# ELECTRONIC SUPPLEMENTARY INFORMATION FOR THE PAPER ENTITLED:

# Fecal coliform population dynamics associated with the thermophilic stabilization of treated sewage sludge

Chris Ziemba and Jordan Peccia\*

Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA

\* Corresponding author, Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA; Phone: (203)432-4385, Fax: (203)432-4387, E-mail: jordan.peccia@yale.edu

**Table S1**. UniFrac P-vales based on pairwise phylogenic population difference comparisons. Values are corrected for the number of pairwise comparisons between each set of populations. P values > 0.1, indicate that no significant phylogenetic differences exist between the compared populations.

|            | 50°C<br>Pre | 50°C<br>Post | 55°C<br>Pre | 55°C<br>Post | 60°C<br>Pre | 60°C<br>Post | Patho-<br>genic | Non-<br>path. |
|------------|-------------|--------------|-------------|--------------|-------------|--------------|-----------------|---------------|
| 50°C Pre   |             | 1            | 1           | 1            | 1           | 1            | 1               | 1             |
| 50°C Post  |             |              | 1           | 0.28         | 0.28        | 1            | 0.28            | 0.28          |
| 55°C Pre   |             |              |             | 1            | 1           | 1            | 1               | 1             |
| 55°C Post  |             |              |             |              | 1           | 1            | 1               | 1             |
| 60°C Pre   |             |              |             |              |             | 0.28         | 1               | 1             |
| 60°C Post  |             |              |             |              |             |              | 1               | 0.84          |
| Pathogenic |             |              |             |              |             |              |                 | 1             |
| Non-path.  |             |              |             |              |             |              |                 |               |

## Unifrac P-values for pairwise difference comparisons

|                       | 0.05 |              |
|-----------------------|------|--------------|
|                       |      | Archaea root |
| 50°C Post-treatment   |      |              |
| Non-pathogenic        |      |              |
| Pathogenic            |      |              |
| 60°C Pre-treatment    |      |              |
| 50°C Pre-treatment    |      |              |
| 55°C Pre-treatment    |      |              |
| 55°C Post-treatment   |      |              |
| - 60°C Post-treatment |      |              |

**Figure S1.** Phylogenic tree of consensus sequences for *E. coli* isolates sampled pre and post thermophilic batch treatment at each temperature compared to consensus sequences for pathogenic and non-pathogenic *E. coli* strains. The scale of 0.05 corresponds to a distance representing 5 deviations in 100 base pairs. The tree is rooted with the Archaebacteria *Methanobacterium congolense*.



#### E. coli 50°C Pre-Treatment

**Figure S2.** Inactivation profiles at 50°C for pre-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.



*E. coli* 50°C Post-Treatment

**Figure S3.** Inactivation profiles at 50°C for post-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.



*E. coli* 55°C Pre-Treatment

**Figure S4.** Inactivation profiles at 55°C for pre-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.



### E. coli 55°C Post-Treatment

**Figure S5.** Inactivation profiles at 55°C for post-treatment *E. coli* isolates. Each isolate is tested in duplicate. Testing was conducted in PBS.



#### E. coli 60°C Pre- and Post-Treatment

**Figure S6**. Inactivation profiles at 60°C for pre-treatment and post-treatment *E. coli* isolates. Testing was conducted in PBS.



Bacillus sp.

**Figure S7**. Inactivation profiles of *Bacillus* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.



### Cronobacter sp.

**Figure S8**. Inactivation profiles of *Cronobacter* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.



Citrobacter sp.

**Figure S9.** Inactivation profiles of *Citrobacter* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.



Enterobacter sp.

Figure S10. Inactivation profiles of *Enterobacter* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.



Klebsiella sp.

**Figure S11.** Inactivation profiles of *Klebsellia* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.



Raoultella sp.

**Figure S12.** Inactivation profiles of *Raoultella* sp. in PBS at various temperatures. Inset equations and lines represent linear best fit.