slope. So, the measured EEQ a certain sample was calculated by using the ratio EC_{50} of the sample to EC_{50} of E2.

Based on the concentration addition model, calculated EEQ was expressed as the sum of all estrogenic contributions of seven compounds by multiplying their corresponding estradiol equivalency factors (EEFs) and chemical concentration.² Then, the EEFs of the target analytes are calculated by the ratios f EC_{50} values, that is $EEF(i) = EC_{50}(i) / EC_{50}(E2)$.¹ The EEFs for seven target compounds were listed in Table S6. The Calculated EEQ of real sample was the addition of values that all individual compound concentration multiplied the corresponding EEFs:

59
$$\sum$$
 Calculated EEQ(*i*) = \sum EEF(*i*) × *c*(*i*).

60 Derivation of predict no effect concentration (PNEC) of E2

The derivation of PNEC of E2 was carried out as the Technical Guidance Document (TGD) on risk assessment.³ We collected no observed effect concentrations (NOECs), low observed effect concentrations (LOECs) data on the effects of reproduction and vitellogenin (VTG) concentration tests of fish, daphnia, and some other species in literature. The detailed data were summarized in Table S4. Here, we selected 77 *in vivo* chronic NOECs of reproduction data and set up the species sensitivity distribution curve (Fig. S1), and then fitted by the 4-pamameter logistic regression. The parameters were shown in the following equation:

68
$$y = -1.346 + \frac{97.17}{1 + (x/68.14)^{-0.6998}}$$
.

From this distribution of species sensitivity distribution curve, the hazardous concentration (HC_5) was identified as fifth percentage of all species tested,^{4,5} behind which 95% of species would not display adverse effects associated with E2 exposure. The PNEC corresponding to the HC_5 was 1.5 ng/L for E2.

74 **References**

- 1 I. C. Beek, R. Bruhn and J. Gandrass, *Chemosphere*, 2006, **63**, 1870–1878.
- 76 2 K. L. Thorpe, M. Gross-Sorokin, I. Johnson, G. Brighty and C. R. Tyler, Environ. Health
- 77 *Perspect.*, 2006, **114**, 90–97.
- 78 3 E.C., Technical Guidance Document on Risk Assessment in support of Commissions
- 79 Directive 93/67/EEC on Risk Assessment for new notified substances and Commissions
- 80 Regulation (EC) No. 1488/94 on risk assessment for existing substances, Ispra, Italy,
- 81 European Chemicals Bureau, 1996.
- 4 M. C. Newman, D. R. Ownby, L. C. A. Mezin, D. C. Powell, T. R. L. Christensen, S. B.
- Erberg and B. A. Anderson, *Environ. Toxicol. Chem.*, 2000, **19**, 508–515.
- 5 D. J. Caldwell, F. Mastrocco, T. H. Hutchinson, R. Lange, D. Heijerick, C. Janssen, P. D.
 Anderson and J. P. Sumpter, *Environ. Sci. Technol.*, 2008, 42, 7046–7054.
- 86 6 H. R. Andersen, B. Halling-Sorensen and K. O. Kusk, *Ecotoxicol. Environ. Saf.*, 1999, 44,
 87 56–61.
- 88 7 K. N. Baer and K. D. Owens, Bull. Environ. Contam. Toxicol., 1999, 62, 214–221.
- 89 8 L. B. Bjerregaard, C. Lindholst, B. Korsgaard and P. Bjerregaard, *Ecotoxicology*, 2008, 17,
 90 252–263.
- 91 9 M. Breitholtz and B. E. Bengtsson, *Mar. Pollut. Bull.*, 2001, **42**, 879–886.
- 92 10 F. Brion, C. R. Tyler, X. Palazzi, B. Laillet, J. M. Porcher, J. Garric and P. Flammarion,
- 93 Aquat. Toxicol., 2004, **68**, 193–217.
- 94 11 J. Forget-Leray, I. Landriau, C. Minier and F. Leboulenger, *Ecotoxicol. Environ. Saf.*, 2005,
 60, 288–294.
- 96 12 N. Hirai, A. Nanba, M. Koshio, T. Kondo, M. Morita and N. Tatarazako, Aquat. Toxicol.,

- 97 2006, **79**, 288–295.
- 98 13 N. Hirai, A. Nanba, M. Koshio, T. Kondo, M. Morita and N. Tatarazako, *Aquat. Toxicol.*,
 99 2006, **77**, 78–86.
- 14 T. H. Hutchinson, N. A. Pounds, M. Hampel and T. D. Williams, *Sci. Total Environ.*, 1999,
 233, 167–179.
- 102 15 S. Imai, J. Koyama and K. Fujii, Mar. Pollut. Bull., 2005, 51, 708–714.
- 103 16 Y. X. Jin, R. J. Chen, L. W. Sun, H. F. Qian, W. P. Liu and Z. W. Fu, Comp. *Biochem.*104 *Physiol–C: Pharmacol. Toxicol. Endocrinol.*, 2009,**150**, 414–420.
- 105 17 J. A. Jukosky, M. C. Watzin and J. C. Leiter, *Bull. Environ. Contam. Toxicol.*, 2008, 81,
 106 230–235.
- 107 18 I. J. Kang, H. Yokota, Y. Oshima, Y. Tsuruda, T. Yamaguchi, M. Maeda, N. Imada, H.
 108 Tadokoro and T. Honjo, *Chemosphere*, 2002, 47, 71–80.
- 109 19 D. R. Kashian and S. I. Dodson, Environ. Toxicol. Chem., 2004, 23, 1282–1288.
- 110 20 T. Liao, Q. L. Guo, S. W. Jin, W. Cheng and Y. Xu, *Fish Physiol. Biochem.*, 2009, 35,
 111 341–349.
- 112 21 H. S. Marcial and A. Fish Sci., 2007, 73, 324–330.
- 22 C. D. Metcalfe, T. L. Metcalfe, Y. Kiparissis, B. G. Koenig, C. Khan, R. J. Hughes, T. R.
 Croley, R. E. March and T. Potter, *Environ. Toxicol. Chem.*, 2001, 20, 297–308.
- 115 23 G. H. Panter, R. S. Thompson and J. P. Sumpter, Aquat. Toxicol., 1998, 42, 243–253.
- 116 24 B. L. Preston, T. W. Snell, T. L. Robertson and B. J. Dingmann, *Environ. Toxicol. Chem.*,
 117 2000, **19**, 2923–2928.
- 118 25 C. D. Robinson, E. Brown, J. A. Craft, I. M. Davies, C. Megginson, C. Miller and C. F.
- 119 Moffat, Aquat. Toxicol., 2007, **81**, 397–408.
- 120 26 M. Seki, S. Fujishima, T. Nozaka, M. Maeda and K. Kobayashi, Environ. Toxicol. Chem.,

- 121 2006, **25**, 2742–2752.
- 122 27 M. Seki, H. Yokota, M. Maeda and K. Kobayashi, Environ. Toxicol. Chem., 2005, 24,
- 123 1259–1266.
- 124 28 G. G. Ying and R. S. Kookana, *Environ. Sci. Technol.*, 2003, **37**, 1256–1260.
- 125 29 G. G. Ying, R. S. Kookana and Y. J. Ru, Environ. Int., 2002, 28, 545–551.

127 Fig. S1:

Fig S1. Estimating of predicted no-effect concentration (PNEC) from species sensitivity distribution (SSD) curve using *in vivo* predicted no-effect concentrationa (NOECs) data. The curve was fitted using log-logistic model. HC_5 means 95% of species will not display adverse estrogenic effect below the concentration of E2.

135	The surface water and se	ediment parameters	of sampling sites ^a
155	The bullace water and b	cument parameters	or sumpring sites.

Sites	T (°C)	pН	Conductivity (µs/cm)	DO^{b} (mg/L)	TOC_{dry}^{c} (%)	$\operatorname{TOC}_{\operatorname{wet}}^{d}(\%)$
S0	31.1	7.27	86.7	10.5	1.23	1.40
S 1	31.0	7.45	112	14.6	2.61	0.30
S2	31.1	7.24	166	13.81	0.90	0.07
S 3	30.2	6.92	257	3.07	2.46	2.17
S4	31.1	7.03	343	3.86	3.95	2.70
S5	31.2	7.10	383	5.11	3.26	5.81
S6	32.8	7.14	446	3.14	2.95	2.84
S 7	30.6	7.16	340	4.53	2.40	2.32
S 8	30.8	7.33	230	11.15	1.44	2.04
S9	32.4	7.31	325	5.12	1.91	1.94
S10	31.9	7.28	266	4.23	2.82	1.91
S11	31.3	7.10	360	4.67	6.01	4.97
S12	30.9	7.26	675	1.04	NA ^e	3.80
S13	31.4	7.34	458	2.14	6.55	2.79
S14	30.8	7.31	549	0.99	7.45	3.18
R1	32.9	7.27	843	0.33	NA	0.56
R2	32.9	7.09	720	0.13	NA	6.24
W1	31.8	7.09	723	6.82	NA	NA
W2	31.8	7.08	799	6.81	NA	NA
W3	30.8	7.06	624	7.93	NA	NA
W4	30.7	7.23	463	3.42	NA	NA

^{*a*} The data of temperature, pH, conductivity and DO listed here were from the wet season (September 10-12, 2008); ^{*b*} Dissolved oxygen; ^{*c*} Total organic carbon of freeze-dried sediment in dry season; ^{*d*} Total organic carbon of freeze-dried sediment in wet season; ^{*e*} Not analyzed.

R1 and R2 are two urban streams in the city area.

142 Recoveries (%), limit of detection and limit of quantitation of seven selected chemicals in surface 143 water.

Compounds ^a	Spik	ed concentrat	$IOD(ma/I)^{c}$	LOQ (ng/L) ^c	
Compounds	5 ng/L	5 ng/L 100 ng/L 200 ng/L			
4-t-OP	99±4	75±4	74±11	0.3	1.0
4-NP	92±22	115±13	74±5	2.0	7.0
BPA	118±8	103±1	105 ± 3	0.7	2.0
E1	86±4	96±5	90±8	0.2	0.5
DES	73±4	71±3	71±2	0.2	0.5
E2	135±12	145±5	163±34	0.3	1.0
EE2	131±4	101±2	105±6	0.2	0.7

^{*a*} 4-t-OP: 4-*tert*-octylphenol; 4-NP: 4-nonylphenol; BPA: bisphenol-A; E1: estrone; E2: estradiol; 144

DES: diethylstilbestrol; EE2: 17α-Ethinylestradiol. 145

146

^{*b*} mean \pm standard deviation (n = 4). ^{*c*} LOD: limit of detection; LOQ: limit of quantitation. 147

- 150 Recoveries (%), limit of detection and limit of quantitation of seven selected chemicals in
- sediments. 151

Compounds ^a	Spik	ed concentra	tions ^b	$IOD(na/a)^{c}$	$I \cap O (ma/a)^{c}$
Compounds	5 ng/g	20 ng/g	100 ng/g	LOD (lig/g)	LOQ (lig/g)
4-t-OP	100±6	80±3	75±3	0.3	0.9
4-NP	81±12	96±16	85±6	1.5	4.9
BPA	97±13	88±2	89±1	0.8	2.6
E1	114±6	91±7	95±2	0.3	1.1
DES	152±12	133±12	134±7	0.7	2.3
E2	76±15	83±18	106 ± 14	1.1	3.5
EE2	89±9	92±12	113±7	0.8	2.5

^{*a*} 4-t-OP: 4-*tert*-octylphenol; 4-NP: 4-nonylphenol; BPA: bisphenol-A; E1: estrone; E2: estradiol; 152

DES: diethylstilbestrol; EE2: 17α -Ethinylestradiol. ^b mean \pm standard deviation (n = 4). 153

- ^{*c*} LOD: limit of detection; LOQ: limit of quantitation. 155
- 156

158 List of available toxicity data from literature for 17β-estradiol (E2) on fish and other species.

Groups	Test species	Reproductive end point	Duration (days)	NOEC ^{<i>a</i>} (ng E2/L)	LOEC ^b (ng E2/L)	VTG NOEC ^c (ng E2/L)	Reference No.
Copepod	Acartia tonsa	Egg production	10	13600	23000		6
Cladoceran	Daphnia magna	Reproduction	21	270000			7
Brown trout	Salmo trutta	Sex ratio	274	10			8
Copepod	Nitocra spinipes	Larval development	18	160000			9
Copepod	Nitocra spinipes	Reproduction	18	50000			9
Copepod	Nitocra spinipes	Sex ratio	18	5000	50000		9
Female adult zebrafish	Danio rerio	Body length	21	4.8	16.5		10
Female juvenile zebrafish	Danio rerio	Body length	21	9.2	21.6		10
Male adult zebrafish	Danio rerio	Body length	21	>82			10
Male juvenile zebrafish	Danio rerio	Body length	21	>109		25	10
Female larval zebrafish	Danio rerio	Body length	21	>117			10
Male larval zebrafish	Danio rerio	Body length	21	>117			10
Female adult zebrafish	Danio rerio	Body weight	21	4.8	16.5		10
Female juvenile zebrafish	Danio rerio	Body weight	21	21.6	109		10
Male adult zebrafish	Danio rerio	Body weight	21	>82		5	10
Male juvenile zebrafish	Danio rerio	Body weight	21	>109			10
Female larval zebrafish	Danio rerio	Body weight	21	>117			10

Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is (c) The Royal Society of Chemistry 2010

Male larval zebrafish	Danio rerio	Body weight	21	>117			10
Poppe	Eurytemora affinis	Survival	10	6000	18000		11
Female japanese medaka	Oryzias latipes	Fecundity	60	150			12
Japanese medaka	Oryzias latipes	Spawn times	60	150		100	12
Japanese medaka	Oryzias latipes	Hatching rate	14	140.6			13
Japanese medaka	Oryzias latipes	Survival percentage of larvae	14	140.6			13
Crustacean	Tisbe battagliai	Reproductive output	21	>100000			14
Java-medaka	Oryzias javanicus	Fecundity	187	9.5	16		15
Java-medaka	Oryzias javanicus	Hepatosomatic index	187	159	243		15
Java-medaka	Oryzias javanicus	Reproduction	180	9.5	16	16	15
Java-medaka	Oryzias javanicus	The number of eggs	187	16	68		15
Java-medaka	Oryzias javanicus	Total length	187	9.5	16		15
Embryo zebrafish	Danio rerio	Expression of ER ^d alpha	3	100	250	1000	16
Larval zebrafish	Danio rerio	Expression of ER alpha	7	100	250	250	16
Embryo zebrafish	Danio rerio	Expression of ER beta	3	1000	>1000		16
Larval zebrafish	Danio rerio	Expression of ER beta	7	1000	>1000		16
Male adult zebrafish	Danio rerio	Expression of hepatic ER beta	7	250	500	100	16
Cladoceran	Ceriodaphnia dubia	Neonates produced	7	5000	50000		17
Cladoceran	Ceriodaphnia dubia	Survival	7	1000000			17
Japanese medaka	Oryzias latipes	Fertility of eggs	21	227	463	29.3	18

Supplementary Material (ESI) for Journal of Environmental Monitoring

This journal is (c) The Royal Society of Chemistry 201	C
--	---

Male Japanese medaka	Oryzias latipes	GSI ^e	21	227	463		18
Female Japanese medaka	Oryzias latipes	Hatchability from F1 embryos	21-31	463	/		18
Japanese medaka	Oryzias latipes	Sex ratios	60	>463	/		18
Japanese medaka	Oryzias latipes	Total number of eggs from F0	21	227	463		18
Cladoceran	Daphnia magna	Reproduction	25	>100000			19
Larval minnow	Gobiocypris rarus	Body weight	21	25	100	25	20
juvenile minnow	Gobiocypris rarus	Body weight	42	>1000		25	20
Adult minnow	Gobiocypris rarus	Body weight	171	>1000		5	20
Larval minnow	Gobiocypris rarus	Length	21	25	100		20
juvenile minnow	Gobiocypris rarus	Length	42	>1000			20
Adult minnow	Gobiocypris rarus	Length	171	>1000			20
Juvenile minnow	Gobiocypris rarus	Sex ratio	42	5	25		20
Larval minnow	Gobiocypris rarus	Testes-ova	21	25	100		20
Juvenile minnow	Gobiocypris rarus	The development of	42	25	100		20
Cladoceran	Diaphanosoma celebensis	Reproduction	$3G^{f}$	1000			21
Japanese medaka	Oryzias latipes	Body weight	90	10	100		22
Japanese medaka	Oryzias latipes	Testes-ova	90	0.4	4		22
Japanese medaka	Oryzias latipes	Sex ratio	100	75	150		22
Japanese medaka	Oryzias latipes	Total length	90	100	1000		22
Male fathead minnow	Pimephales promelas	Gonad weight	21	100	320	32	23
rotifer	B. calyciflorus.	Reproduction	4	10000			24
sand goby	Pomatoschistus minutus	Egg production	7	4	97		25
Medaka	Oryzias latipes	Body weight of F0	60	0.939	2.86		26
Medaka	Oryzias latipes	Embryological	98-100	8.66			26

Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is (c) The Royal Society of Chemistry 2010

		abnormalities of F1					
Medaka	Oryzias latipes	Female GSI of F0	71-100	27.9			26
Medaka	Oryzias latipes	Fertility of F0	71-100	2.86	8.66	0.939	26
Medaka	Oryzias latipes	Male GSI of F0	71-100	8.66	27.9	2.86	26
Medaka	Oryzias latipes	sex ratio of F1	56	2.86	8.66		26
Medaka	Oryzias latipes	sex ratio of F0	60	8.66	27.9		26
Medaka	Oryzias latipes	Testis-ova of F0	60	8.66	27.9		26
Medaka	Oryzias latipes	Total length of F0	60	0.939	2.86		26
Medaka	Oryzias latipes	Total number of eggs from F0	71-100	8.66	27.9		26
Male zebrafish	Danio rerio	GSI	21	>85.9		24.5	27
Female zebrafish	Danio rerio	GSI	21	>85.9		24.5	27
Male medaka	Oryzias latipes	GSI	21	>85.1		<8.94	27
Female medaka	Oryzias latipes	GSI	21	>85.1		28.2	27
Male medaka	Oryzias latipes	Number of papillary processes	21	>85.1			27
Male fathead minnow	Pimephales promelas	GSI	21	>86		28.6	27
Female fathead minnow	Pimephales promelas	GSI	21	>86		8.77	27
Male fathead minnow	Pimephales promelas	Number of nuptial tubercles	21	28.6	86		27

^{*a*} No observed effect concentration; ^{*b*} Lowest observed effect concentration; ^{*c*} VTG, vitellogenin, only for fish study, ; ^{*d*} ER, estrogen receptor; ^{*e*} Gonadosomatic index; ^{*f*} three generations. 159

162	$K_{\rm oc}$ values of seven target compounds				
	Compound ^{<i>a</i>}	$K_{\rm oc}{}^b$			
	4-t-OP	18200			
	4-NP	38900			
	BPA	778			
	E1	4882			
	DES	569200			
	E2	4360			
	EE2	4840			

^{*a*} 4-t-OP: 4-*tert*-octylphenol; 4-NP: 4-nonylphenol; BPA: bisphenol-A; E1: estrone; E2: estradiol; DES: diethylstilbestrol; EE2: 17α -Ethinylestradiol. ^{*b*} K_{oc} : organic carbon partitioning coefficient to E2, data from Reference 28 and Reference 29.

168	Estrogenic equivalent factor of seven target compounds				
	Compound ^{<i>a</i>}	EEF ^b			
	4-t-OP	0.00093			
	4-NP	0.00063			
	BPA	0.00011			
	E1	0.3			
	DES	0.83			
	E2	1.0			
	EE2	2.2			

169

^{*a*} 4-t-OP: 4-*tert*-octylphenol; 4-NP: 4-nonylphenol; BPA: bisphenol-A; E1: estrone; E2: estradiol; DES: diethylstilbestrol; EE2: 17α -Ethinylestradiol. ^{*b*} EEF: estrogenic equivalent factor relative to 170 171 E2.

Flow rates of effluents and different river reaches in the Pearl River system, river reaches information and dilution factors of effluents, 174

175 the Liuxi River and Shijing River relative to the Zhujiang River.

Sito		Inhabitants	Location	Flow (m ³ /s)		Dilution factor ^{<i>a</i>}	
Sile		serviced		Dry season	Wet season	Dry season	Wet season
WWTP	Datansha (W1)	1500000	West channel	6.4 ^b	6.4	27.5	154
	Liede (W2)	2150000	Front channel	7.4	7.4	23.6	132
	Xilang (W3)	600000	Back channel	4.6	4.6	17.3	86.4
	Lijiao (W4)	1350000	Back channel	2.3	2.3	43.5	244
River	Liuxi River (S1)	-	-	17.3 ^c	156 ^c	16.2	5.8
	Shijing River (S14)	-	-	3.5^{d}	5.7 d	80.0	158
	Zhujiang River (West	-	-				
	channel, S4, S5)			$280^{\ c}$	900 ^c	-	-
	Zhujiang River (Front	-	-				
	channel, S7)			$175^{\ c}$	980 ^c	-	-
	Zhujiang River (Back	-	-				
	channel, S8)			200 ^c	1120 ^c	-	-

^{*a*} Dilution factor is defined as the ratio of the flow of effluent or river versus the flow of Zhujiang River. ^{*b*} All of the STP effluent flow data were obtained from Guangzhou Sewage Treatment Co., Ltd. 176

177

^{*c*} Data were provided by Guangdong Hydrology Bureau. 178