Supplementary information

Multimedia modeling of the fate of triclosan and triclocarban in the Dongjiang River Basin, South China and comparison with the field data

Qian-Qian Zhang[†], Jian-Liang Zhao[†], You-Sheng Liu[†], Ben-Gang Li[‡], Guang-Guo Ying[†]*

[†] State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P R China
[‡] MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P R China
* Corresponding author. Tel.:+86 020 85290200; fax: +86 020 85290200.
Email address: guangguo.ying@gmail.com; or guang-guo.ying@gig.ac.cn (GG

Ying).

1. Sample collection and analysis

Surface water samples were collected in 1 L amber glass bottles from 0.5 to 1 m below the water surface. Then 50 mL methanol and 400 mL 4 M sulfuric acid were added into each bottle to suppress microbial activity. Top 10-cm surface sediments were taken using a stainless steel grab sampler and then one gram sodium azide was added immediately, which was placed in a clean 1 L glass bottle. The samples were kept in 4 °C until extraction. The collected water samples were processed within 48 h using solid phase extraction (SPE), while the sediment samples were freeze-dried and stored at 4 °C for later analysis.

Water samples were first filtered and suspended particulate matters (SPMs) were collected with glass fiber filters. Internal standards of ${}^{13}C_{12}$ -TCS and TCC-d7 were added to the filtered samples, and the target anayltes were enriched into Waters Oasis HLB cartridges (6cc, 500 mg sorbents) using solid phase extraction process. The cartridges were finally eluted with 7 mL methanol and 5 mL dichloromethane in sequence. The combined eluates were combined and dried under gentle nitrogen and prepare for cleanup step. The filtered glass fibers with SPMs were freeze-dried as sediment and then cut into pieces. Each SPM or sediment sample was weighted into a centrifuge tube, and extracted three times with 30 mL ethyl acetate under ultrasonication. Ethyl acetate phase was combined and blew to dry, and ready for cleanup step.

Surface water and sediment extracts were cleaned up with a silica column (0.8 cm inside diameter, 1 g silica gel loaded). Dried elute was dissolved sequentially with 6 mL n-hexane, 6 mL ethyl acetate and 6 mL methanol, and loaded to the silica column in turn. The ethyl acetate phase was collected since the target compounds TCS and TCC as well as their internal standards were in the ethyl acetate phase. After being dried, the elutes were reconstituted in 1 mL of methanol and stored at –18°C for instrumental analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

2. Calculation of total amounts for TCS and TCC

The total amounts of TCS and TCC accumulated in the three media, i.e. water, SPM and sediment, were calculated based on the collected river basin data sets. The following equations are used:

$$I_{\rm w} = C_{22} \times A \times h_2 \times 10^{-9}, I_{\rm SPM} = C_{23} \times A \times h_2 \times \rho_{23} \times 10^{-9} \times X_{23}, I_{\rm s} = C_{43} \times A \times h_4 \times \rho_{43} \times 10^{-9},$$

where I_w , I_{SPM} and I_s are the total amounts of a chemical in surface water, suspended particulate matter (SPM) and sediment, respectively, with the unit of kg; C_{22} is the geomean value of a chemical in water with the unit of ng/L; C_{23} and C_{43} are the geomean values of a chemical in suspended particulate matter and sediment with the unit of ng/g, respectively; A is the water area with the unit of m²; h_2 and h_4 are the average depth of water and sediment, respectively, with the unit of m; ρ_{23} is the SPM density and ρ_{43} is sediment density, and both with the unit of kg/m³; and X_{23} is the volume fractions of solids in water.

3. Model description and results

3.1 Mass balance equations

For steady-state conditions the total input fluxes from the individual compartment equal to the output flux, and the equation is a simple algebraic expression. The mass balance equations were established in terms of transfer fluxes for the 4 bulk compartments of air, water, soil and sediment, respectively:

 $T_{01t} + T_{21d} + T_{31d} = T_{10t} + T_{12d} + T_{12p} + T_{12w} + T_{13d} + T_{13p} + T_{13w} + T_{10m},$

 $T_{02t} + T_{02h} + T_{12d} + T_{12p} + T_{12w} + T_{32e} + T_{32l} + T_{42d} + T_{42r} = T_{20t} + T_{21d} + T_{24d} + T_{24s} + T_{20m} + T_{2f},$

$$T_{13d} + T_{13p} + T_{13w} = T_{30m} + T_{31d} + T_{32e} + T_{321}$$

$$T_{24d} + T_{24s} = T_{40m} + T_{42d} + T_{42r},$$

The parameters used for solving the set of equations and sources of the data are listed in Table S1, which consists of the basic parameters that describe physical-chemical properties of the chemicals (TCS and TCC), dimension and property of the compartments and subcompartments, and thermodynamics and kinetics of both diffusive and non-diffusive processes that are required for modeling the fate of these target chemicals.

3.2 Parameters

1. A nonequilibrium and steady-state model and expressions used in the study are described for emissions, advective flows, degrading reactions, and interphase transport by diffusive and nondiffusive processes. The input parameters to the model

consist of a description of the environment (such as area of the water, soil and sediment), the physical-chemical (such as organic carbon normalized partition coefficients, *K*oc) and reaction properties (such as coefficients of degradation rate in air, water, soil and sediment) of the chemical and emission rates (such as wastewater discharge amount of the target chemicals T_{02h}).

2. The parameters used for solving the equations and the values and sources of the data are tabulated in Table S1. Most of the parameters can be found directly in the published papers or report, including: interface areas between air and water (A_2) and air and soil (A_3); thickness of air, water, soil and sediment ($h_1 h_2 h_3 h_4$); volume fractions of solids in air, soil and sediment $(X_{13} X_{33} X_{43})$ and volume fractions of air and water in soil, water in sediment $(X_{31} X_{32} X_{42})$; densities of solids in water, soil, sediment and fish $(\rho_{23}\rho_{33}\rho_{43}\rho_{f})$; production of fish (Y_{f}) ; advection air and water flow in/out of area $(Q_{01t}Q_{02t})$ Q_{20t}); the chemical basic parameters (T R H Ps K_{OC} BCF_f); the molecular diffusivities in air (B_1); mass transfer coefficients ($K_{12} K_{13} K_{21} K_{24}$); diffusion path lengths in soil and sediment $(L_3 L_4)$; and some parameters related to the rate $(K_p K_w S_c K_s K_l K_e K_r)$. Some parameters need the mathematical methods and data provided in the references, including: molecular diffusivity in water and sediment (B_2, B_4) . Other parameters are closely related to the actual environment features, and they are either obtained from laboratory test of the local samples or the literature reported values similar to the model environment. For example, the volume fractions of solid in water (X_{23}) are the measured result of the sample points all from the Dongjiang River. The parameter about the degradation is the half-life $(t_1 t_2 t_3 t_4)$ of each chemical. Coefficient of the degradation rate (K_m) can also describe the degradation and the expression is helpful in getting the *t* of the chemical: $K_m = \ln(2)/t$. *t* and K_m in water is all from the river system in different weather conditions, which will include the comprehensive environmental effects such as biodegradation and photolysis. The half-life in soil is similar to the water phase. Aerobic biodegradation in upper sediment is reasonable for the modeling process.

3. The input transfer fluxes are significant for the model. Advective flows in the area through air (T_{01t}) was extremely low, so we set the value to zero. T_{02h} was the wastewater discharge amount of the target chemicals. Market survey data on the volume of home and personal care (HPC) products sold in south China in 2010 (taken from Euromonitor) (Hodges et al., 2012) was used in this study. Based on data obtained from Mintel's Global New Products Database (GNPD) (www.gnpd.com), which is an online tool that monitors and records product innovation and retail success in the consumer packaged goods market, the data per ingredient in products sold in China from Feb 2011 - Feb 2012 were collected. In addition, under the "worst case" scenario, the inclusion level of TCS and TCC was 0.3% in all HPC products and 1.5% in bar soaps, respectively. Combined with the total population in south China, we got the usage amount per person per day for TCS and TCC to be 0.92 and 1.36 mg in south China, respectively. For the Dongjiang River basin, T_{02h} was calculated using the following equation:

$$T_{02h} = q_{per} \times P_{pop} \times \theta \times f$$

Where, q_{per} is the usage per person per day for TCS or TCC; P_{pop} is the population of

the watershed; (We obtained the population data in the total river basin and different sections of the river basin from the sixth China national census data (2010)); θ is the sewage treatment efficiency of the region, which was obtained from Guangdong Statistical Yearbook 2011; f is the removal efficiency of each target compound in sewage treatment plants. The removal efficiency data and detailed description are given in Table S1.

5. The parameters collected used for modeling are listed in Table S1. When there were more than one value available (n > 1), arithmetic or geometric mean and standard deviations were computed. For the log-normal distribution, geometric means were used as input; for the normal distribution, arithmetic mean values were selected. If only a single value was found (n = 1) for a certain parameter, a standard deviation was derived from an artificially assigned coefficient of variation (CV) as follows:

- For the thicknesses of air, soil, and sediment, 50% was taken, according to the fact that the calculated CV of the thickness of water was 58%;
- The calculated CV for X₁₃ was 23 %, so 20% was adopted for similar parameters of X₃₁, X₃₂, X₃₃, X₄₂, and X₄₃;
- 90% was adopted for CVs of t₁ based on the fact that the calculated CVs of t₂,
 t₃, t₄ were 79%, 68% and 120%;
- 4) CV of B₁ and B₄ were both 20%, based on the calculated CV of B₂ (23%).
 And 20% was adopted for CVs of K₁₂, K₁₃, K₂₁ and K₂₄;
- 5) 80% was selected for CVs of K_r and S_c based on the observed CV of K_s (84%);

 Without relevant information, 100% was used conservatively for L₃, L₄, K_p, K_w, K_l, K_e and C_{02h}.

3.3 Statistical distribution

Fig. S1 showed that the statistical log normal distribution of measured concentrations of TCS and TCC. Statistical distribution of some representative input parameters are displayed in Fig. S2. Raw and log-transformed data are presented as histograms, including organic carbon content in water (O_{23}), organic carbon normalized partition coefficients (K_{OC}), half-lives of the chemicals ($t_{1/2}$) in water (TCS), and temperature (T).

3.4 Model results

Fig. S3 displayed the distribution of the TCS and TCC in the multimedia environment. The modeled transfer fluxes of TCS and TCC in and out of the area as well as each compartment are displayed in Fig. S4. Fig. S5 shows the spatial distribution of the transfer flux along the Dongjiang River. a, b, c, d in the figure refer to four environment media: air, water, soil, sediment, respectively. Numbers 1, 2, 3, 4, 5 in horizontal coordinate refer to the total basin, upstream, midstream, downstream and delta, respectively. Fig. S5-1 is the spatial distribution of the transfer flux for TCS, while Fig. S5-2 is the spatial distribution data for TCC.

The sensitivities of the estimated concentrations to input parameters are shown in Fig. S6. Letter "a" refers to the variable changed by +10% and "b" by -10%. Only TCS

was selected to display. As result of 20 000 Monte Carlo simulations, the frequency distributions of TCS and TCC concentrations in each of the environmental media are shown as log-transformed distributions. To qualify the similarity, the overlapping areas of the measured and modeled concentration probability density curves are illustrated in Table S2.

References:

- 1. K. Bester, Water Research, 2003, 37, 3891-3896.
- K. Bester, Archives of environmental contamination and toxicology, 2005, 49, 9-17.
- 3. M. Bock, J. Lyndall, T. Barber, P. Fuchsman, E. Perruchon and M. Capdevielle, *Integrated environmental assessment and management*, 2010, **6**, 393-404.
- 4. H. Cao, S. Tao, F. Xu, R. M. Coveney Jr, J. Cao, B. Li, W. Liu, X. Wang, J. Hu and W. Shen, *Environmental science & technology*, 2004, **38**, 2126-2132.
- ChemSpider, 2012. Triclosan. [cited 27 August 2012]. Available from: (<u>http://www.chemspider.com/Chemical-Structure.5363.html?rid=2148b20b-788a-441b-bd30-83885233e424</u>) accessed on 27 August 2012.
- ChemSpider, 2012. Triclocarban. [cited 27 August 2012]. Available from: (http://www.chemspider.com/Chemical-Structure.7266.html).
- S.-J. Chen, X.-J. Luo, B.-X. Mai, G.-Y. Sheng, J.-M. Fu and E. Y. Zeng, Environmental science & technology, 2006, 40, 709-714.
- J. Chi, W. Yan, G. Zhang, G. Li, G. Liu, L. Xiang and Z. Shichun, *Journal of Tropical Oceanography*, 2005, 24, 44-52.

- M. A. Coogan, R. E. Edziyie, T. W. La Point and B. J. Venables, *Chemosphere*, 2007, 67, 1911-1918.
- Dongguan kepuwang., 2008. Dongjiang profile (in Chinese). Dongguan. [cited 6 June 2012]. Available from: (<u>http://www.dgkp.gov.cn/showart_421.htm</u>).
- Dongjiang river Basin Administration., 2012. Dongjiang profile (in Chinese).
 Guangdong. [cited 6 June 2012]. Available from: (<u>http://www.djriver.cn/djgk/</u>).
- J. Du, J. Qiu and M. Lin, *Guangdong Water Resources and Hydropower*, 2006, 18-20.
- T. W. Federle, S. K. Kaiser and B. A. Nuck, *Environmental toxicology and chemistry*, 2002, 21, 1330-1337.
- 14. H. Gan, S. Wu and X. Fan, Chinses Journal of Applied Ecology, 2003, 14.
- 15. J. Heidler, A. Sapkota and U. Rolf, *Environmental science & technology*, 2006,
 40, 3634-3639.
- J. Hodges, C. Holmes, R. Vamshi, D. Mao and O. Price, *Environmental Pollution*, 2012, 165, 199-207.
- 17. L. Jia, Z. He, W. Mo and C. Wu, ACTA Oceanologica Sinica, 2010, 32, 87-95.
- R. Kanda, P. Griffin, H. A. James and J. Fothergill, *J. Environ. Monit.*, 2003, 5, 823-830.
- R. Lin, Y. Min, K. Wei, G. Zhang, F. Yu and Y. Yu, *Geochimica*, 1998, 27, 401-411.
- A. Lindström, I. J. Buerge, T. Poiger, P. A. Bergqvist, M. D. Müller and H. R. Buser, *Environmental science & technology*, 2002, 36, 2322-2329.

- G. Liu, G. Zhang, X. Li, J. Li, X. Peng and S. Qi, *Marine Pollution Bulletin*, 2005, 51, 912-921.
- 22. T. Loftsson, Í. B. Össurardóttir, T. Thorsteinsson, M. Duan and M. Masson, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, **52**, 109-117.
- X. Luo, B. Mai, Q. Yang, J. Fu, G. Sheng and Z. Wang, *Marine Pollution Bulletin*, 2004, 48, 1102-1115.
- D. Mackay, *Multimedia environmental models: the fugacity approach*, Second Edition edn., CRC, 2001.
- 25. D. Mackay, S. Paterson and W. Shiu, Chemosphere, 1992, 24, 695-717.
- 26. W. M. Meylan and P. H. Howard, Chemosphere, 1993, 26, 2293-2299.
- 27. T. R. Miller, J. Heidler, S. N. Chillrud, A. DeLaquil, J. C. Ritchie, J. N. Mihalic,
 R. Bopp and R. U. Halden, *Environmental science & technology*, 2008, 42, 4570-4576.
- D. Morrall, D. McAvoy, B. Schatowitz, J. Inauen, M. Jacob, A. Hauk and W. Eckhoff, *Chemosphere*, 2004, 54, 653-660.
- D. R. Orvos, D. J. Versteeg, J. Inauen, M. Capdevielle, A. Rothenstein and V. Cunningham, *Environmental toxicology and chemistry*, 2002, 21, 1338-1349.
- 30. Department of environmental protection of Guangdong province, 2010.Environmental quality statement 2010. Guangdong. [cited on 9 June 2012].Available from:

(http://www.gdepb.gov.cn/hjzlyxx/hbzkgb/2010gongbao/201106/t20110609_1183 64.html).

- Y. Qiu, G. Zhang, L. Guo, J. Li, G. Liu, X. Liu and X. Liu, *Environmental Science*, 2007, 28, 1056-1061.
- R. Reiss, N. Mackay, C. Habig and J. Griffin, *Environmental toxicology and chemistry*, 2002, 21, 2483-2492.
- 33. F. Ren, Y. Jiang, X. Xiong, M. Dong and B. Wang, Resources Science, 2011, 33.
- U. Rolf and D. H. Paull, *Environmental science & technology*, 2005, **39**, 1420-1426.
- R. Seth, D. Mackay and J. Muncke, *Environmental science & technology*, 1999,
 33, 2390-2394.
- H. Singer, S. Müller, C. Tixier and L. Pillonel, *Environmental science & technology*, 2002, 36, 4998-5004.
- 37. Statistics Bureau of Guangdong Province, 2012. Guangdong Statistical Yearbook
 2009-2011. Guangdong. [cited 31 May 2012]. Available from: (<u>http://www.gdstats.gov.cn/tjnj/</u>).
- Water resources Department of Jiangxi Province, 2012. Water resources bulletin 2009-2011. Jiangxi. [cited 31 May 2012]. Available from: (<u>http://www.jxsl.gov.cn/list.jsp?classid=1402</u>).
- C. Tixier, H. P. Singer, S. Canonica and S. R. Müller, *Environmental science & technology*, 2002, 36, 3482-3489.
- USEPA, High Production Volume (HPV) Chemical Challenge Program Data Availability and Screening Level Assessment for Triclocarban, CAS#: 101-20-2, 2002; Report No.201-14186A,

http://www.epa.gov/oppt/chemrtk/pubs/summaries/tricloca/c14186.pdf.

- 41. USEPA, Office of Prevention. 2008.
- 42. USEPA, Initial Risk-Based Prioritization of High Production Volume (HPV) Chemicals: Triclocarban, United States Environmental Protrction Agency, 2009.
- 43. M. Waria, G. A. O'Connor and G. S. Toor, *Environmental toxicology and chemistry*, 2011, **30**, 2488-2496.
- C. Wu, A. L. Spongberg and J. D. Witter, *Journal of agricultural and food chemistry*, 2009, 57, 4900-4905.
- 45. S. C. Wu and P. M. Gschwend, Water Resources Research, 1988, 24, 1373-1383.
- H. Xie, J. Feng, F. Liu and G. Huang, *Water Resources and Hydropower Engineering*, 2008, **39**, 13-23.
- 47. Q. Yang, B. Mai, J. Fu, G. Sheng and X. Hu, *China Environmental Science*, 2005, 25, 47-51.
- 48. G. G. Ying and R. S. Kookana, Environment international, 2007, 33, 199-205.
- G. G. Ying, X. Y. Yu and R. S. Kookana, *Environmental Pollution*, 2007, **150**, 300-305.
- H. Y. Yu, B. Z. Zhang, J. P. Giesy and E. Y. Zeng, *Environment international*, 2011, 37, 1190-1195.
- Y. Z. Zhang, X. F. Song, A. Kondoh, J. Xia and C. Y. Tang, *Water Research*, 2011, 45, 292-302.
- J. L. Zhao, G. G. Ying, Y. S. Liu, F. Chen, J. F. Yang and L. Wang, *Journal of hazardous materials*, 2010, 179, 215-222.

- J. L. Zhao, Q. Q. Zhang, F. Chen, L. Wang, G. G. Ying, Y. S. Liu, B. Yang, L. J. Zhou, S. Liu and H. C. Su, *Water Research*, 2013, 47, 395-405.
- 54. X. Chen and Z. Wang, *Journal of Beijing Normal University (Natural Science)*, , 2010, **46**, 311-316.
- 55. X. Xiong, Y. Jiang, F. Ren, M. Dong, Y. Tian and Y. Lei, *journal of natural resources*, 2010, **25**, 1320-1331.

Figure Captions

Fig. S1 Statistical distribution of the measured concentrations.

Fig. S2 Statistical distribution of some representative input parameters. Raw and

log-transformed data are presented as histograms.

Fig. S3 Distribution of the TCS and TCC in the multimedia environment.

Fig. S4 The modeled transfer fluxes of TCS and TCC in and out of the area as well as each compartment.

Fig. S5 Spatial distribution of the transfer flux along the Dongjiang River. a, b, c, d refer to four environment media: Air, Water, Soil and Sediment, respectively. 1, 2, 3,

4, 5 in horizontal coordinate refer to the total basin, upstream, midstream, downstream and delta, respectively. Fig. S5-1 is the spatial distribution of the transfer flux for TCS and Fig. S5-2 is for TCC.

Fig. S6 Sensitivities of the estimated concentrations to input parameters. a refers to the variable changed by +10% and b is by -10%. Only TCS was selected to display.

S5-1 Spatial distribution of the transfer flux for TCS

	Ref^{0} .	11,33	11,33	25	23,46,53	53	7,53	25	°°,	4	4	4	25	25	24,37	50, - ^g	14	23, - ^g	47, - ⁸	4,14	23, - ^g	4,24	37		38,- ^e	$10,12,46,-^{g}$	37	, .	· - ,	- ^h , 37	-", 37	37,- ⁸	1	3,20,26,41
	N^{p}	2	2	1	ŝ	1	1	1	72	1	1	1	1	1	4	45	ŝ	72	36^{g}	2	36^{g}	7	ŝ	ı	4	5	ę	ı	ı	1	-	71	1	4
	Standard deviation ^{a,c}	1.072×10^{0}	1.024×10^{0}	1.604×10^{0}	2.433×10^{0}	1.604×10^{0}	1.604×10^{0}	1.219×10^{0}	2.814×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	2.243×10^{0}	2.231×10^{0}	1.219×10^{0}	2.635×10^{0}	1.604×10^{0}	1.628×10^{0}	1.604×10^{0}	1.256×10^{0}	1.639×10^{0}	ı	3.495×10^{0}	3.305×10^{0}	1.056×10^{0}		I	2.299×10^{0} (TCS)	$2.299 \times 10^{\circ} (TCC)$	1.007×10^{0}	$1.000 \times 10^{\circ}$	$7.670 \times 10^{\circ}(TCS)$
3asin.	Mean ^a	2.083×10^{9}	3.273×10^{10}	5.984×10^{2}	4.801×10^{0}	1.485×10^{-1}	4.470×10^{-2}	7.878×10^{-11}	9.504×10^{-6}	1.960×10^{-1}	2.449×10^{-1}	5.389×10^{-1}	6.859×10^{-1}	2.939×10^{-1}	5.500×10^{-9}	3.480×10^{-2}	1.828×10^{-2}	9.800×10^{-3}	2.397×10^{0}	1.821×10^{0}	2.397×10^{0}	1.234×10^{0}	5.768×10^{1}	0	7.718×10^{5}	3.943×10^{6}	2.882×10^{5}	0(TCS)	0(TCC)	4.824×10^{-6} (TCS)	6.408×10 ⁻⁰ (TCC)	2.964×10^{2}	$8.314 \times 10^{\circ}$	5.500×10 ⁻² (TCS)
rameters used in the multimedia model-Total I	Definition	Area of water phase	Area of soil phase	Thickness of air	Depth of water	Thickness of soil	Thickness of sediment	Volume fractions of solids in air	Volume fractions of solids in water	Volume fractions of air in soil	Volume fractions of water in soil	Volume fractions of solids in soil	Volume fractions of water in sediment	Volume fractions of solids in sediment	Volume fractions of fish in water	Contents of organic carbon in solids in water	Contents of organic carbon in solids in soil	Contents of organic carbon in solids in sediment	Densities of solids in water	Densities of solids in soil	Densities of solids in sediment	Densities of fish	Production of fish	Advection air flow in area	Advection water flow in area	Advection water flow out of area	Wastewater discharge rate	Concentration in flowing water		Wastewater concentration		Local absolute temperature	Universal gas constant	Henry's constant
-1 Collected pai	Unit	m^2	m^2	m	ш	ш	m	V/V	v/v	v/v	v/v	V/V	v/v	V/V	v/v	W/W	W/W	W/W	kg/L	kg/L	kg/L	kg/L	t/h	m ³ /h	m ³ /h	m ³ /h	m ³ /h	m³/h		mol/m ³		K	Pa·m/mol·K	Pa·m²/mol
Table S1	Symbol	A_2	A_3	h_1	h_2	h_3	h_4	X_{13}	X_{23}	X_{31}	X_{32}	X_{33}	X_{42}	X_{43}	$X_{ m 2f}$	O_{23}	O_{33}	O_{43}	ρ_{23}	ρ_{33}	ρ_{43}	$\rho_{\rm f}$	$Y_{ m f}$	$\mathcal{Q}_{01\mathrm{t}}$	$\mathcal{Q}_{02\mathrm{t}}$	$\mathcal{Q}_{20^{\mathfrak{l}}}$	$ ilde{O}^{02h}$	C_{02t}		$C_{02\mathrm{h}}$		Ţ	R	Н

52 _k	3, 32, 49, 50	42,49	5,20,27,29,32,35,44,49	6, 15, 27, 42, 44, 52	×1	۲. ۲	$20,28,32,36,39,-^{\rm k}$	42,- ^k	32,34,43,44,49, - ^k	40,44,49, - ^k	49,- ^k	34,40,49,- ^k	29,41,49	40,49	25	25,45	25,45	45	45	25	25	25	25	25	24	25	25	25	8,17,19,21,23,31	25	25	I	2,18,36,48	1,13,15,40
6	n v	0	12	6	1	1	11	7	6	7	ω	ω	ω	0	-	7	0	1	1	1		1	1		1	1	1	-	8	1	1		4	9
$1.105 \times 10^{0} (TCC)$	1.745×10^{0} (TCS)	6.956×10^{2} (TCC)	1.973×10^{0} (TCS)	1.415×10^{0} (TCC)	$2.160 \times 10^{0} (TCS)$	1.324×10^{0} (TCC)	2.630×10^{0} (TCS)	1.435×10^{0} (TCC)	2.076×10^{0} (TCS)	1.678×10^{0} (TCC)	$6.336 \times 10^{0} (TCS)$	2.650×10^{0} (TCC)	$4.725 \times 10^{0} (TCS)$	$4.601 \times 10^{0}(TCC)$	1.219×10^{0}	$1.274 \times 10^{0} (TCS)$	1.185×10^{0} (TCC)	$1.219 \times 10^{0} (TCS)$	1.219×10^{0} (TCC)	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	2.299×10^{0}	2.299×10^{0}	2.299×10^{0}	2.299×10^{0}	2.021×10^{0}	1.670×10^{0}	2.299×10^{0}	2.299×10^{0}	I	ı	
4 557×10 ⁻⁸ (TCC)	4.972×10^{-4} (TCS)	4.705×10^{-9} (TCC)	2.357×10^4 (TCS)	5.596×10^{4} (TCC)	1.182×10^{1} (TCS)	1.476×10^{1} (TCC)	4.304×10^{2} (TCS)	$1.859 \times 10^{3} (TCC)$	$1.155 \times 10^{3} (TCS)$	$3.802 \times 10^{3} (TCC)$	3.524×10^{3} (TCS)	$7.395 \times 10^{3} (TCC)$	9.000×10^{1} (TCS)	4.031×10^{2} (TCC)	3.920×10^{-2}	$4.746 \times 10^{-6} (TCS)$	4.510×10 ⁻⁶ (TCC)	5.869×10^{-7} (TCS)	5.351×10^{-7} (TCC)	2.942×10^{0}	9.860×10^{-1}	2.942×10^{-2}	9.800×10^{-3}	3.540×10^{-2}	3.540×10^{-3}	7.637×10^{0}	6.859×10^{-5}	1.562×10^{5}	9.900×10^{-7}	2.758×10^{-5}	1.626×10^{-8}	0	9.453×10^{-1} (TCS)	9.715×10 ⁻¹ (TCC)
	Vapor pressure		Organic carbon normalized partition coefficients		Half-life of the chemical in air		Half-life of the chemical in water		Half-life of the chemical in soil		Half-life of the chemical in sediment		Bioconcentration factors for fish in water		Molecular diffusivity in air	Molecular diffusivity in water		Molecular diffusivity in sediment		Air-side mass transfer coefficient over water	Air-side mass transfer coefficient over soil	Water-side mass transfer coefficient over air	Water-side mass transfer coefficient over sediment	Diffusion path lengths in soil	Diffusion path lengths in sediment	Dry deposition velocity	Rain rate	Rain scavenging rate	Sedimentation rate in water	Runoff rates of dissolved components	Runoff rates of solid in soil	Resuspension rate in sedimentation	Removal efficiency of target compounds in STP	
	Pa		L/kg	I	h		Ч		h		h				m^{2}/h	m^{2}/h		m^{2}/h		m/h	m/h	m/h	m/h	ш	ш	m/h	m/h	m/h	m/h	m/h	m/h	m/h		
	P_S		$K_{ m oc}$		$t_1^{\rm d}$		t_2		t_3		t_4		BCF_{f}		B_1	B_2		B_4		K_{12}	K_{13}	K_{21}	K_{24}	L_3	L_4	$K_{ m p}$	$K_{ m w}$	$S_{\rm c}$	$K_{ m s}$	K_{l}	$K_{ m e}$	$K_{ m r}^{ m e}$	f.j	

a Area of water phase a Area of soil phase Thickness of air Thickness of soil phase a Thickness of soil phase b Thickness of solids in water b Volume fractions of solids in air b Volume fractions of solids in air b Volume fractions of solids in soil b Volume fractions of solids in water b Volume fractions of solids in sediment b Volume fractions of solids in sediment b Volume fractions of solids in sediment b Volume fractions of solids in solids in sediment b Volume fractions of solids in solids in sediment b Volume fractions of solids in solids in sediment b Densities of solids in solids in sediment b Densities of solids in solids in soil b D	Nean			
a Area of soil phase Thickness of air Depth of water Thickness of soil phase Thickness of soil phase v Thickness of solids in water v Volume fractions of solids in soil v Volume fractions of solids in solid v Volume fractions of solids in solid v Volume fractions of solids in sediment v Volume fractions of solids in solid v Volume fractions of solids in sediment v Volume fractions of solids in solid v Volume fractions of solids in solid v Volume fractions of solids in solid v Volume fractions of solids in sediment v Volume fractions of solids in sediment v Volume fractions of solids in solid v Densitics	4.77×10^{8}	3 939×10 ⁰	; c	33.54
Thickness of air Depth of water Thickness of solids in water Volume fractions of solids in solid Volume fractions of solids in solid Volume fractions of solids in solid Volume fractions of solids in sediment Volume fraction of fish Volume fraction of fish Volume fraction water flow in area Jh Production of fish Production water flow in area Jh Vina Vastewater discharge rate Jh Vina Volume fraction water flow in area Volume fraction in flowing water Vina Volume fractonerentration <t< td=""><td>4.721×10 5 510×10⁹</td><td>1.645×10^{0}</td><td>10</td><td>33.54</td></t<>	4.721×10 5 510×10 ⁹	1.645×10^{0}	10	33.54
Depth of water Thickness of soil n Thickness of solids in water v Volume fractions of solids in soil v Volume fractions of solids in sediment v Volume fractions of solids in soil v Volume fractions of solids in sediment v Volume fractions of solids in sediment v Volume fractions of solids in sediment v Densities of solids in sediment <td>5.984×10^{2}</td> <td>1.604×10^{0}</td> <td>ı —</td> <td>25</td>	5.984×10^{2}	1.604×10^{0}	ı —	25
 Thickness of soil Thickness of solids in air Volume fractions of solids in water Volume fractions of solids in water Volume fractions of solids in water Volume fractions of solids in soil Volume fractions of solids in sediment Volume fractions of solids in sediment Volume fractions of solids in soil Volume fractions of solids in sediment Densities of so	8.615×10^{-1}	1.384×10^{0}	ŝ	38
 Thickness of sediment Volume fractions of solids in air Volume fractions of solids in water Volume fractions of solids in water Volume fractions of solids in soil Volume fractions of solids in solids in soil Volume fractions of solids in solids in solid Volume fractions of solids in solid Volume fraction of fish Production of fish Production of fish Advection water flow in area Advection water flow in area Mater Mastewater discharge rate Voluma Vastewater concentration Voluma 	1.485×10^{-1}	1.604×10^{0}	1	53
 Volume fractions of solids in air Volume fractions of solids in water Volume fractions of air in soil Volume fractions of air in soil Volume fractions of water in soil Volume fractions of solids in solids in soil Volume fractions of solids in soil Contents of organic carbon in solids in water Contents of organic carbon in solids in soil Contents of organic carbon in solids in soil Contents of organic carbon in solids in soil Molume fractions of solids in soil Densities of solids in sediment Densities of solids in soil Densities of fish Production of fish Advection water flow in area Advection water flow in area Advection water flow in area Matection water flow in area 	4.470×10^{-2}	1.604×10^{0}	1	53
 Volume fractions of solids in water Volume fractions of water in soil Volume fractions of water in soil Volume fractions of solids in soil Volume fractions of fish in water Volume fractions of fish in water Volume fractions of fish in water Volume fractions of solids in sediment Volume fraction in solids in sediment Densities of solids in sediment<!--</td--><td>7.878×10^{-11}</td><td>1.219×10^{0}</td><td>1</td><td>25</td>	7.878×10^{-11}	1.219×10^{0}	1	25
 Volume fractions of air in soil Volume fractions of water in soil Volume fractions of solids in soil Volume fractions of solids in soil Volume fractions of solids in sediment Contents of organic carbon in solids in sediment Densities of fish Natevater flow in area Matection water flow in area 	4.142×10^{-6}	2.465×10^{0}	6	ŝ
 Volume fractions of water in soil Volume fractions of solids in soil Volume fractions of solids in sediment Contents of organic carbon in solids in water Contents of organic carbon in solids in soil Contents of organic carbon in solids in soil Contents of organic carbon in solids in sediment Densities of solids in sediment Bensities of solids in sediment Advection water flow in area Advection water flow in area Matewater discharge rate Matewater discharge rate Matewater concentration Local absolute temperature 	1.960×10^{-1}	1.219×10^{0}	1	4
 Volume fractions of solids in soil Volume fractions of water in sediment Volume fractions of solids in sediment Volume fractions of fish in water Volume fractions of fish in water Volume fractions of fish in water Volume fractions of solids in sediment Contents of organic carbon in solids in soil Contents of organic carbon in solids in sediment Contents of organic carbon in solids in sediment Contents of organic carbon in solids in sediment Densities of solids in sediment Densities of solids in sediment Advection water flow in area Advection water flow in area Advection water flow in area Matewater discharge rate Matewater discharge rate Matewater concentration K Local absolute temperature 	2.449×10^{-1}	1.219×10^{0}	1	4
 Volume fractions of water in sediment Volume fractions of solids in sediment Volume fractions of fish in water Volume fractions of fish in water Volume fractions of fish in water Contents of organic carbon in solids in water Contents of organic carbon in solids in soil Contents of organic carbon in solids in soil Contents of organic carbon in solids in soil Contents of organic carbon in solids in sediment Contents of organic carbon in solids in sediment Contents of organic carbon in solids in sediment Contents of solids in sediment Densities of solids in sediment Densities of solids in sediment Advection water flow in area Mastewater discharge rate Mastewater discharge rate Mastewater concentration K Local absolute temperature 	5.389×10^{-1}	1.219×10^{0}	1	4
/v Volume fractions of solids in sediment /v Volume fractions of fish in water /w Contents of organic carbon in solids in water /w Contents of organic carbon in solids in water /w Contents of organic carbon in solids in solid /w Contents of organic carbon in solids in solid /w Densities of solids in water /w Densities of solids in sediment /w Densities of solids in sediment /h Production of fish /h Advection air flow in area /h Advection water flow in area /h Advection in flow in area /h Mastewater discharge rate /h Volum area	6.859×10^{-1}	1.219×10^{0}	1	25
/v Volume fractions of fish in water /w Contents of organic carbon in solids in water /w Contents of organic carbon in solids in water /w Contents of organic carbon in solids in sediment /w Contents of organic carbon in solids in sediment /w Contents of organic carbon in solids in sediment /w Densities of solids in sediment /h Densities of solids in sediment /h Production of fish /h Advection air flow in area /h Advection water flow in area <td>2.939×10^{-1}</td> <td>1.219×10^{0}</td> <td>1</td> <td>25</td>	2.939×10^{-1}	1.219×10^{0}	1	25
/w Contents of organic carbon in solids in water /w Contents of organic carbon in solids in solid /w Contents of organic carbon in solids in solid /w Contents of solids in water /w Densities of solids in water /h Densities of solids in sediment /h Densities of solids in sediment /h Densities of solids in sediment /h Densities of fish /h Advection air flow in area /h Advection water flow in area /h Concent	3.162×10^{-9}	2.071×10^{0}	4	24,37
/wContents of organic carbon in solids in sediment/wContents of organic carbon in solids in sediment/LDensities of solids in water/LDensities of solids in sediment/LDensities of solids in sediment/LDensities of solids in sediment/LDensities of solids in sediment/LDensities of fish/hProduction of fish/hAdvection water flow in area3hAdvection water flow in area3hConcentration in flowing water/m3Wastewater discharge rate/m3Wastewater concentration/m3Local absolute temperature	1.800×10^{-2}	1.312×10^{0}	45	. 500 I
(wContents of organic carbon in solids in sediment(LDensities of solids in water(LDensities of solids in sediment(LDensities of solids in sediment(LDensities of fish(LDensities of fish(LDensities of fish(LDensities of fish(LDensities of fish(LDensities of fish(LProduction of fish(hAdvection air flow in area(hAdvection water flow out of area(hAdvection water flow out of area(hAdvection water flow in area(hAdvection water flow out of area(hAdvection water flow in area(hAdvecti	1.828×10^{-2}	1.219×10^{0}	б	14
 A. Densities of solids in water A. Densities of solids in soil A. Densities of solids in sediment A. Densities of fish A. Densit of fish	1.147×10^{-2}	1.667×10^{0}	8	23, - ⁸
LDensities of solids in soilLDensities of solids in sedimentLDensities of solids in sedimentLDensities of fishhProduction of fishhAdvection air flow in areahAdvection water flow out of areahMater flow out of areahWastewater discharge ratehConcentration in flowing waterhVastewater concentrationhLocal absolute temperatureThistoreal acconcentrationThistoreal acconcentration	2.434×10^{0}	1.017×10^{0}	36	47, - ^g
LDensities of solids in sedimentLDensities of fishhDensities of fishhProduction of fish/hAdvection water flow in area/hAdvection water flow out of area/hWastewater discharge rate/m³Wastewater discharge rate/m³Wastewater concentration/m³Local absolute temperature	1.821×10^{0}	1.628×10^{0}	7	4,14
LDensities of fishhProduction of fishhProduction of fishhAdvection air flow in areahAdvection water flow in areahAdvection water flow out of areahWastewater discharge ratehConcentration in flowing waterh³Wastewater concentrationm³Local absolute temperaturetriviored accondentThirocreal accondent	2.434×10^{0}	1.017×10^{0}	36	23, - ⁸
hProduction of fishhAdvection air flow in areahAdvection water flow in areahAdvection water flow out of areahAdvection water flow out of areahAdvection water flow in areahAdvection water flow out of areahMastewater discharge ratehConcentration in flowing waterhVastewater concentrationhLocal absolute temperaturehThincerel acconduct	1.234×10^{0}	1.256×10^{0}	7	4,24
/hAdvection air flow in area/hAdvection water flow in area/hAdvection water flow out of area/hAdvection water flow out of area/hConcentration in flowing water/m³Wastewater concentration/m³Local absolute temperature/mThincerel acconcent	9.853×10^{-1}	1.067×10^{0}	ę	37
/hAdvection water flow in area/hAdvection water flow out of area/hAdvection water discharge rate/hConcentration in flowing water/m³Wastewater concentration/m³Local absolute temperature/mThirtoreal concentration	0	I	ı	
3/h Advection water flow out of area 3/h Wastewater discharge rate 3/h Concentration in flowing water 1/m³ Wastewater concentration K Local absolute temperature Local absolute temperature Thirdered	2.517×10^{5}	1.383×10^{0}	4	38,- ^g
 ³/h Wastewater discharge rate ³/h Concentration in flowing water ¹/m³ Wastewater concentration K Local absolute temperature ¹/m³ Local absolute temperature 	3.513×10^{5}	1.949×10^{0}	S	38
³ /h Concentration in flowing water l/m ³ Wastewater concentration K Local absolute temperature	2.375×10^{3}	1.000×10^{0}	ω	37
I/m ³ Wastewater concentration K Local absolute temperature	0(TCS)	I	ı	• I
I/m ³ Wastewater concentration K Local absolute temperature	0(TCC)	I	ı	· I
K Local absolute temperature	2.144×10^{-5} (TCS)	$2.299 \times 10^{0} (TCS)$.	$\frac{-1}{5}, \frac{37}{52}$
د المعالمة المعالمة معالمة المعالمة المعالم	2.636×10°(TCC)	2.299×10°(1CC)	- :	, 37/ 2.1 B
	2.964×10 ⁻ 8 314×10 ⁰	$1.0/1 \times 10^{-10}$		З /, -° -
1 ³ /mol Henry's constant	5.500×10^{-3} (TCS)	7.670×10^{0} (TCS)	- 4	3,20,26,41

					c	
			$4.55/\times 10^{\circ} (1 \text{ CC})$	1.105×10°(TUC)	7	52, -*
P_S	Pa	Vapor pressure	4.972×10^{-4} (TCS)	$1.745 \times 10^{\circ} (TCS)$	S	3, 32,49,50
			4.705×10^{-9} (TCC)	$6.956 \times 10^{2} (TCC)$	7	42,49
$K_{ m oc}$	L/kg	Organic carbon normalized partition coefficients	$2.357 \times 10^4 (TCS)$	1.973×10^{0} (TCS)	12	5,20,27,29,32,35,44,49
1)		5.596×10^{4} (TCC)	1.415×10^{0} (TCC)	6	6,15,27,42,44,52
$t_1^{\rm d}$	Ч	Half-life of the chemical in air	1.182×10^{1} (TCS)	2.160×10^{0} (TCS)	1	, K
			$1.476 \times 10^{1} (TCC)$	1.324×10^{0} (TCC)	1	١ĸ
t_2	h	Half-life of the chemical in water	4.304×10^{2} (TCS)	2.630×10^{0} (TCS)	11	$20,28,32,36,39,-^{\rm k}$
			$1.859 \times 10^{3} (TCC)$	$1.435 \times 10^{0} (TCC)$	7	42,- ^k
t_3	h	Half-life of the chemical in soil	$1.155 \times 10^{3} (TCS)$	2.076×10^{0} (TCS)	6	32,34,43,44,49, - ^k
			$3.802 \times 10^{3} (TCC)$	$1.678 \times 10^{0} (TCC)$	7	40,44,49, - ^k
t_4	h	Half-life of the chemical in sediment	$3.524 \times 10^{3} (TCS)$	$6.336 \times 10^{0} (TCS)$	ω	49,- ^k
			$7.395 \times 10^{3} (TCC)$	$2.650 \times 10^{0} (TCC)$	б	34,40,49,- ^k
BCF_{f}		Bioconcentration factors for fish in water	$9.000 \times 10^{1} (TCS)$	4.725×10^{0} (TCS)	e	29,41,49
			4.031×10^{2} (TCC)	4.601×10^{0} (TCC)	7	40,49
B_1	m^2/h	Molecular diffusivity in air	3.920×10^{-2}	1.219×10^{0}	-	25
B_2	m^{2}/h	Molecular diffusivity in water	4.746×10^{-6} (TCS)	$1.274 \times 10^{0} (TCS)$	2	25,45
			4.510×10 ⁻⁶ (TCC)	$1.185 \times 10^{0} (TCC)$	7	25,45
B_4	m^{2}/h	Molecular diffusivity in sediment	5.869×10^{-7} (TCS)	$1.219 \times 10^{0} (TCS)$	1	45
			$5.351 \times 10^{-7} (TCC)$	1.219×10^{0} (TCC)	1	45
K_{12}	m/h	Air-side mass transfer coefficient over water	2.942×10^{0}	1.219×10^{0}	1	25
K_{13}	m/h	Air-side mass transfer coefficient over soil	9.860×10^{-1}	1.219×10^{0}	1	25
K_{21}	m/h	Water-side mass transfer coefficient over air	2.942×10^{-2}	1.219×10^{0}	1	25
K_{24}	m/h	Water-side mass transfer coefficient over sediment	9.800×10^{-3}	1.219×10^{0}	1	25
L_3	ш	Diffusion path lengths in soil	3.540×10^{-2}	2.299×10^{0}	-	25
L_4	ш	Diffusion path lengths in sediment	3.540×10^{-3}	2.299×10^{0}	-	24
$K_{ m p}$	m/h	Dry deposition velocity	7.637×10^{0}	2.299×10^{0}	-	25
$K_{\rm w}$	m/h	Rain rate	6.859×10^{-5}	2.299×10^{0}	1	25
$S_{ m c}$	m/h	Rain scavenging rate	1.562×10^{5}	2.021×10^{0}	-	25
$K_{ m s}$	m/h	Sedimentation rate in water	6.936×10^{-7}	1.187×10^{0}	ς	8, 19, 31
$K_{ m l}$	m/h	Runoff rates of dissolved components	2.758×10 ⁻⁵	2.299×10^{0}	1	25
$K_{ m e}$	m/h	Runoff rates of solid in soil	1.626×10^{-8}	2.299×10^{0}	1	25
$K_{ m r}^{ m e}$	m/h	Resuspension rate in sedimentation	0	I		ı
f_{ij}		Removal efficiency of target compounds in STP	9.453×10^{-1} (TCS)	ı	4	2,18,36,48
			9.715×10 ⁻¹ (TCC)		9	1,13,15,40

	Ref^{0} .	33,54	33,54	25	46	53	53	25	00 I	4	4	4	25	25	24,37	0.0 I	14	ac I	47, - ⁸	4,14	23, - ⁸	4,24	37	ı	38	11	37	·	·	- ^h , 37	- ⁿ , 37	37,- ^g		3,20,26,41
	N^{p}	2	2	1	5	-	1	1	10	1	1	1	1	1	4	10	ς	10	36^{g}	2	36^{g}	2	ŝ	ı	4	5	б	1	1	1	-	11	ı	4
	Standard deviation ^{a,c}	1.553×10^{0}	1.064×10^{0}	1.604×10^{0}	1.350×10^{0}	1.604×10^{0}	1.604×10^{0}	1.219×10^{0}	1.707×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	2.071×10^{0}	2.440×10^{0}	1.219×10^{0}	2.464×10^{0}	1.016×10^{0}	1.628×10^{0}	1.016×10^{0}	1.256×10^{0}	1.035×10^{0}	I	1.949×10^{0}	1.883×10^{0}	1.158×10^{0}	$1.196 \times 10^{0} (TCS)$	$1.196 \times 10^{0} (TCC)$	2.299×10^{0} (TCS)	2.299×10 ⁰ (TCC)	1.007×10^{0}	$1.000 \times 10^{\circ}$	7.670×10°(TCS)
stream	Mean ^a	6.156×10^{8}	1.325×10^{10}	5.984×10^{2}	9.823×10^{0}	1.485×10^{-1}	4.470×10^{-2}	7.878×10^{-11}	3.248×10^{-6}	1.960×10^{-1}	2.449×10^{-1}	5.389×10^{-1}	6.859×10^{-1}	2.939×10^{-1}	3.162×10^{-9}	2.161×10^{-2}	1.828×10^{-2}	4.279×10^{-3}	2.420×10^{0}	1.821×10^{0}	2.420×10^{0}	4.238×10^{0}	5.768×10^{1}	0	3.513×10^{5}	7.487×10^{5}	1.399×10^{5}	5.805×10^{-8} (TCS)	$1.122 \times 10^{-7} (TCC)$	1.608×10^{-5} (TCS)	2.778×10 ⁻³ (TCC)	2.959×10^{2}	$8.314 \times 10^{\circ}$	5.500×10 ⁻³ (TCS)
rameters used in the multimedia model-Mids	Definition	Area of water phase	Area of soil phase	Thickness of air	Depth of water	Thickness of soil	Thickness of sediment	Volume fractions of solids in air	Volume fractions of solids in water	Volume fractions of air in soil	Volume fractions of water in soil	Volume fractions of solids in soil	Volume fractions of water in sediment	Volume fractions of solids in sediment	Volume fractions of fish in water	Contents of organic carbon in solids in water	Contents of organic carbon in solids in soil	Contents of organic carbon in solids in sediment	Densities of solids in water	Densities of solids in soil	Densities of solids in sediment	Densities of fish	Production of fish	Advection air flow in area	Advection water flow in area	Advection water flow out of area	Wastewater discharge rate	Concentration in flowing water		Wastewater concentration		Local absolute temperature	Universal gas constant	Henry's constant
l-3 Collected pa	Unit	m^2	m^2	ш	ш	ш	ш	v/v	v/v	v/v	v/v	v/v	v/v	v/v	v/v	W/W	W/W	w/w	kg/L	kg/L	kg/L	kg/L	t/h	m³/h	m³/h	m³/h	m³/h	m³/h		mol/m ³		X,	Pa·m ² /mol·K	Pa·m ² /mol
Table S	Symbol	A_2	A_3	h_1	h_2	h_3	h_4	X_{I3}	X_{23}	X_{31}	X_{32}	X_{33}	X_{42}	X_{43}	$X_{ m 2f}$	O_{23}	O_{33}	O_{43}	ρ_{23}	ρ_{33}	ρ_{43}	ρ_{f}	$Y_{ m f}$	${\cal Q}^{ m 01t}$	Q^{02t}	Q_{20t}	$\widetilde{Q}^{02\mathrm{h}}$	C_{02t}		C_{02h}		Τ	R	Н

					d	
			$4.55/\times 10^{\circ} (1 \text{ CC})$	1.105×10^{1} (1 CC)	7	52,
P_S	Pa	Vapor pressure	4.972×10^{-4} (TCS)	$1.745 \times 10^{\circ} (TCS)$	S	3, 32,49,50
			4.705×10^{-9} (TCC)	$6.956 \times 10^{2} (TCC)$	7	42,49
$K_{ m oc}$	L/kg	Organic carbon normalized partition coefficients	$2.357 \times 10^4 (TCS)$	1.973×10^{0} (TCS)	12	5,20,27,29,32,35,44,49
1)		5.596×10^{4} (TCC)	$1.415 \times 10^{0} (TCC)$	6	6,15,27,42,44,52
$t_1^{\rm d}$	Ч	Half-life of the chemical in air	1.182×10^{1} (TCS)	2.160×10^{0} (TCS)	1	, K
			1.476×10^{1} (TCC)	1.324×10^{0} (TCC)	1	١ĸ
t_2	h	Half-life of the chemical in water	4.304×10^{2} (TCS)	2.630×10^{0} (TCS)	11	$20,28,32,36,39,-^{\rm k}$
			$1.859 \times 10^{3} (TCC)$	$1.435 \times 10^{0} (TCC)$	7	42,- ^k
t_3	h	Half-life of the chemical in soil	$1.155 \times 10^{3} (TCS)$	2.076×10^{0} (TCS)	6	32,34,43,44,49, - ^k
			$3.802 \times 10^{3} (TCC)$	$1.678 \times 10^{0} (TCC)$	7	40,44,49, - ^k
t_4	h	Half-life of the chemical in sediment	$3.524 \times 10^{3} (TCS)$	$6.336 \times 10^{0} (TCS)$	ω	49,- ^k
			$7.395 \times 10^{3} (TCC)$	$2.650 \times 10^{0} (TCC)$	б	34,40,49,- ^k
BCF_{f}		Bioconcentration factors for fish in water	9.000×10^{1} (TCS)	4.725×10^{0} (TCS)	e	29,41,49
			4.031×10^{2} (TCC)	$4.601 \times 10^{0} (TCC)$	7	40,49
B_1	m^2/h	Molecular diffusivity in air	3.920×10^{-2}	1.219×10^{0}	-	25
B_2	m^{2}/h	Molecular diffusivity in water	4.746×10^{-6} (TCS)	$1.274 \times 10^{0} (TCS)$	2	25,45
			4.510×10 ⁻⁶ (TCC)	$1.185 \times 10^{0} (TCC)$	7	25,45
B_4	m^{2}/h	Molecular diffusivity in sediment	5.869×10^{-7} (TCS)	1.219×10^{0} (TCS)	1	45
			$5.351 \times 10^{-7} (TCC)$	1.219×10^{0} (TCC)	1	45
K_{12}	m/h	Air-side mass transfer coefficient over water	2.942×10^{0}	1.219×10^{0}	1	25
K_{13}	m/h	Air-side mass transfer coefficient over soil	9.860×10^{-1}	1.219×10^{0}	1	25
K_{21}	m/h	Water-side mass transfer coefficient over air	2.942×10^{-2}	1.219×10^{0}	1	25
K_{24}	m/h	Water-side mass transfer coefficient over sediment	9.800×10^{-3}	1.219×10^{0}	1	25
L_3	ш	Diffusion path lengths in soil	3.540×10^{-2}	2.299×10^{0}	-	25
L_4	ш	Diffusion path lengths in sediment	3.540×10^{-3}	2.299×10^{0}	-	24
$K_{ m p}$	m/h	Dry deposition velocity	7.637×10^{0}	2.299×10^{0}	-	25
$K_{\rm w}$	m/h	Rain rate	6.859×10^{-5}	2.299×10^{0}	1	25
$S_{ m c}$	m/h	Rain scavenging rate	1.562×10^{5}	2.021×10^{0}	-	25
$K_{ m s}$	m/h	Sedimentation rate in water	6.936×10^{-7}	$1.187{ imes}10^{0}$	ς	8, 19, 31
$K_{ m l}$	m/h	runoff rates of dissolved components	2.758×10 ⁻⁵	2.299×10^{0}	1	25
$K_{ m e}$	m/h	runoff rates of solid in soil	1.626×10^{-8}	2.299×10^{0}	1	25
$K_{ m r}^{ m e}$	m/h	Resuspension rate in sedimentation	0	I		ı
f_{ij}		Removal efficiency of target compounds in STP	9.453×10^{-1} (TCS)	ı	4	2,18,36,48
			9.715×10 ⁻¹ (TCC)		9	1,13,15,40

	Ref ⁰ .	33	33	25	12,46	53	53	25	00 I	4	4	4	25	25	24,37	an I	14	ະນຸ ເ	47, - ⁸	4,14	23, - ^e	4,24	37	I	11	11	37	· , ·	·~ 1	- ^h , 37	- ^h , 37	37,- ^e	I	3,20,26,41
	N^{p}	1	1	1	4	1	1	1	20	1	1	1	1	1	4	18	ω	19	20^{g}	7	20^8	7	С	ı	4	5	ω	1	1	1	1	20	ı	4
	Standard deviation ^{a,c}	1.219×10^{0}	1.219×10^{0}	1.604×10^{0}	1.593×10^{0}	1.604×10^{0}	1.604×10^{0}	1.219×10^{0}	3.035×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	1.219×10^{0}	2.071×10^{0}	2.705×10^{0}	1.219×10^{0}	3.112×10^{0}	1.016×10^{0}	1.628×10^{0}	1.015×10^{0}	1.256×10^{0}	1.028×10^{0}	ı	1.883×10^{0}	2.706×10^{0}	1.037×10^{0}	$1.196 \times 10^{0} (TCS)$	1.196×10^{0} (TCC)	2.299×10^{0} (TCS)	2.299×10^{0} (TCC)	6.585×10^{0}	1.000×10^{0}	$7.670 \times 10^{0} (TCS)$
nstream	Mean ^a	7.296×10^{8}	7.168×10^{9}	5.984×10^{2}	8.812×10^{0}	1.485×10^{-1}	4.470×10^{-2}	7.878×10^{-11}	1.287×10^{-5}	1.960×10^{-1}	2.449×10^{-1}	5.389×10^{-1}	6.859×10^{-1}	2.939×10^{-1}	3.162×10^{-9}	4.968×10^{-2}	1.828×10^{-2}	7.086×10^{-3}	2.420×10^{0}	1.821×10^{0}	2.424×10^{0}	1.234×10^{0}	2.446×10^{1}	0	7.487×10^{5}	8.956×10^{5}	1.925×10^{5}	2.259×10^{-8} (TCS)	1.047×10^{-7} (TCC)	3.812×10^{-6} (TCS)	5.190×10 ⁻⁶ (TCC)	2.972×10^{2}	8.314×10^{0}	5.500×10^{-3} (TCS)
rameters used in the multimedia model-Dow	Definition	Area of water phase	Area of soil phase	Thickness of air	Depth of water	Thickness of soil	Thickness of sediment	Volume fractions of solids in air	Volume fractions of solids in water	Volume fractions of air in soil	Volume fractions of water in soil	Volume fractions of solids in soil	Volume fractions of water in sediment	Volume fractions of solids in sediment	Volume fractions of fish in water	Contents of organic carbon in solids in water	Contents of organic carbon in solids in soil	Contents of organic carbon in solids in sediment	Densities of solids in water	Densities of solids in soil	Densities of solids in sediment	Densities of fish	Production of fish	Advection air flow in area	Advection water flow in area	Advection water flow out of area	Wastewater discharge rate	Concentration in flowing water		Wastewater concentration		Local absolute temperature	Universal gas constant	Henry's constant
I-4 Collected pa	Unit	m^2	m^2	ш	ш	Ш	ш	v/v	v/v	v/v	v/v	v/v	v/v	v/v	v/v	W/W	W/W	W/W	kg/L	kg/L	kg/L	kg/L	t/h	m^{3}/h	m ³ /h	m³/h	m ³ /h	m^{3}/h		mol/m ³		K	Pa·m ³ /mol·K	Pa m ³ /mol
Table S	Symbol	A_2	A_3^-	h_1	h_2	h_3	h_4	X_{l3}	X_{23}	X_{31}	X_{32}	X_{33}	X_{42}	X_{43}	$X_{ m 2f}$	O_{23}	O_{33}	O_{43}	ρ_{23}	ρ_{33}	ρ_{43}	ρ_{f}	$Y_{ m f}$	${\cal Q}^{ m 01t}$	${\cal Q}^{_{02t}}$	Q_{20t}	${ar Q}_{02{ m h}}$	C_{02t}		C_{02h}		T	R	Н

			A 557~10-8/TDOV		ç	y C3
ũ	ŭ		4.337×10 (100)	$1.100 \times 10 (100)$	1 V	24, - 221050
PS	га	v apor pressure	4.9/2×10 (1CS)	$1./45 \times 10^{-} (1CS)$	ი (5, 52,49,50
1	3		4./05×10 (TCC)	6.956×10 ⁻ (1CC)	7	42,49
$K_{ m OC}$	L/kg	Organic carbon normalized partition coefficients	2.357×10^{-1} (TCS)	$1.973 \times 10^{\circ}$ (TCS)	12	5,20,27,29,32,35,44, 49
-			$5.596 \times 10^{4} (TCC)$	1.415×10^{0} (TCC)	6	6,15,27,42,44,52
t_1^{d}	h	Half-life of the chemical in air	1.182×10^{1} (TCS)	$2.160 \times 10^{0} (TCS)$	1	×.
			$1.476 \times 10^{1} (TCC)$	1.324×10^{0} (TCC)	1	×,
t_2	h	Half-life of the chemical in water	4.304×10^{2} (TCS)	2.630×10^{0} (TCS)	11	$20,28,32,36,39,-^{k}$
			$1.859 \times 10^{3} (TCC)$	1.435×10^{0} (TCC)	7	42,- ^k
t_3	h	Half-life of the chemical in soil	$1.155 \times 10^{3} (TCS)$	2.076×10^{0} (TCS)	6	32,34,43,44,49, - ^k
			$3.802 \times 10^{3} (TCC)$	$1.678 \times 10^{0} (TCC)$	٢	40,44,49, - ^k
t_4	h	Half-life of the chemical in sediment	3.524×10^{3} (TCS)	$6.336 \times 10^{0} (TCS)$	С	49,- ^k
			$5.436 \times 10^{3} (TCC)$	2.7343×10^{0} (TCC)	С	34,40,49,- ^k
BCF_{f}		Bioconcentration factors for fish in water	9.000×10^{1} (TCS)	4.725×10^{0} (TCS)	З	29,41,49
			4.031×10^{2} (TCC)	4.601×10^{0} (TCC)	7	40,49
B_1	m^2/h	Molecular diffusivity in air	3.920×10^{-2}	1.219×10^{0}	-	25
B_2	m^{2}/h	Molecular diffusivity in water	4.746×10^{-6} (TCS)	$1.274 \times 10^{0} (TCS)$	7	25,45
			4.510×10 ⁻⁶ (TCC)	1.185×10^{0} (TCC)	7	25,45
B_4	m^{2}/h	Molecular diffusivity in sediment	5.869×10^{-7} (TCS)	1.219×10^{0} (TCS)	1	45
			5.351×10^{-7} (TCC)	1.219×10^{0} (TCC)	1	45
K_{12}	m/h	Air-side mass transfer coefficient over water	2.942×10^{0}	1.219×10^{0}	-	25
K_{13}	m/h	Air-side mass transfer coefficient over soil	9.860×10^{-1}	1.219×10^{0}	1	25
K_{21}	m/h	Water-side mass transfer coefficient over air	2.942×10^{-2}	1.219×10^{0}	-	25
K_{24}	m/h	Water-side mass transfer coefficient over sediment	9.800×10^{-3}	1.219×10^{0}	1	25
L_3	ш	Diffusion path lengths in soil	3.540×10^{-2}	2.299×10^{0}	1	25
L_4	ш	Diffusion path lengths in sediment	3.540×10^{-3}	2.299×10^{0}	1	24
$K_{ m p}$	m/h	Dry deposition velocity	7.637×10^{0}	2.299×10^{0}	-	25
$K_{ m w}$	m/h	Rain rate	6.859×10^{-5}	2.299×10^{0}	1	25
$S_{ m c}$	m/h	Rain scavenging rate	1.562×10^{5}	2.021×10^{0}	1	25
$K_{ m s}$	m/h	Sedimentation rate in water	6.936×10^{-7}	1.187×10^{0}	ε	8, 19, 31
$K_{ m l}$	m/h	runoff rates of dissolved components	2.758×10^{-5}	2.299×10^{0}	1	25
$K_{ m e}$	m/h	runoff rates of solid in soil	1.626×10^{-8}	2.299×10^{0}	1	25
$K_{ m r}^{ m e}$	m/h	Resuspension rate in sedimentation	0	ı	·	ı
f ^{zf}		Removal efficiency of target compounds in STP	9.453×10^{-1} (TCS)	ı	4	2,18,36,48
			9.715×10 ⁻¹ (TCC)	I	9	1,13,15,40

	5			4- •	đ
nit	Definition	Mean ^a	Standard deviation $a^{,,}$	N	Ref ^v .
6	Area of water phase	3.701×10^{8}	1.219×10^{0}	7	33,55
	Area of soil phase	4.168×10^{9}	1.219×10^{0}	7	33,55
	Thickness of air	5.984×10^{2}	1.604×10^{0}	1	25
	Depth of water	6.574×10^{0}	1.448×10^{0}	8	12,23
	Thickness of soil	1.485×10^{-1}	1.604×10^{0}	1	53
	Thickness of sediment	4.470×10^{-2}	1.604×10^{0}	1	53
Λ	Volume fractions of solids in air	7.878×10^{-11}	1.219×10^{0}	1	25
Λ	Volume fractions of solids in water	1.112×10^{-5}	2.382×10^{0}	36	50° I
^	Volume fractions of air in soil	1.960×10^{-1}	1.219×10^{0}	1	4
v	Volume fractions of water in soil	2.449×10^{-1}	1.219×10^{0}	1	4
Λ	Volume fractions of solids in soil	5.389×10^{-1}	1.219×10^{0}	1	4
٨	Volume fractions of water in sediment	6.859×10^{-1}	1.219×10^{0}	1	25
>	Volume fractions of solids in sediment	2.939×10^{-1}	1.219×10^{0}	1	25
>	Volume fractions of fish in water	3.162×10^{-9}	2.071×10^{0}	4	24,37
N	Contents of organic carbon in solids in water	3.098×10^{-2}	1.737×10^{0}	20	ω. I
N	Contents of organic carbon in solids in soil	1.828×10^{-2}	1.219×10^{0}	б	14
N	Contents of organic carbon in solids in sediment	1.383×10^{-2}	2.346×10^{0}	33	°°,
L	Densities of solids in water	2.428×10^{0}	1.013×10^{0}	35^{g}	47, - ^g
L	Densities of solids in soil	1.821×10^{0}	1.628×10^{0}	7	4,14
L	Densities of solids in sediment	2.428×10^{0}	1.013×10^{0}	35^{g}	23, - ^g
L	Densities of fish	1.234×10^{0}	1.256×10^{0}	7	4,24
_	Production of fish	8.287×10^{1}	1.070×10^{0}	б	37
h h	Advection air flow in area	0	I	ı	·
/h	Advection water flow in area	6.579×10^{5}	3.872×10^{0}	4	11
/h	Advection water flow out of area	7.724×10^{5}	3.623×10^{0}	5	11
\mathbf{h}	Wastewater discharge rate	7.914×10^{4}	1.141×10^{0}	б	37
/h	Concentration in flowing water	6.093×10^{-8} (TCS)	$1.196 \times 10^{\circ} (TCS)$	-	
		$1.736 \times 10^{-7} (TCC)$	$1.196 \times 10^{0} (TCC)$	1	· I
/m ³	Wastewater concentration	4.636×10^{-6} (TCS)	$2.299 \times 10^{\circ}$ (TCS)	1	- ^h , 37
		6.774×10 ⁻⁶ (TCC)	2.299×10^{0} (TCC)	1	- ^h , 37
	Local absolute temperature	2.969×10^{2}	6.771×10^{0}	36	37,- ⁸
mol·K	Universal gas constant	8.314×10^{0}	1.000×10^{0}	ı	·
/mol	Henry's constant	5.500×10^{-3} (TCS)	$7.670 \times 10^{0} (TCS)$	4	3.20.26.41

					¢	
			$4.55/\times10^{\circ}(1 \text{ CC})$	1.105×10°(TCC)	7	52, -*
P_S	Pa	Vapor pressure	4.972×10^{-4} (TCS)	$1.745 \times 10^{\circ} (TCS)$	S	3, 32,49,50
			4.705×10^{-9} (TCC)	$6.956 \times 10^{2} (TCC)$	7	42,49
$K_{ m oc}$	L/kg	Organic carbon normalized partition coefficients	$2.357 \times 10^4 (TCS)$	1.973×10^{0} (TCS)	12	5,20,27,29,32,35,44,49
1)		5.596×10^{4} (TCC)	$1.415 \times 10^{0} (TCC)$	6	6,15,27,42,44,52
$t_1^{\rm d}$	Ч	Half-life of the chemical in air	1.182×10^{1} (TCS)	2.160×10^{0} (TCS)	1	, K
			1.476×10^{1} (TCC)	1.324×10^{0} (TCC)	-	× ا
t_2	h	Half-life of the chemical in water	4.304×10^{2} (TCS)	2.630×10^{0} (TCS)	11	$20,28,32,36,39,-^{\rm k}$
			$1.859 \times 10^{3} (TCC)$	$1.435 \times 10^{0} (TCC)$	7	42,- ^k
t_3	h	Half-life of the chemical in soil	$1.155 \times 10^{3} (TCS)$	2.076×10^{0} (TCS)	6	32,34,43,44,49, - ^k
			$3.802 \times 10^{3} (TCC)$	$1.678 \times 10^{0} (TCC)$	7	40,44,49, - ^k
t_4	h	Half-life of the chemical in sediment	3.524×10^{3} (TCS)	$6.336 \times 10^{0} (TCS)$	б	49,- ^k
			$7.395 \times 10^{3} (TCC)$	2.650×10^{0} (TCC)	б	34,40,49,- ^k
BCF_{f}		Bioconcentration factors for fish in water	9.000×10^{1} (TCS)	4.725×10^{0} (TCS)	e	29,41,49
			4.031×10^{2} (TCC)	$4.601 \times 10^{0} (TCC)$	7	40,49
B_1	m^2/h	Molecular diffusivity in air	3.920×10^{-2}	1.219×10^{0}	-	25
B_2	m^{2}/h	Molecular diffusivity in water	4.746×10^{-6} (TCS)	$1.274 \times 10^{0} (TCS)$	2	25,45
			4.510×10 ⁻⁶ (TCC)	1.185×10^{0} (TCC)	7	25,45
B_4	m^{2}/h	Molecular diffusivity in sediment	5.869×10^{-7} (TCS)	1.219×10^{0} (TCS)	1	45
			$5.351 \times 10^{-7} (TCC)$	1.219×10^{0} (TCC)	1	45
K_{12}	m/h	Air-side mass transfer coefficient over water	2.942×10^{0}	1.219×10^{0}	1	25
K_{13}	m/h	Air-side mass transfer coefficient over soil	9.860×10^{-1}	1.219×10^{0}	1	25
K_{21}	m/h	Water-side mass transfer coefficient over air	2.942×10^{-2}	1.219×10^{0}	1	25
K_{24}	m/h	Water-side mass transfer coefficient over sediment	9.800×10^{-3}	1.219×10^{0}	1	25
L_3	ш	Diffusion path lengths in soil	3.540×10^{-2}	2.299×10^{0}	1	25
L_4	ш	Diffusion path lengths in sediment	3.540×10^{-3}	2.299×10^{0}	1	24
$K_{ m p}$	m/h	Dry deposition velocity	7.637×10^{0}	2.299×10^{0}	1	25
$K_{ m w}$	m/h	Rain rate	6.859×10^{-5}	2.299×10^{0}	1	25
$S_{ m c}$	m/h	Rain scavenging rate	1.562×10^{5}	2.021×10^{0}	1	25
$K_{ m s}$	m/h	Sedimentation rate in water	1.620×10^{-7}	3.025×10^{0}	4	7, 17, 23, 31
$K_{ m l}$	m/h	runoff rates of dissolved components	2.758×10^{-5}	2.299×10^{0}	1	25
$K_{ m e}$	m/h	runoff rates of solid in soil	1.626×10^{-8}	2.299×10^{0}	1	25
$K_{ m r}^{ m e}$	m/h	Resuspension rate in sedimentation	0	I		ı
f_{ij}		Removal efficiency of target compounds in STP	9.453×10^{-1} (TCS)	ı	4	2,18,36,48
			9.715×10 ⁻¹ (TCC)		9	1,13,15,40

02h,

^g The sampling data are determined in our laboratory. ^h It is from T_{02h} .

¹The corresponding upstream output is the source of the chemical input in flowing water. Due to the water source protection in local government, the article assumes that there are no chemical input for the total basin and upstream. ^kNo article is available, so we simulate the parameter from EPISUIT 4.1.

Compounds	Symbol	S-Cover	S-Measured	⁰∕₀ ^a
	$\log C_{water}$	0.804	1.000	80.4%
TCS	$\log C_{\text{SPM}}$	0.686	1.000	68.7%
	$\log C_{\text{sediment}}$	0.723	1.000	72.3%
	$\log C_{water}$	0.863	1.000	86.3%
TCC	$\log C_{\text{SPM}}$	0.631	1.000	63.1%
	$\log C_{\text{sediment}}$	0.823	1.000	82.3%

Table S2 The overlapping areas of the measured and modeled concentration probability density curve.

^a % means the percentage of overlapping area of the corresponding measured concentration probability density curves area.