Supplementary information

Table S1. Optimum values selected for the variables involved in the extraction procedure.

Table S2. Results obtained for the classification of the identified compounds according to the main chemical group present in the molecule.

Table S3. Detailed comparison of the composition of different size aerosol particles collected simultaneously.

Figure S1. Sampling device. DMA, differential mobility analyzer; FH, Filter holder; HVS, high voltage supply; IS, ionization source; R, restrictor; and VS, vacuum system.

Figure S2. Average maximum and minimum values for the classification of the Fg-Id compounds as a function of the main chemical group present in the molecule. A, Classification in terms of number of compounds; B, Classification in terms of relative peak area.

Variable	First design	Second design	Optimum
Probe position (cm)	0–2		2
Amplitude (%)**	10-50		50
Duty Cycle (%)	10-50		50
Flow-rate (ml/min)	0.25-1		1
Extraction time (min)	5-15	15–25	30*
Extractant composition (% acetone v/v)	0-50	50-75	50

Table S1. Optimum values selected for the variables of the extraction procedure.

* Calculated using a univariate approach **Of the applied power (100 W) of the converter

Table S2. Classification of the identified compounds according to the main chemical
group and the specific element present in the molecule. Number of compounds and
\sum NRF calculated per sample. 21 samples analyzed (9, TSP; 6, 50 nm particles; and 6,
30 nm particles). Relative peak area expressed as m^{-3} .

			Number of compounds			∑NRF			
			Average	Min	Max	Average	Min	Max	
Hydrocarbons	Alkanes	TSP	15	12	24	12.0	4.6	27.5	
		50 nm	7	5	9	10.0	4.1	22.5	
		30 nm	18	15	21	95.0	24.5	245.0	
	Cyclo alkanes	TSP	9	7	14	3.5	1.1	8.5	
		50 nm	10	7	13	20.0	5.5	55.0	
		30 nm	10	8	14	80.0	8.0	750.0	
	Alkenes	TSP	47	42	52	28.0	10.5	75.0	
		50 nm	52	50	56	195.0	70.0	950.0	
		30 nm	63	54	67	650.0	85.0	1600.0	
	Cyclo alkenes	TSP	9	8	11	3.8	0.7	10.0	
		50 nm	9	7	10	11.0	2.5	28.0	
		30 nm	8	5	9	185.0	3.0	50.0	
	Aromatic	TSP	9	7	11	2.5	0.7	6.5	
	compounds	50 nm	11	9	14	21.0	4.6	46.0	
		30 nm	5	4	6	11.5	1.1	34.5	
Halogenated	F	TSP	9	7	11	34.5	1.9	215.0	
compounds		50-nm	9	8	10	13.5	3.0	34.5	
		30-nm	16	14	17	190.0	19.5	600.0	
	Cl	TSP	6	5	6	6.0	0.8	39.0	
		50-nm	7	5	11	60.0	6.5	185.0	
		30-nm	14	13	14	345.0	20.0	800.0	
	Br	TSP	8	7	9	18.0	1.2	145.0	
		50-nm	6	4	7	14.5	1.7	41.0	
		30-nm	10	8	12	65.0	4.3	280.0	
	Ι	TSP	4	2	6	2.7	0.8	17.5	
		50-nm	2	1	2	15.0	1.0	80.0	
		30-nm	3	3	3	13.0	4.1	48.5	

Table S2. Cont.

			Number of compounds			∑NRF		
			Average	Min	Max	Average	Min	Max
Nitrogen	Amino acids	TSP	21	18	29	12.5	1.8	40.5
compounds		50 nm	16	13	22	75.0	14.0	550.0
		30 nm	30	26	33	420.0	80.0	850.0
	Nitro	TSP	3	2	4	0.9	0.1	3.2
	compounds	50 nm	7	6	9	9.5	3.2	28.5
		30 nm	4	3	5	2.9	0.9	9.0
	Amine	TSP	3	2	4	2.1	0.1	14.0
		50 nm	5	4	6	12.0	3.1	35.0
		30 nm	8	7	8	90.0	6.0	305.0
	Amides	TSP	5	5	8	2.4	0.3	11.5
		50 nm	3	3	4	6.0	1.1	23.5
		30 nm	10	7	15	90.0	7.5	440.0
	Nitriles	TSP	3	3	4	1.1	0.3	2.1
		50 nm	7	6	7	28.5	2.5	230.0
		30 nm	6	6	7	55.0	3.6	300.0
	Imides	TSP	9	6	14	0.5	1.6	14.5
		50 nm	5	4	7	10.5	1.7	36.0
		30 nm	12	10	15	270.0	28.5	750.0
	Urea	TSP	1	1	1	0.8	0.1	2.5
	derivatives	50 nm	1	1	1	3.1	0.1	11.0
		30 nm	1	1	1	3.1	0.1	13.0
	Amino acids	TSP	13	9	18	6.5	1.7	22.5
	N-derivatives	50 nm	11	10	13	15.5	2.8	32.5
		30 nm	10	9	12	145.0	11.5	455.0
	Glycosamines	TSP	1	1	2	3.4	0.2	30.5
		50 nm	2	1	2	1.6	0.5	2.8
		30 nm	0	0	1	0.1	-	0.7
	Hetero N	TSP	0	0	1	0.1	-	1.0
	compounds	50 nm	1	1	1	5.5	0.4	30.0
		30 nm	4	3	4	3.1	1.4	7.0
Sulphur	Sulfonamide	TSP	2	1	2	13.0	0.3	47.5
compounds		50 nm	1	0	2	2.6	-	9.5
		30 nm	1	0	1	0.1	-	0.7
	Sulfonic	TSP	1	1	2	0.4	0.0	2.2
	compounds	50 nm	0	0	0	0.0	0.0	0.0
		30 nm	0	0	0	0.0	0.0	0.0
	Thio	TSP	5	4	9	6.1	1.8	20.0
	compounds	50 nm	3	2	5	2.7	0.6	6.5
		30 nm	3	2	6	2.7	0.7	9.1

			Number of compounds $\sum NRF$					
			Average	Min	Max	Average	Min	Max
Carboxyl	Acids	TSP	48	43	56	95.0	13.5	285.0
Compounds		50 nm	35	30	39	135.0	31.5	330.0
		30 nm	20	17	25	60.0	24.5	130.0
	Hydroxy	TSP	19	17	24	16.5	4.8	60.0
	acids	50 nm	15	14	17	60.0	14.0	295.0
		30 nm	5	4	5	0.5	2.0	7.5
	Keto-acids	TSP	6	5	7	44.0	0.6	180.0
		50 nm	8	6	8	49.0	7.0	290.0
		30 nm	2	2	2	30.5	2.3	155.0
	Ester	TSP	46	35	60	5.0	10.0	245.0
		50 nm	60	53	69	230.0	55.0	700.0
		30 nm	40	36	46	155.0	55.0	400.0
	Anhydrides	TSP	0	0	0	-	-	-
		50 nm	1	1	2	2.8	-	16.5
		30 nm	0	0	0	-	-	-
Hydroxyl	Alcohols	TSP	86	77	104	60.0	11.0	250.0
compounds		50 nm	81	76	88	330.0	70.0	1200.0
		30 nm	79	75	88	455.0	170.0	1000.0
	Polyols	TSP	4	4	5	5.5	1.2	12.5
		50 nm	4	3	5	6.5	2.7	15.5
		30 nm	3	3	3	9.0	1.0	25.5
	Ethers	TSP	1	1	1	1.7	0.0	13.0
		50 nm	2	1	2	11.5	0.3	95.0
		30 nm	1	0	3	4.6	-	44.5
Carbonyl	Ketones	TSP	33	24	47	460.0	200.0	1000.0
compounds		50 nm	37	32	41	240.0	115.0	600.0
		30 nm	43	37	53	2100.0	550.0	4200.0
	Aldehydes	TSP	16	13	19	14.0	4.9	41.5
		50 nm	12	10	13	19.0	4.5	43.5
		30 nm	15	13	18	60.0	9.5	255.0

Table S2. Cont.

Table S3. Detailed comparison of the different size aerosol particles collected simultaneously according to the main chemical group and the specific element present in the molecule. Number of compounds and $\sum NRF$ calculated per sample. 10 samples analyzed (5, TSP and 5, 50 nm particles). Relative peak area expressed as m⁻³.

	,	1	Number of compounds			∑NRF		
			Average	Min	Max	Average	Min	Max
Hydrocarbon	Alkanes	50-nm	7	5	9	1.3	0.4	2.3
-		TSP	18	13	24	2.8	0.5	5.4
	Cyclo alkanes	50-nm	10	7	13	2.5	0.6	5.5
		TSP	10	9	14	0.6	0.1	0.9
	Alkenes	50-nm	53	51	56	17.2	7.7	26.3
		TSP	49	46	52	3.5	1.1	7.3
	Cyclo alkenes	50-nm	9	8	10	1.5	0.3	2.8
		TSP	10	9	11	0.4	0.1	1.0
	Aromatic	50-nm	10	9	12	2.3	0.6	4.5
	compounds	TSP	10	9	11	0.3	0.1	0.7
Halogenated	F	50-nm	8	8	9	2.0	0.5	3.4
compounds		TSP	10	7	11	2.1	0.7	6.1
	Cl	50-nm	8	5	11	6.6	0.8	18.4
		TSP	6	5	6	1.1	0.1	3.9
	Br	50-nm	6	4	7	1.7	0.2	4.1
		TSP	9	8	9	1.0	0.1	2.4
	Ι	50-nm	2	1	2	2.5	0.4	8.2
		TSP	5	3	6	0.5	0.1	1.8
Nitrogen	Amino acids	50-nm	16	13	22	5.1	1.9	9.6
compounds		TSP	22	18	29	1.5	0.2	4.1
	Nitro	50-nm	7	6	9	1.2	0.3	2.8
	compounds	TSP	3	2	4	0.1	0.0	0.3
	Amines	50-nm	5	5	5	1.7	0.5	3.5
		TSP	3	3	4	0.4	0.1	1.4
	Amides	50-nm	3	3	4	0.9	0.1	2.4
		TSP	6	5	7	0.2	0.1	0.5
	Nitriles	50-nm	7	6	7	1.4	0.3	2.4
		TSP	3	3	4	0.1	0.1	0.2
	Imides	50-nm	5	4	6	1.1	0.2	2.5
		TSP	11	8	14	0.6	0.2	1.4
	Urea	50-nm	1	1	1	0.5	0.1	1.1
	derivatives	TSP	1	1	1	0.1	0.1	0.2
	Amino acids	50-nm	11	10	11	1.9	0.3	3.3
	N derivatives	TSP	15	12	18	0.8	0.3	2.3
	Glycosamines	50-nm	2	2	2	0.2	0.1	0.3
		TSP	2	1	2	0.6	0.1	3.0
	Hetero	50-nm	1	1	1	0.5	0.1	3.0
	N compounds	TSP	1	0	1	0.0	-	0.1

Table	S3.	Cont.
-------	------------	-------

			Number of compounds			∑NRF			
			Average	Min	Max	Average	Min	Max	
Sulphur	Sulfonamides	50-nm	1	1	2	0.5	0.1	1.0	
compounds		TSP	2	1	2	1.9	-	3.3	
	Sulfonic	50-nm	0	0	0	-	-	-	
	compounds	TSP	1	1	2	0.1	0.1	0.1	
	Thio	50-nm	3	2	4	0.5	0.1	1.6	
	compounds	TSP	5	4	7	0.7	0.2	1.5	
Carboxyl	Acids	50-nm	34	32	37	19.5	3.3	32.8	
compounds		TSP	51	47	56	12.1	1.4	26.2	
	Hydroxy	50-nm	16	15	17	4.2	1.7	8.0	
	acids	TSP	21	17	24	2.6	0.5	6.0	
	Keto-	50-nm	8	8	8	4.0	1.0	8.9	
	acids	TSP	6	6	7	7.5	0.1	15.8	
	Ester	50-nm	58	53	65	33.3	5.6	69.1	
		TSP	51	44	60	12.6	1.1	39.2	
	Anhydrides	50-nm	1	1	2	0.5	0.2	1.7	
		TSP	0	0	0	-	-	-	
Hydroxyl	Alcohols	50-nm	79	76	86	43.2	7.5	120.9	
compounds		TSP	91	83	104	8.9	1.2	24.8	
	Polyols	50-nm	3	3	3	0.9	0.4	1.6	
		TSP	4	4	5	0.6	0.1	1.2	
	Ethers	50-nm	2	2	2	2.0	0.1	9.5	
		TSP	1	1	1	0.4	0.1	1.3	
Carbonyl	Ketones	50-nm	35	32	40	17.9	11.3	25.0	
compounds		TSP	39	33	47	70.6	34.4	120.8	
	Aldehydes	50-nm	12	11	13	2.4	0.6	4.3	
		TSP	17	15	19	1.7	0.5	3.0	

Figure S1. Sampling device. DMA, differential mobility analyzer; FH, Filter holder; HVS, high voltage supply; IS, ionization source; R, restrictor; and VS, vacuum system.

Figure S2. Average maximum and minimum values for the classification of the Fg-Id compounds as a function of the main chemical group present in the molecule. **A**, Classification in terms of number of compounds; **B**, Classification in terms of relative peak area.

Α

B

