Supporting Information

Assessment of sorbent impregnated PUF disks (SIPs) for long-term sampling of legacy POPs

Jasmin K. Schuster^{*}, Rosalinda Gioia^{*}, Tom Harner[‡], Sum Chi Lee[‡], Knut Breivik^{¢,•}, Kevin C. Jones^{*}

*Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Lancaster LA1

4YQ, U.K.

[‡]Environment Canada, Science & Technology Branch, Toronto M3H 5T4, Canada

^oNorwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway

[•]University of Oslo, Department of Chemistry, P.O. Box 1033, NO-0315 Oslo, Norway

Contents

SI-Figure 1. Flying saucer device as sampling chamber for SIPs deployed at 10 sites in the UK and Norway	. 2
SI-Figure 2. Meteorological information for the sampling period May 2009 – April 2010	3
SI-Figure 3. POP loads plotted against the sampling period and the air concentrations monitored with the active air sampler for HCB and PCB homologue groups) . 4
SI-Table 1. Sampling rate ranges <i>R</i> reported for different compounds and PAS	5
SI-Table 2. POP ranges and approximate sampling rates <i>R</i> for selected POPs	6
SI-Table 3. Monitored and estimated PCB concentrations at the field sites in the UK and Norway	7
SI-Text 1. Estimation of atmospheric concentrations for background sites	8
References	9

SI-Figure 1. Flying saucer device as sampling chamber for SIPs deployed at 10 sites in the UK and Norway

SI-Figure 2. Meteorological information for the sampling period May 2009 – April 2010

SI-Figure 3. POP loads plotted against the sampling period and the air concentrations monitored with the active air sampler for HCB and PCB homologue groups

SI-Table 1. Sampling rate ranges *R* reported for different compounds and PAS

(PUF = polyurethane foam disk, FSD = flying saucer device, SPMD = semi-permeable membrane device, SIP = sorbent-impregnated PUF disk, XAD = polymeric resin)

Compound	R range [m ³ /day]	PAS	Source
PCBs	2.0 - 8.3	PUF, no shelter, indoors	Shoeib and Harner 2002 ¹
PCBs	4.5 – 14.6	PUF in FSD, wind tunnel	Tuduri et al. 2006 ²
PCBs	0.6 - 1.6	PUF in FSD, indoors	Hazrati et al. 2007 ³
PCBs	2.9 - 7.3	PUF in FSD, outdoors	Chaemfa et al. 2008 ⁴
PCBs	2.5 - 9.8	PUF (high density) in FSD, outdoors	Chaemfa et al. 2009 ⁵
PCBs	3.5 - 12	PUF (low density) in FSD, outdoors	Chaemfa et al. 2009 ⁵
PCBs	3.4 - 9.9	SPMD, no shelter, indoors	Shoeib and Harner 2002
PCBs	3.5 - 12	SPMD in Stevenson screen, outdoors	Ockenden et al. 1998 ⁶
PCBs	2.3 - 12.5	SIP in FSD, outdoors	Genualdi et al. 2010 ⁷
PBDEs	1.2 - 10.7	PUF (high density) in FSD, outdoors	Chaemfa et al. 2009 ⁵
PBDEs	1.4 - 12.5	PUF (low density) in FSD, outdoors	Chaemfa et al. 2009 ⁵
PBDEs	1.8 - 5.7	PUF in FSD, outdoors	Chaemfa et al. 2009 ⁸
нсв	$7.0\ \pm 1.8$	PUF in FSD, outdoors	Chaemfa et al. 2008 ⁴
OC pesticides	1	XAD sampler	Daly et al. 2007 ⁹
OC pesticides	0.52	XAD sampler	Shen et al. 2005 ¹⁰
OC pesticides	2.1	XAD sampler	Gouin et al. 2008 ¹¹
PFCs	1.4 - 4.6	SIP in FSD, indoors	Shoeib et al. 2008 ¹²
PFCs	1.4 - 1.5	PUF in FSD, indoors	Shoeib et al. 2008 ¹²
Siloxanes	2.3 - 9.2	SIP in FSD, outdoors	Genualdi et al. 2011 ¹³

POPs	POPs monitored on SIPs [pg]			<i>R</i> [m ³ /day]			
PCB 18	870	-	7716	2.16	±	0.35	
PCB 22	343	-	2926	0.36	±	0.04	
PCB 28/31	843	-	6099	0.90	±	0.11	
PCB 41/64	254	-	3104	0.94	±	0.13	
PCB 44	329	-	3062	2.85	±	2.77	
PCB 49	275	-	2528	5.62	±	4.81	
PCB 52	490	-	5200	3.19	±	0.35	
PCB 60/56	192	-	1429	0.76	±	0.10	
PCB 70	227	-	2755	2.09	±	0.31	
PCB 74	274	-	2689	0.88	±	0.17	
PCB 87	429	-	1642	2.24	±	0.22	
PCB 90/101	355	-	4388	2.58	±	0.25	
PCB 95	314	-	3876	1.62	±	0.74	
PCB 99	82	-	1926	3.29	±	0.48	
PCB 105	141	-	542	3.26	±	0.59	
PCB 110	191	-	3000	2.95	±	1.56	
PCB 118	63	-	1555	2.98	±	0.43	
PCB 123	11	-	246	0.47	±	0.11	
PCB 138	169	-	1570	2.62	±	0.46	
PCB 141	40	-	882	2.36	±	0.81	
PCB 149	239	-	2090	3.03	±	0.31	
PCB 151	72	-	876	2.79	±	0.23	
PCB 153/132	193	-	3707	4.18	±	0.34	
PCB 174	76	-	189	7.73	±	0.22	
PCB 180	56	-	366	3.62	±	0.34	
PCB 183	28	-	151	1.40	±	0.33	
PCB 187	45	-	425	3.52	±	0.35	
PCB 199	2	-	21	1	NA		
PCB 203	44	-	81	6.26	±	1.46	
BDE 47	41	-	1182	2.31	±	0.27	
BDE 49	17	-	653	5.93	±	0.98	
BDE 99	60	-	675	0.72	±	0.16	
BDE 100	14	-	139	0.66	±	0.09	
BDE 153	30	-	548	1.66	±	0.36	

SI-Table 2. POP ranges and approximate sampling rates *R* for selected POPs

N6

2.9

1.1

1.2

SIP monitored concentrations [pg/m ³]										
Sites	3CBs	4CBs	5CBs	6CBs	7CBs	8CBs	ΣCBs			
UK1	11.3	5.7	7.3	3.5	0.7	0.003	28.6			
UK2	22.5	14.6	13.4	5.8	1.2	0.007	57.5			
UK3	7.2	4.1	3.5	2.0	0.4	0.002	17.2			
UK4	6.0	2.2	1.6	0.9	0.2	NA	10.8			
N1	7.2	3.5	4.1	2.1	0.3	0.001	17.2			
N2	4.9	1.4	2.0	1.2	0.3	0.001	9.7			
N3	2.9	1.5	1.8	0.9	0.3	0.001	7.3			
N4	5.4	1.9	1.9	1.2	0.3	0.001	10.7			
N5	4.0	2.1	1.7	1.1	0.2	0.001	9.2			
N6	2.1	1.3	1.3	0.7	0.1	NA	5.4			
Estimated concentrations [pg/m ³]										
Sites	3CBs	4CBs	5CBs	6CBs	7CBs	8CBs	ΣCBs			
UK1	1.3	2.1	5.0	3.9	0.9	0.030	13.3			
UK2	2.7	6.4	14.3	10.0	2.4	0.170	36.0			
UK3	1.6	1.4	1.9	1.5	0.6	0.317	7.2			
UK4	1.6	1.2	1.5	1.0	0.2	0.026	5.5			
N1	0.9	2.9	4.7	4.5	1.1	0.076	14.2			
N2	0.6	1.3	1.8	0.9	0.2	0.026	4.8			
N3	0.0	1.5	1.8	0.9	0.1	NA	4.4			
N4	1.1	2.0	1.7	1.2	0.2	0.082	6.4			
N5	0.5	1.5	2.4	1.2	0.1	0.196	5.9			

SI-Table 3. Monitored and estimated PCB concentrations at the field sites in the UK and Norway

0.5

0.1

NA

5.9

SI-Text 1. Estimation of atmospheric concentrations for background sites

SIPs were deployed at passive air sampling sites that were established in 1994. Two year average values for atmospheric POP concentrations are available for the period of 1998-2008¹⁴⁻¹⁷ derived from SPMDs. The atmospheric concentrations were calculated from SPMD loads and site specific sampling rates considering the annual mean temperature¹ and the possible equilibrium approach for the lighter congeners.

It was established that the POP concentrations for 1998 - 2008 follow a first order decline in the atmosphere. The slope and intercept of the natural logarithm of the atmospheric concentrations versus the sampling years were determined for each individual site. It was assumed that the atmospheric decline rate for 1998-2009 is not different from the decline rate observed 1998 – 2008. Therefore the average atmospheric concentrations for the sampling period of summer 2008 – 2009 were estimated from the slopes and intercept for the period of 1998 - 2008 (as illustrated below).

References

- 1. M. Shoeib and T. Harner, *Environmental Science & Technology*, 2002, **36**, 4142-4151.
- 2. L. Tuduri, T. Harner and H. Hung, *Environmental Pollution*, 2006, 144, 377-383.
- 3. S. Hazrati and S. Harrad, *Chemosphere*, 2007, **67**, 448-455.
- 4. C. Chaemfa, J. L. Barber, T. Gocht, T. Harner, I. Holoubek, J. Klanova and K. C. Jones, *Environmental Pollution*, 2008, **156**, 1290-1297.
- C. Chaemfa, J. L. Barber, K. S. Kim, T. Harner and K. C. Jones, *Atmospheric Environment*, 2009, 43, 3843-3849.
- W. A. Ockenden, H. F. Prest, G. O. Thomas, A. Sweetman and K. C. Jones, *Environmental Science & Technology*, 1998, **32**, 1538-1543.
- S. Genualdi, S. C. Lee, M. Shoeib, A. Gawor, L. Ahrens and T. Harner, *Environmental Science & Technology*, 2010, 44, 5534-5539.
- C. Chaemfa, J. L. Barber, C. Moeckel, T. Gocht, T. Harner, I. Holoubek, J. Klanova and K. C. Jones, *JEM Journal of Environmental Monitoring*, 2009, 11, 1859-1865.
- 9. G. L. Daly, Y. D. Lei, C. Teixeira, D. C. G. Muir and F. Wania, *Environmental Science & Technology*, 2007, **41**, 6020-6025.
- 10. L. Shen, F. Wania, Y. D. Lei, C. Teixeira, D. C. G. Muir and T. F. Bidleman, *Environmental Science & Technology*, 2005, **39**, 409-420.
- T. Gouin, F. Wania, C. Ruepert and L. E. Castillo, *Environmental Science & Technology*, 2008, 42, 6625-6630.
- 12. M. Shoeib, T. Harner, S. C. Lee, D. Lane and J. P. Zhu, Anal. Chem., 2008, 80, 675-682.
- S. Genualdi, T. Harner, Y. Cheng, M. MacLeod, K. M. Hansen, R. van Egmond, M. Shoeib and S. C. Lee, *Environmental Science & Technology*, 2011, 45, 3349-3354.
- R. Gioia, E. Steinnes, G. O. Thomas, S. N. Mejier and K. C. Jones, *Journal of Environmental Monitoring*, 2006, 8, 700-710.
- F. M. Jaward, S. N. Meijer, E. Steinnes, G. O. Thomas and K. C. Jones, *Environmental Science & Technology*, 2004, 38, 2523-2530.
- S. N. Meijer, W. A. Ockenden, E. Steinnes, B. P. Corrigan and K. C. Jones, *Environmental Science & Technology*, 2003, 37, 454-461.
- 17. J. K. Schuster, R. Gioia, K. Breivik, E. Steinnes, M. Scheringer and K. C. Jones, *Environmental Science & Technology*, 2010, 44, 6760-6766.