Supplementary Information

- MANUSCRIPT TITLE: Distribution, sources, and potential toxicological significance of PAHs in drinking water sources within the Pearl River Delta
- **AUTHORS:** Taicheng An,^{*a} Meng Qiao,^{a,b} Guiying Li,^a Hongwei Sun,^{a,b} Xiangying Zeng,^a Jiamo Fu,^a

ADDRESS: ^a State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
 ^b Graduate School of Chinese Academy of Sciences, Beijing 100049, China

JOURNAL:Journal of Environmental MonitoringFIGURES:4

TABLES:4

NO. OF PAGES: 10

* Corresponding author: Taicheng An

Tel: 86-20-85291501

Fax: 86-20-85290706

E-mail address: antc99@gig.ac.cn

^{*}Corresponding author: E-mail: <u>antc99@gig.ac.cn;</u> Tel: 0086-20-85291501; Fax: 0086-20-85290706.

Source identification

Due to the wide-spread sources of PAHs, the possible sources of PAHs in the drinking source water within this region were also determined *via* conventional reported methods ¹⁻⁵. According to these references, the ratios between pairs of individual PAHs are often employed to determine the sources of PAHs. Four groups of isomers have been documented: Ant and Phe with the same molecular weight of 178, Flua and Pyr with the same molecular weight of 202, BaA and Chry with the same molecular weight of 228, and IncdB and BghiP with the same molecular weight of 276. If Ant/(Ant + Phe) < 0.1, PAH sources mainly originated from petroleum discharges. If Ant/(Ant +Phe) > 0.1, PAH sources mainly originated from combustion ². If Flua/(Flua + Pyr) < 0.4, PAH sources mainly originated from petroleum emissions, and if 0.4 < Flua/(Flua + Pyr) < 0.5, PAHs sources originated from both petroleum discharges and combustion of its refined products. If Flua/(Flua + Pyr) > 0.5, the source originated from wood and coal combustion². If BaA/(BaA + (Chrv) < 0.2, the main sources of PAHs originated from petroleum discharges, and if 0.2 < 0.2BaA/(BaA + Chry) < 0.35, PAH sources originated from both petroleum discharges and combustion. If BaA/(BaA + Chry) > 0.35, only combustion is considered the PAH source ⁵. If $IncdB/(IncdB + BghiP) \le 0.2$, PAHs sources mainly originated from petroleum discharges, and if 0.2 < IncdB/(IncdB + BghiP) < 0.5, PAH sources originated from petroleum combustion. Finally, if IncdB/(IncdB + BghiP) > 0.5, PAH sources originated from wood and coal combustion⁵.

City	Sample	Wet season				Dry season				
		PH	TSS (mg/L)	DOC(mg/L)	POC(mg/L)	PH	TSS (mg/L)	DOC(mg/L)	POC(mg/L)	
Guangzhou	YG	7.87	11.07	4.49	2.74	7.86	18.75	2.13	1.54	
	XC	8.5	63.7	5.15	7.03	8.58	75.32	13.96	14.52	
	JG	7.72	98.25	1.39	1.88	8.15	18.82	3.60	2.56	
	YJS	7.3	19.06	1.45	0.64	8.25	13.79	2.72	1.09	
	SHD	7.28	26.12	2.02	1.36	7.81	15.54	1.01	0.46	
	LWZ	7.27	49.46	0.97	1.02	7.28	14.26	0.94	0.39	
Huizhou	HZH	7.86	12.27	0.79	0.30	7.17	10	0.51	0.29	
Dongguan	DG	7.2	9.41	1.09	0.31	7.68	26.35	0.68	0.44	
	YT	7.67	32.94	1.47	1.51	7.78	26.79	0.96	1.20	
Shenzhen	SHZH	7.37	25.51	1.19	0.73	7.41	24.23	0.60	0.89	
Foshan	FSH	8.31	18.88	1.21	0.51	7.78	11.65	1.02	0.85	
Zhaoqing	ZHQ	8.56	6.9	1.40	0.20	7.99	14.5	1.26	1.09	
Zhongshan	ZHSH	8.16	10.92	1.96	0.35	8.26	11.54	0.86	0.31	
Jiangmen	JM	8.6	12.67	1.37	0.42	7.91	7.94	0.78	0.42	
Zhuhai	ZHH	8.18	31.02	2.77	0.95	7.84	18.06	1.39	0.84	

Table S1 Physical and chemical parameters of 15 water samples (60 L of each)

TSS, total suspended solid; DOC, dissolved organic carbon; POC, particulate organic carbon

Table S2

Recoveries of surrogate standards

Surrogate standard	Dissolved	phase	_	Particulate phase			
	Average SD RSD		RSD	Average	SD	RSD	
d ₈ -Nap	58.50%	28.55%	48.80%	83.24%	35.23%	42.32%	
d_{10} -Ace	64.48%	22.44%	34.80%	81.76%	21.63%	26.46%	
d_{10} -Phe	100.37%	22.66%	22.57%	82.75%	22.07%	26.68%	
d_{12} -Chry	85.74%	28.06%	32.72%	108.84%	39.78%	36.55%	
d_{12} -Pey	97.24%	36.97%	38.02%	92.52%	35.46%	38.33%	

Table S3a

The ranges of PAHs concentrations detected in fifteen water samples both in dissolved phase and particulate phase in wet season

	Dissolv	ed phase			Particulate phase			
Wet	Min	Max	Mean (ng/L)	Detection Frequency (%)	Min	Max	Moon (ng/L)	Detection Frequency
	(ng/L)	(ng/L)			(ng/L)	(ng/L)	Mean (ng/L)	(%)
Ace	0.33	7.15	1.73	100.00	0.32	23.66	2.29	100.00
Dih	0.48	25.13	3.97	100.00	0.22	42.76	3.55	100.00
Flu	4.57	80.25	15.99	100.00	0.63	191.23	16.13	100.00
Phe	13.44	346.26	51.99	100.00	2.29	896.47	67.56	100.00
Ant	0.95	54.85	8.23	100.00	0.39	102.35	7.80	100.00
Flua	0.39	42.76	8.71	100.00	0.75	593.88	43.75	100.00
Pyr	0.69	78.66	12.85	100.00	0.86	642.70	47.49	100.00
BaA	0.52	30.90	3.93	100.00	0.65	72.45	6.68	100.00
Chry	0.69	45.23	6.92	100.00	0.72	207.55	16.87	100.00
BbF	0.43	19.85	4.26	100.00	0.83	65.10	7.09	100.00
BkF	nd	12.90	1.73	93.33	0.89	63.59	6.88	100.00
BaP	nd	15.93	2.00	80.00	0.76	40.76	4.77	100.00
IncdB	nd	10.03	1.23	60.00	0.78	19.04	3.24	100.00
DiB	0.44	9.79	1.82	100.00	0.45	20.53	2.19	100.00
BghiP	nd	8.22	1.06	86.67	0.46	35.78	4.53	100.00
∑PAHs	32.03	754.76	126.42		13.35	3017.82	240.80	

nd, not detected.

Table S3b

The ranges of PAHs concentrations detected in fifteen water samples both in dissolved phase and particulate phase in dry season

	Dissolved pl	nase			Particulate phase			
Dry	Min (ng/L)	Max (ng/L)	Mean (ng/L)	Detection Frequency (%)	Min (ng/L)	Max (ng/L)	Mean (ng/L)	Detection Frequency (%)
Ace	nd	6.07	2.18	86.67	nd	0.76	0.17	40.00
Dih	1.24	4.38	2.18	100.00	0.18	2.04	0.76	100.00
Flu	2.82	14.29	6.44	100.00	0.66	7.55	2.54	100.00
Phe	11.57	33.20	21.64	100.00	2.13	24.62	6.23	100.00
Ant	nd	12.25	6.19	93.33	0.289	3.71	1.77	100.00
Flua	5.06	15.55	11.41	100.00	0.64	9.16	2.63	100.00
Pyr	3.28	19.02	11.80	100.00	0.70	10.87	3.04	100.00
BaA	nd	12.04	4.58	80.00	nd	2.68	0.72	73.33
Chry	0.71	12.61	7.15	100.00	0.40	5.33	1.41	100.00
BbF	nd	0.06	0.01	6.67	nd	1.41	0.35	40.00
BkF	nd	0.04	0.01	6.67	nd	0.51	0.07	13.33
BaP	nd	0.84	0.07	20.00	nd	1.35	0.21	26.67
IncdB	nd	8.41	1.71	33.33	nd	1.31	0.45	93.33
DiB	nd	11.12	0.77	20.00	nd	1.18	0.14	13.33
BghiP	nd	7.40	2.46	46.67	nd	1.44	0.29	33.33
∑PAHs	48.09	113.63	78.59		8.56	69.60	20.78	

nd, not detected.

Table S4

Toxic equivalence factors of 15 PAHs

Targets	TEF	Targets	TEF
Dibenzo[<i>a</i> , <i>h</i>]anthracene [*]	5	Benzo[g,h,i]perylene	0.01
Benzo[a]pyrene [*]	1	Acenaphthene	0.001
Benzo[<i>a</i>]anthracene [*]	0.1	Fluorene	0.001
Benzo[b]fluoranthene [*]	0.1	Phenanthrene	0.001
Benzo[k]fluoranthene $*$	0.1	Pyrene	0.001
Indeno[1,2,3-cd]pyrene [*]	0.1	Fluranthene	0.001
Chresene *	0.01	Acenaphthylene	0.001
Anthracene	0.01		

Fig. S1. Levels of PAHs (particle and dissolved water phase) in other drinking water sources of China (Guo *et al. Chemosphere*, 2007, 68, 93-104; Doong *et al. Water Research*, 2004, 38, 1733-1744; Wang *et al. Chemosphere*, 2009, 75, 1119-1127; Ma *et al. Environ. Monitor. Assess.* 2008, 146, 127-138; Deng *et al. Chemosphere*, 2006, 64, 1401-1411.).

Fig. S2. The correlations between PAHs and total organic carbon (TOC)

Fig. S3. Non-cancer hazard risks caused by individual PAHs through daily water consumption by

people in the PRD region.

Fig. S4. Cancer hazard risks caused by BaP through daily water consumption by people in the

PRD region.

References:

- 1. B. A. Benner, S. A. Wise, L. A. Currie, G. A. Klouda, D. B. Klinedinst, R. B. Zweidinger, R. K. Stevens and C. W. Lewis, *Environmental Science and Technology*, 1995, **29**, 2382-2389.
- 2. H. Budzinski, I. Jones, J. Bellocq, C. Pierard and P. Garrigues, *Marine Chemistry*, 1997, 58, 85-97.
- 3. P. M. Gschwend and R. A. Hites, *Geochimica Et Cosmochimica Acta*, 1981, 45, 2359-2367.
- 4. E. Lipiatou and A. Saliot, Marine Chemistry, 1991, 32, 51-71.
- 5. M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette and S. Sylvestre, *Organic Geochemistry*, 2002, **33**, 489-515.
- M. B. Fernandes, M. A. Sicre, A. Boireau and J. Tronczynski, *Marine Pollution Bulletin*, 1997, 34, 857-867.