SUPPLEMENTARY MATERIAL (SM)

Manuscript title: Levels, sources and spatiotemporal variation of nutrients and micropollutants in small streams of a Mediterranean River Basin

Authors: Ioannis Karaouzas, Dimitra A. Lambropoulou, Nikolaos T. Skoulikidis, Triantafyllos A. Albanis

Number of pages of the SM section: Eleven

Number of pages of the text: Two

Number of figures: Two

Number of tables: Six

Methods & Materials

Study area

The Evrotas River Basin, a large mid-altitude Mediterranean basin, is located in southeastern Peloponnesus (Fig.1) in the Prefectures of Laconia and Arcadia covering an area of 2,418 km². The river discharges into the Laconikos Gulf after crossing 90 km of floodplains and semi-mountainous areas. The basin expands between the mountain complexes of Taygetos (2407 m asl) and Parnon (1940 m asl), where numerous perennial, intermittent and ephemeral streams discharge into the main course. The mountainous area of the basin is formed by Mesozoic-Palaeogene limestones (42% of the basin) and impermeable rocks, such as flysch and schists (29% of the basin), while the lower parts are filled up with Pliocene and Quaternary sediments. The Evrotas basin has a typical Mediterranean climate with mild and cold winters and prolonged hot and dry summers with an average annual temperature of 16°C. The majority of rainfall occurs during the months of October through March; highest rainfall precipitation being in December and lowest in June.

The vast majority of the river basin is covered by natural and semi-natural areas accounting for 61% of the total river basin followed by agricultural areas that account for 38% while urban areas account for 1%. The main crops are olives and oranges which cover about 90% of the agricultural land and constitute Laconia as one of the main and largest producers of olive oil and orange juice in Greece. The dominant pressures in Evrotas River Basin derive mainly from agricultural activities and include overexploitation of water resources for irrigation, disposal of agro-industrial wastes (mainly from olive oil mills and orange juice processing factories) and agrochemical pollution.

Reagents and materials

High purity (96–99.9%) standards of the selected pesticides were supplied by Riedelde Häen (Germany). Individual stock solutions were prepared by diluting each analyte solution with methanol. Working solutions were prepared by diluting stock solutions with methanol, for sample fortification, and with ethyl acetate or hexanedichloromethane (1:1), for GC injection. All stock and working standard solutions were stored in the dark at -20 °C. The standard mixtures were used to prepare the calibration solutions. Pesticide-grade solvents methanol, hexane, dichloromethane and ethyl acetate, used for sample preparation and chromatographic analysis were supplied from Pestiscan (Labscan, Ltd, Dublin, Ireland) and sodium chloride from Merck (Darmstadt, Germany).

Fig. SM-1. Rainfall precipitation in the Evrotas River Basin for the years 2006 - 2008.

Fig. SM-2. Cluster analysis of chemical and physicochemical data for the 11 sampling sites. Group A: 4, 5; Group B: 7, 9; Group C: 10, 3; Group D: 1, 2, 6, 11, 12.

Pesticides	Time	$\mathbf{M}_{\mathbf{r}}$	Diagnostic		
	(min)		<i>m/z</i> ions		
Dichlorvos	14.34	220	109	185	
EPTC	17.52	189	128	43	
Captafol	18.15	349	79	150	
Mevinphos	19.49	224	127	192	
Captan	21.48	299	79	107	
Molinate	22.48	187	126		
Propachlor	24.12	211	120	176	
Ethoprophos	24.87	243	158	126	
Ethafluralin	25.21	316	292	276	
Trifluralin	25.61	335	264	306	
Monocrotophos	26.06	223	192	127	
Dimethoate	26.95	229	87	93	
Simazine	27.40	202	201	186	
Atrazine	27.55	215	200	173	
Diazinon	28.49	304	137	179	
Pyrimethanil	28.59	198	102	129	
Phosphamidon	30.16	264	127	72	
M.Parathion	30.84	269	160	188	
Alachlor	31.01	263	263	109	
Prometryne	31.51	241	241	184	
Fenitrothion	32.18	277	277	125	
Malathion	32.79	330	173	125	
Metolachlor	32.78	283	162	238	
Fenthion	33.37	278	278	169	
E.Parathion	33.55	291	291	109	
Dicofol	33.95	368	139	251	
Penconazole	35.57	248	192	157	
Phenthoate	36.29	274	79	125	
Triadimenol	36.55	168	112	128	
Methidathion	37.20	302	85	145	
α-Endosulfan	38.15	404	195	241	
Fenamiphos	39.16	303	303	154	
Muchlobutanil	40.79	288	179	150	
Oxyfluorfen	41.19	361	252	331	
Endrin	41.90	317	263	281	
β-Endosulfan	42.48	404	195	339	
Ethion	43.00	231	203	97	
Benalaxyl	43.75	325	148	91	
Carbofenothion	43.85	342	157	199	

Table SM-1. Retention time and characteristics ions of all pesticides by GC-MS.

Pesticide Name	Molecular Mass (g/mol)	Solubility* (mg/L)	Solubility in water**	t1/2 in Water (Days)	t1/2 in Soil (Days)	Koc (mg/L)	BCF
Triadimenol	295.76	72	Moderate	n/a	250	273	21
Penconazole	284.18	73	Moderate	>706	138	2205	320
Alachlor	269.77	240	Moderate	n/a	8	124	39
Metolachlor	283.8	530	High	97	15-70	200	68.8
Dimethoate	229.26	39800	High	8	20	30	n/a
Malathion	330.36	148	Moderate	< 1 wk	1-25	217	103
Fenthion	278.33	4.2	Low	2 wks	4-6 wks	1500	226
Carbofenothion	342.9	0.34	Low	n/a	>6 months	50000	1000
Monocrotophos	223.16	818000	High	n/a	7	19	n/a

Table SM-2. Properties and physicochemical characteristics of the pesticides detected in Evrotas River Basin.

*Solubility in water at 20°C t1/2: Half-life of a compound.

** Solubility in water - <=50 low; 50-500 moderate; >500 high.

Koc: Organic-carbon sorption constant.

BCF: Bio-concentration factor. According to REACh chemicals are "very bioaccumulative" if their BCF is larger than 5,000 and "very persistent" if their half-life in marine water or fresh water exceeds 60 days or their half-life in marine or freshwater sediment exceeds 180 days.

Note: Data were assembled by the Pesticide Properties Database

(<u>http://sitem.herts.ac.uk/aeru/footprint/en/index.htm</u>) and The Extension Toxicology Network (<u>http://extoxnet.orst.edu</u>).

Site	Sampling period	Triadimenol	Penconazole	Alachlor	Metolachlor	Dimethoate	Malathion	Fenthion
1	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
2	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
3	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
4	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
5	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
6	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
7	Feb-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	n.d.	0.222	n.d.	n.d.	n.d.	n.d.	n.d.
8	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
9	Feb-07	n.d.	0.748	n.d.	n.d.	n.d.	n.d.	n.d.
	Jun-07	n.d.	0.198	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	0.098	n.d.	n.d.	n.d.	5.288	n.d.	n.d.
10	Feb-07	n.d.	0.546	0.124	0.314	n.d.	0.548	0.06
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	0.312	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	n.d.	0.071	n.d.	n.d.	n.d.	n.d.	n.d.
11	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
12	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Table SM-3. Residual levels of pesticides (μ g/L) detected in river water samples

(n.d = Not detected)

Site	Sampling period	Triadimenol	Penconazole	Metolachlor	Monocrotophos	Malathion	Carbofenothion	Fenthion
1	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
2	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
3	Feb-07	32.918	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	162.714	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
4	Feb-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	238.484	n.d.	n.d.	296.547	n.d.	n.d.	n.d.
5	Feb-07	n.d.	905.937	335.975	n.d.	n.d.	83.936	818.062
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
6	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
7	Feb-07	65.96	n.d.	166.098	n.d.	308.761	n.d.	n.d.
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
8	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
9	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
10	Feb-07	51.944	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Jun-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Nov-07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Mar-08	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
11	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
12	All dates	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Table SM- 4. Residual levels of pesticides (ng/g-dw) detected in river sediment samples (n.d. Not detected)

	Fis	h	Aqı	uatic invert	ebrates	Algae		
	Oncorh myk		Daphnia	ı magna	Chironomus riparius	Pseudokirchneriella subcapitata		
Pesticide Name	Acute 96 hour LC ₅₀ (µg/L)	Chronic 21 day NOEC (µg/L)	Acute 48 hour EC ₅₀ (µg/L)	Chronic 21 day NOEC (µg/L)	Acute 24 hour EC ₅₀ (µg/L)	Acute 72 hour EC ₅₀ (µg/L)		
Triadimenol	21300	3130	51000	100	-	9600		
Penconazole	1130	320	6750	60	-	2000		
Alachlor	1800	190	10000	220	27500	966		
Metolachlor	3900	-	23500	707	-	57100		
Dimethoate	30200	400	2000	40	481*	90400		
Malathion	18	91	0.7	0.15	0.34	13000		
Fenthion	800	-	5.7	-	5.62	1790		
Carbofenothion	56	6.3	-	-	-	-		
Monocrotophos	7000	-	23	-	-	-		

Table SM-5. Pesticide toxicity data for different aquatic organisms and trophic levels.

* Acute 48 hour EC₅₀

NOEC: No observed effect concentration

Note: Data were assembled by the Pesticide Properties Database

(http://sitem.herts.ac.uk/aeru/footprint/en/index.htm), The Extension Toxicology Network

(http://extoxnet.orst.edu) and the PAN Pesticide Database (http://www.pesticideinfo.org)

PC Axis	Eigenvalues	%Variation	Cum.%Variation
1	15.9	42.9	42.9
2	4.9	13.2	56.1
3	4.32	11.7	67.8
Variable	PC1	PC2	PC3
DO	0.23	0.081	-0.064
Т	-0.193	0.138	0.087
Conductivity	-0.195	0.217	0.091
COD	-0.198	-0.232	-0.01
BOD ₅	-0.197	-0.233	-0.013
TSS	-0.188	-0.249	0.062
Ca	-0.067	0.369	0.108
Na	-0.23	-0.031	-0.019
К	-0.188	-0.21	0.097
HCO ₃	-0.189	0.21	0.036
Cl	-0.202	-0.002	-0.092
NO ₃	-0.186	0.209	0.032
NO_2	-0.197	-0.019	0.233
NH_4	-0.197	0.016	-0.019
PO_4	-0.202	0.006	-0.029
Total N	-0.216	0.058	0.031
Total P	-0.175	-0.25	-0.065
N-TOTAL	-0.202	0.178	0.038
Water Hardness	-0.119	0.312	0.149
Total Phenols	-0.022	-0.329	-0.104
Water Discharge	-0.06	-0.233	0.145
Cr	0.166	0.015	0.223
Mn	0.233	-0.052	-0.005
Co	0.205	-0.074	0.152
Ni	0.178	-0.022	0.203
Cu	0.103	-0.063	0.427
Zn	0.022	-0.138	0.431
As	0.218	-0.04	0.143
Ba	-0.055	-0.213	-0.017
Мо	0.027	0.07	0.413
Pb	-0.017	-0.111	0.324

Table SM-6. PCA results of all chemical and physicochemical variables. For clarity reasons only high loadings are presented.