### Supporting Information for

## Neutral Polyfluoroalkyl Substances in the Global Atmosphere

A. Gawor<sup>1,2</sup>, C. Shunthirasingham<sup>1,2</sup>, S.J. Hayward<sup>1</sup>, Y.D. Lei<sup>1</sup>, T. Gouin<sup>1</sup>, B.T. Mmereki<sup>3</sup>, W. Masamba<sup>4</sup>, C. Ruepert<sup>5</sup>, L.E. Castillo<sup>5</sup>, M. Shoeib<sup>6</sup>, S.C. Lee<sup>6</sup>, T. Harner<sup>6</sup>, F. Wania<sup>1,\*</sup>

<sup>1</sup> Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A3, <sup>2</sup> Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A3, <sup>3</sup> Department of Chemistry, University of Botswana, Gaborone, Botswana, <sup>4</sup> Okavango Research Institute, University of Botswana, Maun, Botswana, <sup>5</sup> Instituto Regional de Estudios en Sustancias Toxicas, Campus Omar Dengo, Universidad Nacional, Heredia, Costa Rica, <sup>6</sup> Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4

| Text                                                                                             | Detailed Information on Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                                                  | Sampling Site Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |
|                                                                                                  | Sample Preparation and Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52                                                                                    |
|                                                                                                  | Sample Extraction and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |
| Table S1                                                                                         | nPFAS analytes, acronyms, and target and qualifier ions for GC/MS detection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S4                                                                                    |
| Table S2                                                                                         | Concentrations of nPFAS sequestered on XAD-PAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S5                                                                                    |
| Table S3                                                                                         | Statistical results for the sampling uptake curves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S5                                                                                    |
| Table S4                                                                                         | Concentrations and MDLs of selected nPFASs in active air samples (AAS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S6                                                                                    |
| Fig. S1                                                                                          | Seasonal variability of nPFAS concentrations in the 3 AAS campaigns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S8                                                                                    |
| Table S5                                                                                         | Results from 1-way ANOVA test for nPFAS concentrations between the three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | co                                                                                    |
|                                                                                                  | active air-sampling sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                    |
| Table S6                                                                                         | Name, geographical coordinates (latitude, longitude), site classification (AG:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |
|                                                                                                  | Agricultural, BA: Background, PO: Polar, RU: Rural, and UR: Urban), and length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S9                                                                                    |
|                                                                                                  | of sampling period for GAPS sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |
| Table S7                                                                                         | Concentrations and method detection limits (MDL) in ng·PAS <sup>-1</sup> of selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$11                                                                                  |
|                                                                                                  | neutral polyfluoroalkyl substances (nPFAS) at GAPS sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511                                                                                   |
| Table S8                                                                                         | Percentage of individual nPFAS detected per year with number of sites for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$16                                                                                  |
|                                                                                                  | that year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 510                                                                                   |
| Fig. S2                                                                                          | Relative abundance of nPFAS on a global scale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S16                                                                                   |
| Fig. S3                                                                                          | Temporal trends at the 13 sites that were consistently part of the GAPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S17                                                                                   |
|                                                                                                  | program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 017                                                                                   |
| Table S10                                                                                        | Results from 1-way ANOVA test investigating the differences in nPFAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S17                                                                                   |
|                                                                                                  | concentrations between site types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S17                                                                                   |
| Table S9                                                                                         | 1-way randomized block design ANOVA result for the concentrations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S17<br>S18                                                                            |
| Table S9                                                                                         | 1-way randomized block design ANOVA result for the concentrations of individual nPFAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S17<br>S18                                                                            |
| Table S9<br>Fig. S4                                                                              | 1-way randomized block design ANOVA result for the concentrations of<br>individual nPFAS.<br>Pearson correlation between the concentrations of the nPFASs in XAD-PAS and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S17<br>S18<br>S20                                                                     |
| Table S9<br>Fig. S4                                                                              | 1-way randomized block design ANOVA result for the concentrations of<br>individual nPFAS.<br>Pearson correlation between the concentrations of the nPFASs in XAD-PAS and<br>the pertingency index of the sampling site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$17<br>\$18<br>\$20                                                                  |
| Table S9<br>Fig. S4<br>Text                                                                      | Concentrations between site types.     1-way randomized block design ANOVA result for the concentrations of individual nPFAS.     Pearson correlation between the concentrations of the nPFASs in XAD-PAS and the pertingency index of the sampling site     Regional differences in nPFAS Levels.                                                                                                                                                                                                                                                                                                                                                                                                    | \$17       \$18       \$20       \$21                                                 |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5                                                           | Concentrations between site types.1-way randomized block design ANOVA result for the concentrations of<br>individual nPFAS.Pearson correlation between the concentrations of the nPFASs in XAD-PAS and<br>the pertingency index of the sampling site<br>Regional differences in nPFAS Levels.Box and whiskers plots for nPFAS separated according to the four major world                                                                                                                                                                                                                                                                                                                             | \$17   \$18   \$20   \$21   \$22                                                      |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5                                                           | Concentrations between site types.     1-way randomized block design ANOVA result for the concentrations of individual nPFAS.     Pearson correlation between the concentrations of the nPFASs in XAD-PAS and the pertingency index of the sampling site     Regional differences in nPFAS Levels.     Box and whiskers plots for nPFAS separated according to the four major world regions and proximity to emissions.                                                                                                                                                                                                                                                                               | \$17   \$18   \$20   \$21   \$22   \$22                                               |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5<br>Fig. S6                                                | Concentrations between site types.     1-way randomized block design ANOVA result for the concentrations of individual nPFAS.     Pearson correlation between the concentrations of the nPFASs in XAD-PAS and the pertingency index of the sampling site     Regional differences in nPFAS Levels.     Box and whiskers plots for nPFAS separated according to the four major world regions and proximity to emissions.     Temporal trends across the four global regions.                                                                                                                                                                                                                           | \$17     \$18     \$20     \$21     \$22     \$23                                     |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5<br>Fig. S6<br>Table S11                                   | Concentrations between site types.     1-way randomized block design ANOVA result for the concentrations of individual nPFAS.     Pearson correlation between the concentrations of the nPFASs in XAD-PAS and the pertingency index of the sampling site     Regional differences in nPFAS Levels.     Box and whiskers plots for nPFAS separated according to the four major world regions and proximity to emissions.     Temporal trends across the four global regions.     1-way ANOVA on nPFAS concentrations based on region.                                                                                                                                                                  | \$17     \$18     \$20     \$21     \$22     \$23     \$24                            |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5<br>Fig. S6<br>Table S11<br>Table S12                      | Concentrations between site types.1-way randomized block design ANOVA result for the concentrations of<br>individual nPFAS.Pearson correlation between the concentrations of the nPFASs in XAD-PAS and<br>the pertingency index of the sampling site<br>Regional differences in nPFAS Levels.Box and whiskers plots for nPFAS separated according to the four major world<br>regions and proximity to emissions.Temporal trends across the four global regions.1-way ANOVA on nPFAS concentrations based on region.nPFAS correlations among all samples in the global environment and region                                                                                                          | \$17     \$18     \$20     \$21     \$22     \$23     \$24     \$25                   |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5<br>Fig. S6<br>Table S11<br>Table S12<br>Table S13         | Concentrations between site types.1-way randomized block design ANOVA result for the concentrations of<br>individual nPFAS.Pearson correlation between the concentrations of the nPFASs in XAD-PAS and<br>the pertingency index of the sampling site<br>Regional differences in nPFAS Levels.Box and whiskers plots for nPFAS separated according to the four major world<br>regions and proximity to emissions.Temporal trends across the four global regions.1-way ANOVA on nPFAS concentrations based on region.<br>nPFAS correlations among all samples in the global environment and regionAverage nPFAS concentrations in duplicate XAD-PAS in national PAS campaigns                           | \$17     \$18     \$20     \$21     \$22     \$23     \$24     \$25     \$26          |
| Table S9<br>Fig. S4<br>Text<br>Fig. S5<br>Fig. S6<br>Table S11<br>Table S12<br>Table S13<br>Text | Concentrations between site types.1-way randomized block design ANOVA result for the concentrations of<br>individual nPFAS.Pearson correlation between the concentrations of the nPFASs in XAD-PAS and<br>the pertingency index of the sampling site<br>Regional differences in nPFAS Levels.Box and whiskers plots for nPFAS separated according to the four major world<br>regions and proximity to emissions.Temporal trends across the four global regions.1-way ANOVA on nPFAS concentrations based on region.<br>nPFAS correlations among all samples in the global environment and regionAverage nPFAS concentrations in duplicate XAD-PAS in national PAS campaigns<br>International partners | \$17     \$18     \$20     \$21     \$22     \$23     \$24     \$25     \$26     \$28 |

\* To whom correspondence should be addressed: <u>frank.wania@utoronto.ca</u>, Tel. +1-416-287-7225

# Detailed Information on Methodology

### Sampling Site Descriptions

Twenty-seven, 24-hour high volume AASs were collected in **Maun, Botswana** every two weeks between May 2006 and May 2007.<sup>1</sup> During that one year period, duplicate XAD resin-based PASs were deployed at ten sites within or near to the Okavango Delta in Northwestern Botswana, with five more in the more populated East of the country.<sup>1</sup> Located in southern Africa, Botswana's climate is semiarid with consistently high temperatures throughout the year. Rainfall varies, being heaviest in the Northeast (~650mm) and sparse (~<250mm) in the Kalahari Desert to the Southwest. Detailed description of the sites is given in Figure 1 and in ref. <sup>1</sup>

Eight 24-hour high volume AASs were taken in **San Antonio de Belen** in Costa Rica's heavily populated central valley between October 2005 and October 2006. At the same time, duplicate XAD resin-based PASs were deployed across the country at seven sites in remote or agricultural areas.<sup>2</sup> Concurrently, five duplicate sets of PAS collected air in Belen for variable lengths of time, ranging from four months to somewhat more than one year, in order to determine the uptake of nPFAS in XAD-2 based samplers in tropical zones.<sup>3</sup> Costa Rica, a mountainous Central American country situated near the equator, has a tropical climate with consistently high temperatures throughout the year and a distinct rainy season.

Twenty-one low volume AAS sampled continuously for consecutive two-week periods between March 2006 and March 2007 in **Egbert, Ontario, Canada**. Similar to the study in Costa Rica, five duplicate sets of PAS collected air for variable lengths of time, ranging from three months to one year. Egbert is in rural southern Ontario, approximately 100 kilometers north of Toronto. The region has continental temperate climate, with very large seasonal temperature variations.

Within the **GAPS Network** scientists from around the globe collaborate to monitor concentrations of Persistent Organic Pollutants (POPs) in air.<sup>4-8</sup> The data will aid in evaluating the effectiveness of the restrictions imposed on POPs under the Stockholm Convention. Two types of PASs are used in GAPS; polyurethane foams (PUFs) or sorbent-impregnated PUFs (SIPs) are deployed at a seasonal resolution, whereas XAD-PASs yield annual averaged air concentrations. Specifically, such PASs were deployed at 34, 46, 33, 34, 22, and 17 sites during each of six sampling years, which roughly correspond to calendar years 2006 to 2011. Samples from the first year of the GAPS study, in 2005, were not included because extract clean-up with alumina columns compromised the analysis for the analytes of interest. Because previous sampling campaigns showed generally good agreement between replicates<sup>3,9-11</sup> XAD-PASs within GAPS are not duplicated. A variety of stations participated each year, including 13 stations that were continuously part of the campaign. Previously, GAPS sites had been categorized into five types. As population density and proximity to industrial

activity are influential factors for the presence of nPFAS in the atmosphere<sup>12-14</sup> sites categorized as 'agricultural', 'rural', or 'background' were reclassified as either 'remote' or 'urban', so that a simplified categorization only distinguished between urban, remote, and polar sites (Table 1, Figure 1). For geographic comparisons, sites were also grouped into four regions:<sup>5</sup> North America (9-18 samples), South (5-11), Europe (5-8), and Asia (2-12) (Figure 1).

### Sample Preparation and Collection

Preparation and collection of the samples have been described in detail elsewhere.<sup>15</sup> In the case of PAS, 10 cm (Botswana, Ontario) or 20 cm (GAPS, Costa Rica) long mesh cylinders (diameter: 2 cm) were filled with pre-cleaned XAD-2 resin (Supelpak 2, Supelco, Bellefonte, PA). Mesh cylinders were placed into stainless cylinder tubes closed with stoppers, sealed in plastic bags, and shipped to the sites. Field blanks were treated in the same manner as the samples, except that the blanks were not exposed to air. The high volume AAS used in the Costa Rica and Botswana campaigns consisted of 10 g XAD-2 sandwiched between two large (width w<sub>PUF</sub> 6 cm, length l<sub>PUF</sub> 3 cm) PUF plugs. The low volume AAS used in the Egbert campaign was comprised of 5 g XAD-2 between two small (w<sub>PUF</sub> 2 cm, l<sub>PUF</sub> 3 cm) PUF plugs.

### Sample Extraction and Analysis

Target analytes in these four campaigns were the following seven chemicals: three fluorotelomer alcohols (6:2, 8:2, 10:2 FTOH), two perfluorooctane sulfonamides (MeFOSA, EtFOSA) and two perfluorooctane sulfonamidoethanols (MeFOSE, EtFOSE). Additionally, 8 isotope labeled nPFAS were analyzed for recovery and volume correction (Table S1).

Samples from Botswana,<sup>1</sup> Costa Rica,<sup>3,2</sup> Ontario<sup>16</sup> and 2006-2008 GAP samples<sup>5</sup> underwent Soxhlet extraction overnight with dichloromethane. These samples had not been spiked with isotope labeled nPFAS prior to extraction. Recoveries of laboratory spikes (n=6) were on average between 77-96%, 111-124% and 113-115% for FTOHs, FOSAs and FOSEs, respectively. As these recoveries were judged acceptable, samples were not recovery-corrected, aside from adjustment for any detector response differences during gas chromatography-mass spectrometry (GC-MS) determination. This correction was made by spiking 5-12 ng of isotope labeled nPFAS prior to analysis on the GC-MS.

2009-2011 samples within GAPS were extracted using pressurized liquid extraction (Dionex ASE®350) with 1:1 (v/v) acetone:hexane at 75 °C, adapted from Dionex's protocol.<sup>17</sup> Primbs et al.<sup>18</sup> further investigated and confirmed the applicability of this extraction technique for sorbents used in air sampling. Prior to extraction, these samples were spiked with 5-12 ng of the labeled nPFAS. Average recoveries for these samples were as follows: 6:2 FTOH (39%), 8:2 FTOH (74%), 10:2 FTOH (107%), MeFOSA (111%), EtFOSA (114%), MeFOSE (241%) and EtFOSE (251%). Relatively

high volatility of 6:2 FTOH and high pressure applied during the extraction can explain the lower recovery for this compound. Altering the method for more volatile compounds might affect the recoveries for other sets of chemicals monitored within GAPS. Elevated recoveries for the FOSEs have previously been reported,<sup>19-23</sup> and are likely due to matrix effects and solvent enhancement, especially given the long periods of deployment. Spiked laboratory blanks showed similar recoveries (FOSA: 106-108%; FOSE: 146-152%). Given the low and high recoveries for some of the FTOHs and FOSEs, 2009-2011 GAPS samples were recovery-corrected.

After extraction, all samples were volume reduced using either a rotary evaporator or Turbovap, further concentrated to 500  $\mu$ l under nitrogen, and then solvent-exchanged into iso-octane. Aside from passing the samples through ~1.0 g of sodium sulfate to remove moisture, no clean-up was done on the extracts. Additionally, prior to injection, 10 ng of N,N-Me<sub>2</sub>FOSA was added into the samples for volume correction.

Analysis of the samples was performed using GC-MS in selected ion monitoring mode using positive chemical ionization (ions in Table S1). Aliquots of 2  $\mu$ L were injected and separated on a 30 m DB-WAX column with a 0.25 mm inner diameter and 0.25  $\mu$ m film thickness. Helium was the carrier gas at a flow of 1.2 mL·min<sup>-1</sup>. Temperature program was as follows: 60-65 °C (held for 3 min), ramped at 2 °C·min<sup>-1</sup> to 70 °C, then ramped at 8 °C·min<sup>-1</sup> to 120 °C, and finally ramped at 10 °C·min<sup>-1</sup> to 220 °C with a post run at 230 °C for 3 min. A 5-10 point calibration curve (0.48-96 pg· $\mu$ l<sup>-1</sup>) was used for quantification, using the isotope dilution method.

| Analyte                                                   | Acronym                   | Target Ion | Qualifier Ion |
|-----------------------------------------------------------|---------------------------|------------|---------------|
| Perfluorohexyl ethanol                                    | 6:2 FTOH                  | 365        | 327           |
| 2-perfluorohexyl-( <sup>13</sup> C <sub>2</sub> )-ethanol | <sup>13</sup> C 6:2 FTOH  | 369        | 331           |
| Perfluorooctyl ethanol                                    | 8:2 FTOH                  | 465        | 427           |
| 2-perfluorooctyl-( <sup>13</sup> C <sub>2</sub> )-ethanol | <sup>13</sup> C 8:2 FTOH  | 469        | 497           |
| Perfluorodecl ethanol                                     | 10:2 FTOH                 | 565        | 427           |
| 2-perfluorodecyl-( <sup>13</sup> C <sub>2</sub> )-ethanol | <sup>13</sup> C 10:2 FTOH | 569        | 531           |
| N-methyl perfluorooctane sulfonamide                      | MeFOSA                    | 514        |               |
| Methyl-d <sub>3</sub> -perfluorooctane sulfonamide        | d3 MeFOSA                 | 517        |               |
| N-ethyl perfluorooctane sulfonamide                       | EtFOSA                    | 528        |               |
| Ethyl-d <sub>5</sub> -perfluorooctane sulfonamide         | d5 EtFOSA                 | 533        |               |
| N-methyl perfluorooctane sulfonamidoethanol               | MeFOSE                    | 540        | 558           |
| Methyl-d <sub>7</sub> -perfluorooctane sulfonamidoethanol | d7 MeFOSE                 | 547        | 565           |
| N-ethyl perfluorooctane sulfonamidoethanol                | EtFOSE                    | 554        | 572           |
| Ethyl-d9-perfluorooctane sulfonamidoethanol               | d <sub>9</sub> EtFOSE     | 563        | 581           |
| N,N-dimethylperfluoro-1-octanesulfonamide                 | N,N-Me <sub>2</sub> FOSA  | 528        |               |

**Table S1.** nPFAS analytes, acronyms, and target and qualifier ions for GC/MS detection. Supplier of the compounds was Wellington Laboratories (Purity >98%).

**Table S2.** Concentrations of nPFAS sequestered on XAD-PAS (averaged duplicates with standard deviation, ng.PAS<sup>-1</sup>) deployed in San Antonio de Belen (Part 1) and Egbert (Part 2).

| Deployment:<br>Retrieval: | Oct 10, 2005<br>Feb 25, 2006 | Oct 10, 2005<br>May 19, 2006 | Oct 10, 2005<br>Jul 28, 2006 | Oct 10, 2005<br>Sept 11, 2006 | Oct 10, 2005<br>Oct 24, 2006 |
|---------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|
| <u>Compound</u>           |                              |                              |                              |                               |                              |
| 6:2 FTOH                  | 1.11 <u>+</u> 0.21           | 3.43 <u>+</u> 0.04           | 4.96 <u>+</u> 0.10           | 6.52 <u>+</u> 0.27            | 4.85 <u>+</u> 0.11           |
| 8:2 FTOH                  | 5.59 <u>+</u> 0.19           | 11.09 <u>+</u> 0.24          | 16.18 <u>+</u> 0.37          | 21.41 <u>+</u> 1.27           | 15.05 <u>+</u> 1.02          |
| 10:2 FTOH                 | 2.04 <u>+</u> 0.10           | 2.82 <u>+</u> 0.06           | 4.38 <u>+</u> 0.27           | 5.40 <u>+</u> 0.66            | 3.86 <u>+</u> 0.25           |
| MeFOSA                    | 0.25 <u>+</u> 0.00           | 0.44 <u>+</u> 0.07           | 0.63 <u>+</u> 0.01           | 0.76 <u>+</u> 0.07            | 0.58 <u>+</u> 0.02           |
| EtFOSA                    | 1.05 <u>+</u> 0.06           | 2.53 <u>+</u> 0.02           | 4.57 <u>+</u> 0.27           | 5.48 <u>+</u> 0.37            | 4.41 <u>+</u> 0.11           |
| MeFOSE                    | 0.39 <u>+</u> 0.02           | 0.58 <u>+</u> 0.03           | 0.79 <u>+</u> 0.06           | 0.92 <u>+</u> 0.13            | 0.77 <u>+</u> 0.11           |
| EtFOSE                    | 0.22 <u>+</u> 0.02           | 0.23 <u>+</u> 0.06           | 0.31 <u>+</u> 0.02           | 0.38 <u>+</u> 0.03            | 0.30 <u>+</u> 0.02           |

Part 1 San Antonio de Belen, Costa Rica

Part 2 Egbert, Ontario, Canada

| Deployment:<br>Retrieval: | Mar 1, 2006<br>Apr 25, 2006 | Mar 1, 2006<br>Jun 30, 2006 | Mar 1, 2006<br>Sept 1, 2006 | Mar 1, 2006<br>Oct 27, 2006 | Mar 1, 2006<br>Feb 28, 2007 |
|---------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| <u>Compound</u>           |                             |                             |                             |                             |                             |
| 6:2 FTOH                  | $0 \pm 0$                   | $0 \pm 0$                   | $0 \pm 0$                   | $0 \pm 0$                   | 3.1 ± 3.1                   |
| 8:2 FTOH                  | $0 \pm 0$                   | $0 \pm 0$                   | $0 \pm 0$                   | 3.9 ± 3.9                   | 10 ± 3                      |
| 10:2 FTOH                 | $0.9 \pm 0.3$               | $2.1 \pm 0.3$               | $2.5 \pm 0.4$               | $3.0 \pm 0.3$               | $3.5 \pm 0.4$               |
| MeFOSA                    | $0.0 \pm 0.0$               | $0.2 \pm 0.1$               | $0.3 \pm 0.0$               | $0.3 \pm 0.1$               | $0.3 \pm 0.0$               |
| EtFOSA                    | $0.2 \pm 0.1$               | $0.3 \pm 0.1$               | $0.5 \pm 0.1$               | $0.5 \pm 0.0$               | $0.5 \pm 0.1$               |
| MeFOSE                    | $0.2 \pm 0.1$               | $0.5 \pm 0.2$               | $0.8 \pm 0.1$               | $1.0 \pm 0.1$               | $1.0 \pm 0.2$               |

Table S3. Statistical results for the sampling uptake curves

|                                         | 8:2 FTOH             | 10:2 FTOH | MeFOSA   | EtFOSA   | MeFOSE   | EtFOSE   |  |  |  |  |
|-----------------------------------------|----------------------|-----------|----------|----------|----------|----------|--|--|--|--|
| <u>San Antonio de Belen, Costa Rica</u> |                      |           |          |          |          |          |  |  |  |  |
| p-value:                                | < 0.0001             | < 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 |          |  |  |  |  |
| <b>R</b> <sup>2</sup> :                 | 0.84                 | 0.83      | 0.87     | 0.86     | 0.89     |          |  |  |  |  |
| Egbert, Onta                            | i <u>rio, Canada</u> |           |          |          |          |          |  |  |  |  |
| p-value:                                |                      | < 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 |  |  |  |  |
| <b>R</b> <sup>2</sup> :                 |                      | 0.83      | 0.92     | 0.94     | 0.86     | 0.96     |  |  |  |  |

**Table S4.** Concentrations and method detection limits (MDL) in  $pg \cdot m^{-3}$  of selected nPFASs in active air samples (AAS) taken in Maun (Part 1), Egbert (Part 2), and San Antonio de Belen (Part 3). ND: Not detected (below the instrumental detection limit), BDL: below MDL.

| Dates    |   |          | 6:2<br>FTOH | 8:2<br>FTOH | 10:2<br>FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|----------|---|----------|-------------|-------------|--------------|--------|--------|--------|--------|
|          |   | MDL      | 0.54        | 0.20        | 0.19         | 0.05   | 0.06   | 0.42   | 0.53   |
| 07/13/06 | - | 07/14/06 | ND          | 7.1         | 1.9          | 0.09   | 0.13   | BDL    | ND     |
| 08/02/06 | - | 08/03/06 | ND          | 3.2         | 1.0          | BDL    | 0.06   | BDL    | ND     |
| 08/11/06 | - | 08/12/06 | ND          | 2.1         | 0.8          | 0.06   | BDL    | BDL    | ND     |
| 08/30/06 | - | 08/31/06 | ND          | 1.1         | 1.2          | 0.08   | 0.13   | 0.51   | ND     |
| 09/21/06 | - | 09/22/06 | ND          | 0.70        | 1.0          | 0.06   | 0.15   | 0.43   | ND     |
| 10/06/06 | - | 10/07/06 | ND          | 3.2         | 1.1          | 0.07   | 0.07   | 0.48   | ND     |
| 10/20/06 | - | 10/21/06 | ND          | 3.2         | 1.5          | 0.07   | 0.07   | 0.51   | ND     |
| 11/02/06 | - | 11/03/06 | ND          | 0.92        | 0.59         | 0.08   | 0.12   | 0.43   | ND     |
| 11/17/06 | - | 11/18/06 | ND          | 1.2         | 1.6          | 0.13   | 0.08   | BDL    | ND     |
| 12/15/06 | - | 12/16/06 | ND          | 0.55        | 1.0          | 0.09   | 0.12   | BDL    | ND     |
| 01/05/07 | - | 01/06/07 | ND          | 0.77        | 0.84         | 0.07   | 0.07   | 0.57   | ND     |
| 01/19/07 | - | 01/20/07 | ND          | 1.2         | 0.91         | 0.08   | 0.17   | BDL    | ND     |
| 01/26/07 | - | 01/27/07 | ND          | 1.0         | 0.66         | 0.09   | 0.10   | 0.47   | ND     |
| 02/08/07 | - | 02/09/07 | ND          | 1.1         | 0.83         | 0.10   | 0.11   | BDL    | ND     |
| 02/23/07 | - | 02/24/07 | ND          | 2.9         | 6.2          | 0.16   | 0.28   | 0.77   | ND     |
| 03/09/07 | - | 03/10/07 | ND          | 3.6         | 7.4          | 0.21   | 0.28   | 0.55   | ND     |
| 03/23/07 | - | 03/24/07 | ND          | 0.91        | 1.4          | 0.11   | 0.17   | 0.73   | ND     |
| 04/06/07 | - | 04/07/07 | ND          | 2.9         | 3.6          | 0.10   | 0.19   | 0.50   | ND     |
| 04/20/07 | - | 04/21/07 | ND          | 1.6         | 2.1          | 0.10   | 0.17   | BDL    | ND     |
| 05/04/07 | - | 05/05/07 | ND          | 3.6         | 5.1          | 0.11   | 0.18   | BDL    | ND     |
| 05/18/07 | - | 05/19/07 | ND          | 1.4         | 1.0          | 0.06   | 0.10   | ND     | ND     |
| 06/01/07 | - | 06/02/07 | ND          | 2.4         | 3.6          | 0.12   | 0.18   | BDL    | ND     |
| 06/15/07 | - | 06/16/07 | ND          | 2.0         | 2.6          | 0.15   | 0.30   | BDL    | ND     |
| 06/29/07 | - | 06/30/07 | ND          | 1.2         | 1.6          | 0.11   | 0.17   | BDL    | ND     |
| 07/13/07 | - | 07/14/07 | ND          | 1.7         | 1.1          | 0.09   | 0.11   | ND     | ND     |
| 07/27/07 | - | 07/28/07 | ND          | 1.8         | 1.3          | 0.08   | 0.11   | BDL    | ND     |
| 08/10/07 | - | 08/11/07 | ND          | 1.6         | 1.1          | 0.10   | 0.16   | ND     | ND     |

#### Part 1: Maun, Botswana

| Dates    |   |          | 6:2<br>FTOH | 8:2<br>FTOH | 10:2<br>FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|----------|---|----------|-------------|-------------|--------------|--------|--------|--------|--------|
|          |   | MDL      | 0.38        | 0.49        | 1.52         | 0.39   | 1.57   | 0.32   | 0.48   |
| 03/01/06 | - | 03/15/06 | ND          | ND          | ND           | ND     | ND     | ND     | ND     |
| 03/15/06 | - | 03/29/06 | ND          | ND          | ND           | ND     | ND     | ND     | ND     |
| 03/29/06 | - | 04/13/06 | ND          | ND          | ND           | ND     | ND     | ND     | ND     |
| 04/13/06 | - | 04/27/06 | ND          | ND          | ND           | ND     | ND     | ND     | ND     |
| 04/27/06 | - | 05/12/06 | ND          | ND          | 9.9          | 0.92   | 2.1    | ND     | 23     |
| 05/12/06 | - | 05/31/06 | ND          | 67          | 31           | 2.5    | ND     | 18     | 43     |
| 05/31/06 | - | 06/15/06 | ND          | 81          | 30           | 3.0    | ND     | 16     | 27     |
| 06/15/06 | - | 06/30/06 | ND          | 48          | 30           | 7.6    | 31     | 59     | 125    |
| 06/30/06 | - | 07/20/06 | ND          | 66          | 27           | 3.5    | 3.3    | 12     | 10     |
| 07/20/06 | - | 08/03/06 | ND          | 14          | 11           | 0.74   | ND     | 13     | ND     |
| 08/03/06 | - | 08/17/06 | ND          | 51          | 16           | 1.2    | ND     | 12     | 6.7    |
| 08/17/06 | - | 08/31/06 | ND          | 74          | 26           | 0.99   | 3.0    | 18     | ND     |
| 08/31/06 | - | 09/14/06 | ND          | 33          | 20           | 0.49   | ND     | 7.1    | ND     |
| 09/14/06 | - | 09/27/06 | ND          | 92          | 24           | 1.6    | ND     | 18     | ND     |
| 09/27/06 | - | 10/10/06 | ND          | 57          | 18           | ND     | ND     | 15     | ND     |
| 10/10/06 | - | 10/27/06 | ND          | 17          | 7.9          | ND     | ND     | 9.1    | ND     |
| 10/27/06 | - | 11/21/06 | ND          | 9.1         | 7.0          | ND     | ND     | 3.3    | ND     |
| 11/21/06 | - | 12/08/06 | ND          | 34          | 13           | 0.41   | ND     | ND     | ND     |
| 12/08/07 | - | 01/03/07 | ND          | 2.7         | 4.5          | ND     | ND     | 4.4    | ND     |
| 01/03/07 | - | 02/07/07 | ND          | 13          | 10           | ND     | ND     | 4.5    | 4.2    |
| 02/07/06 | - | 02/27/07 | ND          | 16          | 6.7          | ND     | ND     | 5.0    | ND     |

Part 2: Egbert, Ontario, Canada

Part 3: San Antonio de Belen, Costa Rica.

| Dates    |   |          | 6:2<br>FTOH | 8:2<br>FTOH | 10:2<br>FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|----------|---|----------|-------------|-------------|--------------|--------|--------|--------|--------|
|          |   | MDL      | 0.75        | 0.28        | 0.27         | 0.06   | 0.09   | 0.58   | 0.73   |
| 11/28/05 | - | 11/29/05 | ND          | 10          | 3.0          | 0.44   | 2.0    | 3.6    | ND     |
| 12/22/05 | - | 12/23/05 | ND          | 8.6         | 2.7          | 0.52   | 0.74   | 9.5    | ND     |
| 02/02/06 | - | 02/03/06 | ND          | 17          | 7.0          | 0.82   | 13     | 6.6    | ND     |
| 03/21/06 | - | 03/22/06 | ND          | 2.7         | 1.3          | 0.28   | 0.55   | 1.5    | ND     |
| 05/19/06 | - | 05/20/06 | ND          | 5.9         | 2.1          | 0.35   | 4.1    | 3.5    | ND     |
| 06/30/06 | - | 07/01/06 | ND          | 2.2         | 0.82         | 0.15   | 0.51   | 4.6    | ND     |
| 07/28/06 | - | 07/29/06 | ND          | 10          | 3.9          | 0.41   | 6.3    | 5.5    | ND     |
| 09/11/06 | - | 09/12/06 | ND          | 7.0         | 2.8          | 0.36   | 6.4    | 4.2    | ND     |



**Figure S1.** Seasonal variability of nPFAS concentrations during the 3 active air-sampling campaigns. Note the different scales on the y-axis. Blue shading indicates rainy seasons in Costa Rica and Botswana.

| Table S5. Results from 1-way ANOVA test for nPFAS concentrations between the three active air-sampling sites. Comparisons between sites used Tukey- |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Kramer's Multiple Comparison Test. NS = not significant.                                                                                            |

|                  | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE  |
|------------------|----------|-----------|--------|--------|---------|
| All Sites        | < 0.0001 | < 0.0001  | 0.012  | 0.070  | < 0.01  |
| Belen vs. Maun   | NS       | NS        | NS     | NS     | NS      |
| Belen vs. Egbert | < 0.01   | < 0.001   | NS     | NS     | NS      |
| Maun vs. Egbert  | < 0.001  | < 0.001   | < 0.01 | NS     | < 0.001 |

-

**Table S2**. Name, geographical coordinates (latitude, longitude), site classification (AG: Agricultural, BA: Background, PO: Polar, RU: Rural, and UR: Urban), and length of sampling period for GAPS sites that had XAD-PAS deployed between 2006 and 2010.

|                            |                          |      |              |               |      | Samp | ling Le | ngth ( | days) |      |
|----------------------------|--------------------------|------|--------------|---------------|------|------|---------|--------|-------|------|
| Country                    | Location                 | Туре | Latitude     | Longitude     | 2006 | 2007 | 2008    | 2009   | 2010  | 2011 |
| North Amer                 | ica                      |      |              |               |      |      |         |        |       |      |
| Barbados                   | Ragged Point, St. Philip | BA   | 13° 10' N    | 59° 26' W     |      |      |         | 280    |       |      |
| Bermuda                    | Tudor Hill               | BA   | 32° 22'N     | 64° 39' W     | 327  | 343  | 364     | 355    | 351   | 364  |
| Canada                     | Alert                    | РО   | 82° 7'N      | 63° 30' W     |      | 365  |         |        |       |      |
| Canada                     | Bratt's Lake             | AG   | 50° 12'N     | 104° 42' W    | 359  | 344  | 371     | 354    | 364   | 363  |
| Canada                     | Fraserdale               | BA   | 49° 53'N     | 81° 34' W     |      | 347  | 357     | 364    |       |      |
| Canada                     | Lasqueti Island          | BA   | 49° 29'N     | 124° 21'<br>W | 397  | 323  | 355     | 380    | 347   | 358  |
| Canada                     | Little Fox Lake          | РО   | 61° 21'N     | 135° 38'<br>W |      | 227  | 387     | 352    | 374   | 353  |
| Canada                     | Sable Island             | BA   | 43° N        | 60° W         |      | 368  | 377     | 355    |       |      |
| Canada                     | Toronto                  | UR   | 43° 46'N     | 79° 28' W     | 380  | 350  | 362     | 364    | 366   | 365  |
| Canada                     | Ucluelet                 | BA   | 48° 54'N     | 125° 32'<br>W |      | 292  | 375     | 368    |       |      |
| Canada                     | Whistler                 | BA   | 50° 03'N     | 122° 57'<br>W | 315  | 344  | 375     | 361    | 358   | 362  |
| Costa Rica                 | Tapanti National Park    | BA   | 9° 46'N      | 83° 47' W     | 365  | 351  | 356     | 452    | 475   |      |
| Mexico                     | Tlahuac                  | UR   | 19° 14'N     | 99° 00' W     |      | 183  | 355     |        |       |      |
| USA                        | Barrow                   | РО   | 71° 18'<br>N | 156° 44'<br>W | 367  | 359  |         | 369    | 302   | 367  |
| USA                        | Dyea                     | BA   | 59° 31'<br>N | 135° 21'<br>W | 372  | 98   | 391     | 348    | 373   |      |
| USA                        | Mauna                    | BA   | 19.54° N     | 155.58° W     |      | 325  | 362     | 364    |       |      |
| USA                        | Point Reyes              | BA   | 33° 14'N     | 122° 19'<br>W |      | 341  | 366     | 364    |       |      |
| USA                        | Sydney                   | UR   | 27° 57' N    | 82° 12' W     |      | 296  | 370     | 365    | 365   |      |
| USA                        | Tula                     | BA   | 14.24° S     | 170.57° W     |      | 299  | 341     | 364    |       |      |
| <mark>Asia</mark><br>China | Nam Co, Tibet            |      | 30° 46' N    | 90° 57' E     |      | 180  | 366     | 364    |       |      |
| India                      | Delhi Site C             | AG   | 28° 40' N    | 77° 14' E     | 317  | 319  |         |        |       |      |
| India                      | Delhi Site D             | AG   | 28° 40'N     | 77° 14' E     | 317  | 319  |         |        |       |      |
| India                      | Coimbatore               | BA   | 11° N        | 77° E         |      | 353  |         |        |       |      |
| Indonesia                  | Bukit Kototabang         | BA   | 0.20° S      | 100.32o E     | 365  | 281  | 345     | 365    | 365   | 363  |
| Korea                      | Pohang                   | RU   | 36° 0' N     | 129° 19' E    |      | 352  |         |        |       |      |
| Korea                      | Seoul                    | UR   | 37° 35' N    | 127° 10' E    |      | 346  |         |        |       |      |
| Korea                      | Gosan, Jeju Island       | BA   | 33° 24' N    | 126° 00' E    |      | 205  |         |        |       |      |
| Kuwait                     | Abdaly                   | BA   | 29° 58' N    | 47° 42' E     |      | 344  | 382     | 351    |       |      |
| Kuwait                     | Kuwait City              | UR   | 29° 34' N    | 47° 90' E     | 358  |      |         |        |       |      |
| Malaysia                   | Danum Valley             | BA   | 4° 95' N     | 117° 85' E    | 363  | 329  | 364     | 364    | 364   | 360  |
| Nepal                      | Dhulikhel                | BA   | 27° 37' N    | 75° 32' E     |      | 145  |         | 364    |       |      |
| Philippines                | Tagaytay City            | BA   | 14° 08' N    | 121° 00' E    |      | 352  | 368     | 364    |       |      |
| Philippines                | Manila                   | UR   | 14° 39' N    | 121° 04' E    | 351  |      |         |        |       |      |

|                |                                 |      |           |            | Sampling Length (days) |      |      |      |      |      |
|----------------|---------------------------------|------|-----------|------------|------------------------|------|------|------|------|------|
| Country        | Location                        | Туре | Latitude  | Longitude  | 2006                   | 2007 | 2008 | 2009 | 2010 | 2011 |
| South          |                                 |      |           | -          |                        |      |      |      |      |      |
| Australia      | Cape Grim                       | BA   | 40° 41' S | 144° 41' E | 295                    | 342  | 391  | 344  | 358  | 365  |
| Australia      | Darwin                          | RU   | 12° 22' S | 130° 51' E | 343                    | 358  | 362  | 367  | 364  | 360  |
| New<br>Zealand | Temple Basin, Arthur's Pass     | BA   | 42° 54' S | 171° 34'E  |                        |      |      | 345  |      |      |
| Colombia       | Arauca                          | RU   | 7° 00' N  | 70° 44' W  | 368                    | 290  | 624  |      | 363  |      |
| Ecuador        | Santa Cruz Island,<br>Galapagos | BA   | 0° 43' N  | 90° 17'W   |                        |      |      | 332  |      |      |
| Bolivia        | Huayna Potosi La Paz            | BA   | 16° 16' S | 68° 08' W  | 380                    |      |      |      |      |      |
| Brazil         | Puruzinho                       | UR   | 07° 22' S | 63° 03'W   |                        |      |      | 328  |      |      |
| Brazil         | St. Peter & St. Paul Rocks      | BA   | 17° 37' S | 47° 47' W  |                        |      | 369  |      |      |      |
| Brazil         | Indaiatuba                      | RU   | 23° 09' S | 47° 10' W  | 366                    | 295  | 316  |      |      |      |
| Argentina      | Bahai Blanca                    | AG   | 38° 45' S | 62° 15' W  | 326                    |      |      |      |      |      |
| Chile          | Coyhaique                       | BA   | 45°35' S  | 72° 02' W  |                        | 365  |      |      |      |      |
| Spain          | Teide, Las Palmas               | RU   | 28° 59' S | 15° 22' W  | 370                    | 275  |      |      | 370  |      |
| Egypt          | Cairo                           | RU   | 30° 08' N | 31° 37' E  | 398                    |      |      |      |      |      |
| Ghana          | Accra                           | RU   | 8° 00' N  | 2° 00' W   | 365                    |      |      |      |      |      |
| Kenya          | Mt. Kenya                       | BA   | 0.062° S  | 37.297° E  |                        |      |      | 356  |      |      |
| Botswana       | Kalahari                        | BA   | 25° 52' S | 22° 54' E  | 482                    | 250  | 366  |      |      |      |
| South Africa   | DeAar                           | BA   | 30° 40' S | 24° 00' E  | 364                    | 346  | 364  | 367  | 365  | 368  |
| South Africa   | Vanderbijlpark                  | UR   | 26.70° S  | 27.82° E   |                        |      |      | 324  |      |      |
| Europe         |                                 |      |           |            |                        |      |      |      |      |      |
| Czech Rep.     | Košetice                        | BA   | 49° 35' N | 15° 05' E  | 354                    | 347  | 369  | 365  | 363  | 360  |
| Finland        | Pallas                          | BA   | 68° 00' N | 24° 14' E  | 365                    | 351  | 362  | 370  | 359  | 359  |
| France         | Paris                           | UR   | 48° 51' N | 2° 21' E   | 321                    | 363  | 362  | 365  | 365  | 361  |
| Iceland        | Stórhöfði                       | BA   | 63° 24' N | 20° 17' W  | 361                    | 366  | 359  | 365  | 365  | 360  |
| Ireland        | Malin Head                      | BA   | 55° 23' N | 7° 22' W   | 363                    | 343  | 365  | 370  |      | 360  |
| Norway         | Ny Ålesund                      | PO   | 78° 54' N | 11° 53' E  | 272                    |      |      |      | 340  | 346  |
| Poland         | Pomlewo                         | RU   | 54° 12' N | 18° 22' E  | 365                    | 348  |      |      |      |      |
| Russia         | Danki                           | RU   | 54° 54' N | 37° 48' E  | 343                    | 355  | 367  | 361  |      |      |
| Turkey         | Izmir                           | UR   | 38° 25' N | 27° 08' E  | 372                    |      |      |      |      |      |

**Table S3.** Concentrations and method detection limits (MDL) in  $ng \cdot PAS^{-1}$  of selected neutral polyfluoroalkyl substances (nPFAS) at GAPS sites. Values were normalized to 365 days of sampling. ND = not detected (below instrument detection limit, IDL); BDL = below MDL. Questionable concentrations, which were not included in the figures and statistical analyses have \* next to the numbers. Additional sampling site information can be found in Table S1 in Shunthirasingham et al.<sup>5</sup> First sampling year (late 2004 to late 2005) not included due to loss of analytes.

| Location                    | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|-----------------------------|----------|----------|-----------|--------|--------|--------|--------|
| MDL                         | 0.43     | 0.15     | 0.14      | 0.04   | 0.04   | 0.30   | 0.29   |
| North America               |          |          |           |        |        |        |        |
| Bratt's Lake, Canada        | 0.75     | 2.13     | 0.95      | 0.26   | 0.22   | 0.66   | ND     |
| Toronto, Canada             | 2.49     | 9.85     | 7.58      | 0.51   | 0.34   | 1.03   | 0.39   |
| Whistler, Canada            | 0.89     | 3.03     | 1.08      | 0.32   | 0.16   | ND     | ND     |
| Lasqueti Island, Canada     | 0.67     | 2.06     | 0.84      | 0.23   | 0.16   | ND     | ND     |
| Barrow, USA                 | BDL      | 1.79     | 0.39      | 0.11   | 0.08   | ND     | ND     |
| Dyea, USA                   | BDL      | 36.28*   | 7.01      | 0.15   | 0.08   | ND     | ND     |
| Tudor Hill, Bermuda         | BDL      | 13.98    | 2.26      | 0.23   | 0.14   | ND     | ND     |
| Tapanti, Costa Rica         | 0.70     | 0.98     | 0.22      | 0.08   | ND     | ND     | ND     |
| Mexico, Tlahuac             | 3.35     | 14.81    | 5.15      | 0.55   | 0.45   | 1.24   | 0.59   |
| South                       |          |          |           |        |        |        |        |
| Arauca, Colombia            | ND       | 1.21     | 0.34      | 0.07   | 0.10   | ND     | ND     |
| Huayna Potosi, Bolivia      | ND       | 47.47*   | 0.60      | 0.33   | 0.67   | ND     | ND     |
| Indaiatuba, Brazil          | ND       | 9.72     | 37.05*    | 0.26   | 3.5*   | 1.11   | ND     |
| Bahia Blanca, Argentina     | 0.58     | 1.45     | 0.69      | 0.16   | 0.09   | BDL    | ND     |
| Cape Grim, Australia        | ND       | 1.03     | 0.52      | 0.13   | ND     | ND     | ND     |
| Darwin, Australia           | BDL      | 2.68     | 1.15      | 0.21   | 0.12   | 0.66   | ND     |
| Kalahari, Botswana          | ND       | 0.71     | 0.56      | BDL    | 0.05   | BDL    | BDL    |
| DeAar, South Africa         | ND       | 17.57*   | 9.38      | 0.26   | 0.16   | ND     | ND     |
| Accra, Ghana                | ND       | 2.11     | 0.73      | 0.16   | 0.14   | 0.75   | ND     |
| Teide, Canary Islands       | 0.62     | 3.66     | 1.42      | 0.31   | 0.19   | 0.85   | ND     |
| Cairo, Egypt                | ND       | 6.69     | 2.41      | 0.34   | 0.39   | 0.85   | 0.32   |
| Europe                      |          |          |           |        |        |        |        |
| Pallas, Finland             | ND       | 2.69     | 0.55      | 0.12   | 0.10   | ND     | ND     |
| Košetice, Czech Republic    | ND       | 19.59    | 11.33     | 0.46   | 0.23   | ND     | ND     |
| Pomlewo, Poland             | 2.33     | 14.11    | 7.64      | 0.30   | 0.21   | ND     | ND     |
| Izmir, Turkey               | 1.83     | 62.19    | 13.02     | 0.27   | 0.11   | ND     | ND     |
| Stórhöfði, Iceland          | ND       | 2.74     | 0.94      | 0.19   | 0.07   | ND     | ND     |
| Malin Head, Ireland         | 1.20     | 4.14     | 2.02      | 0.39   | 0.18   | 1.04   | ND     |
| Paris, France               | 5.90     | 38.64    | 20.50     | 1.46   | 0.55   | 3.84   | 1.57   |
| Danki, Russia               | 0.74     | 2.03     | 0.89      | 0.12   | 0.09   | ND     | ND     |
| Asia                        |          |          |           |        |        |        |        |
| Delhi Site C, India         | ND       | 19.03    | 5.23      | 0.26   | 0.64   | ND     | ND     |
| Delhi Site D, India         | ND       | 18.71    | 6.45      | 0.32   | 0.28   | 1.28   | ND     |
| Danum Valley, Malaysia      | ND       | 2.59     | 9.89      | 0.09   | ND     | 0.68   | ND     |
| Kuwait City, Kuwait         | ND       | 5.01     | 1.55      | 0.63   | 0.37   | 0.74   | ND     |
| Manila, The Philippines     | 2.18     | 10.13    | 3.49      | 0.20   | 0.25   | 1.04   | 0.75   |
| Bukit Kototabang, Indonesia | ND       | 1.59     | 0.47      | 0.08   | 0.07   | ND     | ND     |

Part 1 Second sampling year (late 2005 to late 2006)

| Location                    | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|-----------------------------|----------|----------|-----------|--------|--------|--------|--------|
| MDL                         | 0.25     | 0.11     | 0.05      | 0.02   | 0.02   | 0.26   | 0.24   |
| North America               |          |          |           |        |        |        |        |
| Bratt's Lake, Canada        | 0.60     | 1.22     | 0.38      | 0.05   | 0.07   | ND     | ND     |
| Toronto, Canada             | 3.15     | 9.75     | 2.88      | 0.32   | 0.25   | 0.53   | 0.32   |
| Whistler, Canada            | 0.90     | 3.14     | 0.83      | 0.10   | 0.05   | ND     | ND     |
| Lasqueti Island, Canada     | 0.93     | 2.03     | 0.40      | 0.04   | 0.02   | ND     | ND     |
| Little Fox Lake, Canada     | 1.71     | 1.44     | 0.36      | 0.03   | 0.07   | ND     | ND     |
| Sable Island, Canada        | 1.29     | 3.55     | 1.04      | 0.10   | 0.07   | ND     | ND     |
| Fraserdale, Canada          | 0.64     | 1.00     | 0.26      | 0.08   | 0.05   | ND     | ND     |
| Alert, Canada               | ND       | ND       | ND        | ND     | ND     | ND     | ND     |
| Ucluelet, Canada            | 1.49     | 1.52     | 0.29      | 0.02   | BDL    | ND     | ND     |
| Barrow, USA                 | ND       | 1.53     | 0.62      | 0.03   | ND     | ND     | ND     |
| Dyea, USA                   | 1.53     | 17.31*   | 20.41*    | 0.10   | 0.07   | ND     | ND     |
| Point Reyes, USA            | ND       | 0.47     | 0.25      | 0.04   | 0.03   | ND     | ND     |
| Mauna, USA                  | 0.96     | ND       | 0.20      | ND     | ND     | ND     | ND     |
| Tula, USA                   | 1.49     | ND       | 0.68      | BDL    | ND     | ND     | ND     |
| Sydney, USA                 | 0.97     | 5.12     | 1.30      | 0.27   | 0.17   | 0.31   | ND     |
| Tudor Hill, Bermuda         | 0.93     | 2.36     | 0.59      | 0.07   | 0.06   | BDL    | ND     |
| Tapanti, Costa Rica         | 1.16     | 0.73     | 0.18      | BDL    | 0.03   | ND     | ND     |
| Tlahuac, Mexico             | 3.29     | 7.53     | 2.30      | 0.28   | 0.22   | 0.41   | 0.27   |
| South                       |          |          |           |        |        |        |        |
| Arauca, Colombia            | 0.96     | 1.77     | 0.51      | 0.06   | ND     | BDL    | ND     |
| Coyhaique, Chile            | BDL      | 1.19     | 0.78      | 0.05   | 0.06   | BDL    | ND     |
| Indaiatuba, Brazil          | 1.80     | 4.51     | 1.72      | 0.07   | 3.24*  | BDL    | ND     |
| Cape Grim, Australia        | ND       | 0.44     | ND        | 0.02   | ND     | ND     | ND     |
| Darwin, Australia           | 0.78     | 3.45     | 0.55      | 0.06   | 0.04   | BDL    | ND     |
| Kalahari, Botswana          | ND       | 1.25     | 1.36      | 0.03   | 0.06   | ND     | ND     |
| DeAar, South Africa         | ND       | 0.52     | 0.18      | 0.05   | ND     | ND     | ND     |
| Teide, Canary Islands       | 0.76     | 2.25     | 0.63      | 0.07   | 0.07   | BDL    | ND     |
| Europe                      |          |          |           |        |        |        |        |
| Pallas, Finland             | 1.01     | 0.55     | 0.44      | 0.05   | 0.03   | ND     | ND     |
| Košetice, Czech Republic    | 1.93     | 21.56*   | 1.59      | 0.16   | 0.08   | ND     | ND     |
| Ny Ålesund, Norway          | 1.59     | 1.13     | 0.27      | 0.03   | ND     | ND     | ND     |
| Pomlewo, Poland             | 1.11     | 0.76     | 1.44      | 0.10   | 0.07   | ND     | ND     |
| Stórhöfði, Iceland          | 0.52     | 0.80     | 0.45      | 0.04   | 0.04   | ND     | ND     |
| Malin Head, Ireland         | 0.64     | 1.06     | 0.55      | 0.05   | 0.04   | BDL    | ND     |
| Paris, France               | 2.23     | 16.98    | 7.66      | 0.47   | 0.27   | 1.33   | 0.53   |
| Danki, Russia               | 1.03     | 2.02     | 0.77      | 0.06   | ND     | ND     | ND     |
| Asia                        |          |          |           |        |        |        |        |
| Delhi Site C, India         | ND       | 10.21    | 3.12      | 0.16   | 0.21   | 0.37   | 0.26   |
| Delhi Site D, India         | ND       | 14.90    | 2.14      | 0.10   | 0.19   | 0.27   | BDL    |
| Coimbatore, India           | ND       | 2.23     | 0.79      | 0.03   | 0.20   | ND     | ND     |
| Dhulikhel, Nepal            | ND       | 0.84     | 0.37      | 0.11   | ND     | 0.29   | ND     |
| Danum Valley, Malaysia      | 0.56     | 2.20     | 0.30      | BDL    | ND     | ND     | ND     |
| Abdaly, Kuwait              | BDL      | 0.90     | 0.57      | 0.06   | 0.11   | ND     | ND     |
| Tagaytay City, Philippines  | ND       | 1.12     | 0.63      | 0.04   | 0.07   | ND     | ND     |
| Bukit Kototabang, Indonesia | 2.08     | 1.51     | 0.42      | BDL    | ND     | ND     | ND     |

Part 2 Third sampling year (late 2006 to late 2007)

# Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts This journal is © The Royal Society of Chemistry 2013

| Pohang, Korea        | 2.00 | 21.19 | 8.33  | 0.14 | 0.26 | BDL  | BDL  |
|----------------------|------|-------|-------|------|------|------|------|
| Seoul, Korea         | 3.70 | 31.06 | 14.00 | 1.03 | 0.70 | 2.05 | 1.12 |
| Gosan, Korea         | 1.21 | 14.30 | 1.67  | 0.05 | 0.04 | ND   | ND   |
| Nam Co, Tibet, China | 1.95 | 3.93  | 1.11  | BDL  | ND   | ND   | ND   |

| Location                    | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|-----------------------------|----------|----------|-----------|--------|--------|--------|--------|
| MDL                         | 0.33     | 0.16     | 0.08      | 0.02   | 0.02   | 0.19   | 0.33   |
| North America               |          |          |           |        |        |        |        |
| Bratt's Lake, Canada        | 1.40     | 0.44     | 0.09      | ND     | ND     | ND     | ND     |
| Toronto, Canada             | 2.26     | 6.41     | 2.30      | 0.38   | 0.25   | 0.54   | ND     |
| Whistler, Canada            | ND       | 1.18     | 0.32      | ND     | ND     | ND     | ND     |
| Lasqueti Island, Canada     | 0.51     | 0.74     | 0.09      | ND     | ND     | ND     | ND     |
| Little Fox Lake, Canada     | ND       | 0.89     | ND        | ND     | ND     | ND     | ND     |
| Sable Island, Canada        | 0.67     | 4.20     | 0.87      | ND     | 0.07   | ND     | ND     |
| Fraserdale, Canada          | BDL      | 0.88     | BDL       | ND     | 0.09   | ND     | ND     |
| Ucluelet, Canada            | ND       | 0.49     | 0.34      | ND     | 0.05   | 0.92   | 0.46   |
| Dyea, USA                   | ND       | 0.45     | BDL       | ND     | ND     | ND     | ND     |
| Point Reyes, USA            | ND       | 1.91     | 0.86      | ND     | ND     | ND     | 0.34   |
| Mauna, USA                  | 0.35     | 0.98     | BDL       | ND     | ND     | ND     | ND     |
| Tula, USA                   | ND       | ND       | 0.85      | ND     | ND     | ND     | ND     |
| Sydney, USA                 | 1.01     | 3.65     | 1.20      | 0.35   | 0.17   | ND     | ND     |
| Tudor Hill, Bermuda         | ND       | 1.83     | 0.93      | ND     | 0.06   | ND     | ND     |
| Tapanti, Costa Rica         | ND       | ND       | 0.18      | ND     | ND     | ND     | ND     |
| South                       |          |          |           |        |        |        |        |
| Arauca, Colombia            | BDL      | 2.06     | 1.19      | ND     | ND     | 2.09   | 2.04   |
| Indaiatuba, Brazil          | ND       | 3.10     | 1.45      | ND     | 3.33   | ND     | ND     |
| St. Peter, Brazil           | ND       | ND       | 1.38      | ND     | 2.24   | ND     | ND     |
| Cape Grim, Australia        | ND       | ND       | 0.28      | ND     | ND     | ND     | ND     |
| Darwin, Australia           | ND       | 1.22     | 0.46      | ND     | ND     | ND     | ND     |
| Kalahari, Botswana          | ND       | 0.28     | 0.11      | 0.05   | ND     | ND     | ND     |
| DeAar, South Africa         | ND       | 1.15     | 0.83      | ND     | ND     | ND     | ND     |
| Europe                      |          |          |           |        |        |        |        |
| Pallas, Finland             | ND       | 13.52*   | BDL       | ND     | ND     | ND     | ND     |
| Košetice, Czech Republic    | 2.16     | 5.94     | 1.74      | ND     | ND     | ND     | ND     |
| Stórhöfði, Iceland          | ND       | 0.63     | 0.60      | ND     | ND     | ND     | ND     |
| Malin Head, Ireland         | BDL      | 1.31     | 0.16      | ND     | ND     | ND     | ND     |
| Paris, France               | 0.67     | 17.10    | 6.46      | 0.62   | 0.24   | 1.38   | 0.55   |
| Danki, Russia               | 0.57     | 1.63     | 0.39      | ND     | ND     | ND     | ND     |
| Asia                        |          |          |           |        |        |        |        |
| Danum Valley, Malaysia      | 1.90     | 2.49     | 0.96      | ND     | ND     | ND     | ND     |
| Abdaly, Kuwait              | 2.42     | 6.83     | 1.04      | 0.19   | 0.11   | 2.18   | 1.96   |
| Tagaytay City, Philippines  | ND       | 0.94     | 0.48      | ND     | 0.09   | ND     | ND     |
| Bukit Kototabang, Indonesia | ND       | ND       | ND        | ND     | ND     | ND     | ND     |
| Nam Co, Tibet, China        | ND       | ND       | 0.71      | ND     | ND     | ND     | ND     |
|                             | _        |          |           |        |        |        |        |

| Dart 2 | Fourth sampling year | (late 2007 to late 2008) | ) |
|--------|----------------------|--------------------------|---|
| runs   | rourun sampning year | [IULE 2007 LO IULE 2000] | I |

Part 4 Fifth sampling year (late 2008 to late 2009)

| Location |     | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|----------|-----|----------|----------|-----------|--------|--------|--------|--------|
|          | MDL | 0.41*    | 0.42     | 0.18      | 0.12   | 0.043* | 0.17*  | 0.21*  |

| North America                |       |        |        |      |       |      |      |
|------------------------------|-------|--------|--------|------|-------|------|------|
| Bratt's Lake, Canada         | 0.80  | 1.65   | 0.19   | ND   | BDL   | ND   | ND   |
| Whistler, Canada             | BDL   | 4.29   | 1.36   | ND   | 0.05  | ND   | ND   |
| Lasqueti Island, Canada      | 0.58  | 1.23   | BDL    | ND   | ND    | ND   | ND   |
| Little Fox Lake, Canada      | BDL   | 2.50   | BDL    | ND   | BDL   | ND   | ND   |
| Sable Island, Canada         | 2.72  | 6.05   | 2.02   | 0.13 | BDL   | BDL  | ND   |
| Ucluelet, Canada             | 0.53  | 1.61   | 0.27   | ND   | ND    | ND   | ND   |
| Barrow, USA                  | 0.59  | 2.12   | 0.22   | ND   | ND    | ND   | ND   |
| Dyea, USA                    | BDL   | 1.53   | BDL    | ND   | ND    | ND   | ND   |
| Point Reyes, USA             | 0.88  | 1.32   | 0.19   | ND   | BDL   | ND   | ND   |
| Mauna, USA                   | ND    | BDL    | BDL    | ND   | BDL   | ND   | ND   |
| Tula, USA                    | ND    | 73.29* | 7.27   | ND   | ND    | 0.30 | ND   |
| Sydney, USA                  | 3.16  | 9.96   | 3.44   | 0.36 | 0.33  | ND   | BDL  |
| Tudor Hill, Bermuda          | 0.88  | 3.74   | 1.00   | ND   | 0.05  | ND   | ND   |
| Tapanti, Costa Rica          | 0.81  | BDL    | ND     | ND   | 0.06  | ND   | ND   |
| Ragged Point, California     | 0.62  | 0.61   | BDL    | ND   | ND    | ND   | ND   |
| South                        |       |        |        |      |       |      |      |
| Galapagos, Ecuador           | ND    | ND     | ND     | ND   | ND    | ND   | ND   |
| Puruzinho, Brazil            | BDL   | 7.88   | 2.60   | ND   | 0.17  | ND   | ND   |
| Cape Grim, Australia         | BDL   | 0.66   | BDL    | ND   | ND    | ND   | ND   |
| Darwin, Australia            | 0.90  | 5.75   | 1.46   | ND   | 0.13  | BDL  | ND   |
| Temple Basin, New Zealand    | ND    | 1.65   | 0.26   | ND   | ND    | ND   | ND   |
| Vanderbijlpark, South Africa | 0.97  | 3.66   | 1.15   | 0.17 | 0.13  | 0.25 | ND   |
| DeAar, South Africa          | ND    | 0.74   | 0.29   | ND   | ND    | ND   | ND   |
| Mount Kenya, Kenya           | ND    | BDL    | ND     | ND   | ND    | ND   | ND   |
| Europe                       |       |        |        |      |       |      |      |
| Pallas, Finland              | ND    | 1.53   | 0.31   | ND   | BDL   | ND   | ND   |
| Košetice, Czech Republic     | 5.47* | 10.92  | 3.30   | BDL  | 0.11  | 0.25 | ND   |
| Stórhöfði, Iceland           | 1.04  | 2.17   | 0.77   | ND   | ND    | ND   | ND   |
| Malin Head, Ireland          | 1.22  | 3.28   | 1.00   | ND   | BDL   | ND   | ND   |
| Paris, France                | 8.33  | 28.22  | 12.60  | 0.67 | 0.41  | 1.61 | 0.44 |
| Danki, Russia                | BDL   | 1.82   | 0.35   | ND   | ND    | ND   | ND   |
| Asia                         |       |        |        |      |       |      |      |
| Dhulikhel, Nepal             | ND    | 19.88* | 14.97* | ND   | BDL   | ND   | BDL  |
| Danum Valley, Malaysia       | ND    | ND     | ND     | ND   | ND    | ND   | ND   |
| Tagaytay City, Philippines   | ND    | 25.46* | 4.53   | ND   | 0.06  | 0.26 | ND   |
| Bukit Kototabang, Indonesia  | ND    | 21.26* | 6.12   | ND   | ND    | ND   | BDL  |
| Nam Co, Tibet, China         | ND    | BDL    | BDL    | ND   | 0.44* | ND   | ND   |

Part 5 Sixth sampling year (late 2009 to late 2010)

| Location                |     | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|-------------------------|-----|----------|----------|-----------|--------|--------|--------|--------|
|                         | MDL | 0.89*    | 0.11     | 0.058     | 0.015  | 0.035  | 0.099* | 0.15*  |
| North America           |     |          |          |           |        |        |        |        |
| Bratt's Lake, Canada    |     | BDL      | 1.05     | 0.32      | ND     | BDL    | ND     | ND     |
| Toronto, Canada         |     | 1.92     | 5.33     | 6.43      | 0.23   | 0.24   | 0.24   | 0.20   |
| Whistler, Canada        |     | BDL      | 11.49    | 1.35      | ND     | BDL    | ND     | ND     |
| Lasqueti Island, Canada |     | ND       | 1.38     | 0.33      | ND     | ND     | ND     | ND     |
| Little Fox Lake, Canada |     | ND       | 1.56     | 0.23      | ND     | BDL    | ND     | ND     |
| Barrow, USA             |     | ND       | 2.52     | 0.37      | ND     | BDL    | ND     | BDL    |

| Dyea, USA                   | ND    | 3.17  | 0.50 | ND   | BDL  | BDL  | ND   |
|-----------------------------|-------|-------|------|------|------|------|------|
| Sydney, USA                 | 3.93  | 7.56  | 2.58 | ND   | 0.24 | 0.10 | BDL  |
| Tudor Hill, Bermuda         | BDL   | 2.05  | 0.55 | ND   | BDL  | ND   | BDL  |
| Tapanti, Costa Rica         | ND    | 0.45  | 0.07 | ND   | BDL  | 0.13 | ND   |
| South                       |       |       |      |      |      |      |      |
| Arauca, Colombia            | 1.05  | 1.44  | 0.43 | ND   | 0.14 | 0.11 | BDL  |
| Cape Grim, Australia        | ND    | 0.24  | 0.12 | ND   | ND   | ND   | ND   |
| Darwin, Australia           | ND    | 4.30  | 1.39 | ND   | 0.06 | BDL  | ND   |
| DeAar, South Africa         | ND    | 1.23  | 0.28 | ND   | BDL  | BDL  | BDL  |
| Teide, Canary Islands       | 1.09  | 5.68  | 1.87 | ND   | 0.15 | 0.41 | BDL  |
| Europe                      |       |       |      |      |      |      |      |
| Pallas, Finland             | ND    | 2.64  | 0.55 | ND   | BDL  | ND   | ND   |
| Košetice, Czech Republic    | 5.13* | 8.75  | 2.70 | 0.06 | 0.09 | ND   | ND   |
| Ny Ålesund, Norway          | 0.99  | 2.05  | 0.40 | ND   | ND   | ND   | ND   |
| Stórhöfði, Iceland          | ND    | 5.51  | 0.59 | ND   | ND   | ND   | ND   |
| Paris, France               | 3.25  | 17.72 | 6.38 | 0.33 | 0.21 | 0.64 | 0.20 |
| Asia                        |       |       |      |      |      |      |      |
| Danum Valley, Malaysia      | ND    | 0.52  | 0.24 | ND   | BDL  | ND   | ND   |
| Bukit Kototabang, Indonesia | ND    | 0.91  | 1.43 | ND   | BDL  | ND   | ND   |

Part 6 Seventh sampling year (late 2010 to late 2011)

| Location                    | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|-----------------------------|----------|----------|-----------|--------|--------|--------|--------|
| MDL                         | 1.24     | 0.89     | 0.26      | 0.26   | 0.08   | 0.07   | 0.58   |
| North America               |          |          |           |        |        |        |        |
| Bratt's Lake, Canada        | BDL      | 1.88     | BDL       | ND     | BDL    | ND     | BDL    |
| Toronto, Canada             | 17.04*   | 21.09    | 5.89      | 0.30   | 0.32   | 0.31   | BDL    |
| Whistler, Canada            | ND       | 7.63     | 1.60      | ND     | ND     | BDL    | BDL    |
| Lasqueti Island, Canada     | 2.30     | 3.73     | 0.47      | ND     | 0.17   | BDL    | BDL    |
| Barrow, USA                 | BDL      | 1.83     | 0.41      | ND     | BDL    | BDL    | BDL    |
| Tudor Hill, Bermuda         | 1.77     | 2.17     | 0.60      | ND     | 0.14   | BDL    | BDL    |
| South                       |          |          |           |        |        |        |        |
| Cape Grim, Australia        | BDL      | BDL      | BDL       | ND     | 0.13   | ND     | BDL    |
| Darwin, Australia           | 2.12     | 10.67    | 2.31      | BDL    | BDL    | 0.13   | BDL    |
| DeAar, South Africa         | BDL      | BDL      | 0.74      | ND     | BDL    | 0.09   | BDL    |
| Europe                      |          |          |           |        |        |        |        |
| Pallas, Finland             | 1.47     | 2.09     | 0.47      | ND     | BDL    | BDL    | BDL    |
| Košetice, Czech Republic    | 5.59     | 10.65    | 3.44      | BDL    | 0.09   | ND     | BDL    |
| Ny Ålesund, Norway          | BDL      | 2.35     | 0.39      | ND     | BDL    | BDL    | BDL    |
| Stórhöfði, Iceland          | 1.72     | 2.59     | 0.53      | ND     | BDL    | BDL    | BDL    |
| Malin Head, Ireland         | 2.91     | 4.33     | 1.02      | ND     | BDL    | BDL    | BDL    |
| Paris, France               | 14.12    | 48.19    | 15.81     | 0.73   | 0.36   | 1.21   | BDL    |
| Asia                        |          |          |           |        |        |        |        |
| Danum Valley, Malaysia      | BDL      | 4.25     | ND        | 7.48*  | 0.58   | 0.08   | BDL    |
| Bukit Kototabang, Indonesia | ND       | 1.42     | 0.31      | ND     | BDL    | BDL    | BDL    |

|      | # of Sites | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|------|------------|----------|----------|-----------|--------|--------|--------|--------|
| 2006 | 34         | 41       | 100      | 100       | 97     | 91     | 41     | 15     |
| 2007 | 46         | 72       | 93       | 96        | 85     | 70     | 17     | 11     |
| 2008 | 33         | 33       | 82       | 82        | 15     | 33     | 15     | 15     |
| 2009 | 34         | 16       | 28       | 23        | 4      | 11     | 5      | 1      |
| 2010 | 22         | 32       | 100      | 100       | 14     | 32     | 27     | 9      |
| 2011 | 17         | 53       | 88       | 82        | 18     | 41     | 29     | 0      |

Table S4. Percentage of individual nPFAS detected per year with number of sites for that year.



Figure S2. Relative abundance of nPFAS on a global scale.



Figure S3. Temporal trends (2006-2011) of nPFASs in XAD-PAS at the 13 sites that were consistently part of the GAPS program.

| Table S5. Res           | <b>Table S5.</b> Results from 1-way ANOVA test investigating the differences in concentrations between site types. |          |              |                |        |          |        |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|----------|--------------|----------------|--------|----------|--------|--|--|--|
|                         | 6:2 FTOH                                                                                                           | 8:2 FTOH | 10:2 FTOH    | MeFOSA         | EtFOSA | MeFOSE   | EtFOSE |  |  |  |
| p-value:                | 0.00020                                                                                                            | < 0.0001 | < 0.0001     | 0.0003         | 0.025  | < 0.0001 | 0.029  |  |  |  |
| <b>R</b> <sup>2</sup> : | 0.26                                                                                                               | 0.32     | 0.34         | 0.25           | 0.12   | 0.37     | 0.13   |  |  |  |
|                         |                                                                                                                    |          | Arithmetic M | eans [ng.PAS-1 | ]      |          |        |  |  |  |
| Polar                   | 0.61                                                                                                               | 1.5      | 0.24         | 0.045          | 0.02   | 0.09     | 0.13   |  |  |  |
| Remote                  | 0.66                                                                                                               | 3.0      | 1.2          | 0.10           | 0.13   | 0.19     | 0.17   |  |  |  |
| Urban                   | 2.1                                                                                                                | 16       | 5.2          | 0.38           | 0.55   | 0.75     | 0.34   |  |  |  |

**Table S6.** 1-way randomized block design ANOVA result for the concentrations of individual nPFAS between years 2006-2011. P-values <0.05 suggest nPFAS concentrations are significantly different between sampling years. Between two years, used post-test to compare statistically significance within the five years of sampling (post-test using Tukey-Kramer's Multiple Comparison Test.). NS = not significant.

| Location      | Ye              | ar             | p-values and post-test |              |              |                    |              |               |               |  |
|---------------|-----------------|----------------|------------------------|--------------|--------------|--------------------|--------------|---------------|---------------|--|
|               | From            | То             | 6:2 FTOH               | 8:2 FTOH     | 10:2 FTOH    | MeFOSA             | EtFOSA       | MeFOSE        | EtFOSE        |  |
|               |                 |                |                        |              |              |                    |              |               |               |  |
| North America | <u>All five</u> | <u>e years</u> | <u>0.31</u>            | <u>0.036</u> | <u>0.053</u> | <u>&lt; 0.0001</u> | <u>0.011</u> | <u>0.0025</u> | <u>0.0003</u> |  |
|               | 2006            | 2007           | NS                     | NS           | < 0.05       | < 0.01             | < 0.05       | < 0.05        | NS            |  |
|               |                 | 2008           | NS                     | NS           | < 0.05       | < 0.001            | < 0.05       | < 0.05        | NS            |  |
|               |                 | 2009           | NS                     | NS           | NS           | < 0.001            | < 0.05       | < 0.01        | < 0.05        |  |
|               |                 | 2010           | NS                     | NS           | NS           | < 0.001            | NS           | < 0.01        | < 0.05        |  |
|               |                 | 2011           | NS                     | NS           | NS           | NS                 | NS           | < 0.01        | NS            |  |
|               | 2007            | 2008           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2009           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2008            | 2009           | NS                     | NS           | NS           | NS                 | NS           | NS            | < 0.05        |  |
|               |                 | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | < 0.01        |  |
|               |                 | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2009            | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2010            | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
| South         | <u>All five</u> | e years        | <u>0.0075</u>          | <u>0.58</u>  | <u>0.66</u>  | <u>&lt; 0.0001</u> | <u>0.16</u>  | <u>0.25</u>   | <u>0.2</u>    |  |
|               | 2006            | 2007           | NS                     | NS           | NS           | < 0.001            | NS           | NS            | NS            |  |
|               |                 | 2008           | NS                     | NS           | NS           | < 0.001            | NS           | NS            | NS            |  |
|               |                 | 2009           | NS                     | NS           | NS           | < 0.001            | NS           | NS            | NS            |  |
|               |                 | 2010           | NS                     | NS           | NS           | < 0.001            | NS           | NS            | NS            |  |
|               |                 | 2011           | < 0.01                 | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2007            | 2008           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2009           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2008            | 2009           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2011           | < 0.01                 | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2009            | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2011           | < 0.05                 | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               | 2010            | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
| Europe        | <u>All five</u> | e years        | <u>0.17</u>            | <u>0.38</u>  | <u>0.24</u>  | <u>0.22</u>        | 0.27         | <u>0.72</u>   | <u>0.74</u>   |  |
|               | 2006            | 2007           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2008           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2009           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2010           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |
|               |                 | 2011           | NS                     | NS           | NS           | NS                 | NS           | NS            | NS            |  |

|         | 2007            | 2008         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|---------|-----------------|--------------|--------------------|---------------|---------------|---------------|-------------|---------------|---------------|
|         |                 | 2009         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2010         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         | 2008            | 2009         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2010         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         | 2009            | 2010         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         | 2010            | 2011         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
| Asia    | <u>All five</u> | <u>years</u> | <u>0.56</u>        | <u>0.36</u>   | <u>0.41</u>   | <u>0.33</u>   | <u>0.18</u> | <u>0.71</u>   | <u>0.56</u>   |
|         | 2006            | 2007         | NS                 | NS            | NS            | N/A           | NS          | N/A           | NS            |
|         |                 | 2008         | NS                 | NS            | NS            | N/A           | NS          | N/A           | NS            |
|         |                 | 2009         | NS                 | NS            | NS            | N/A           | NS          | N/A           | NS            |
|         |                 | 2010         | NS                 | NS            | NS            | N/A           | NS          | N/A           | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | N/A           | NS          | N/A           | NS            |
|         | 2007            | 2008         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         |                 | 2009         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         |                 | 2010         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         | 2008            | 2009         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         |                 | 2010         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         | 2009            | 2010         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         |                 | 2011         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
|         | 2010            | 2011         | NS                 | NS            | NS            | N/A           | NS          | NS            | NS            |
| Overall | <u>All five</u> | <u>years</u> | <u>&lt; 0.0001</u> | <u>0.0097</u> | <u>0.0012</u> | <u>0.0095</u> | <u>0.18</u> | <u>0.0009</u> | <u>0.0085</u> |
|         | 2006            | 2007         | NS                 | NS            | < 0.01        | NS            | NS          | < 0.05        | NS            |
|         |                 | 2008         | NS                 | < 0.01        | < 0.001       | NS            | NS          | NS            | NS            |
|         |                 | 2009         | NS                 | NS            | < 0.05        | NS            | NS          | < 0.01        | NS            |
|         |                 | 2010         | NS                 | NS            | < 0.05        | NS            | NS          | < 0.01        | NS            |
|         |                 | 2011         | < 0.001            | NS            | NS            | NS            | NS          | < 0.05        | NS            |
|         | 2007            | 2008         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2009         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2010         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2011         | < 0.001            | NS            | NS            | < 0.05        | NS          | NS            | NS            |
|         | 2008            | 2009         | NS                 | NS            | NS            | NS            | NS          | NS            | < 0.05        |
|         |                 | 2010         | NS                 | NS            | NS            | NS            | NS          | NS            | < 0.05        |
|         |                 | 2011         | < 0.001            | NS            | NS            | < 0.05        | NS          | NS            | NS            |
|         | 2009            | 2010         | NS                 | NS            | NS            | NS            | NS          | NS            | NS            |
|         |                 | 2011         | < 0.001            | NS            | NS            | < 0.05        | NS          | NS            | NS            |
|         |                 | 2011         | . 01001            | 110           | 110           | 0100          |             | 110           | 115           |





**Figure S4.** Pearson Correlation between the concentrations of the nPFASs in XAD-PAS and the pertingency index of the sampling site, which expresses the proximity to people. In the case of the plot for sum of nPFAS, levels below the IDL were assigned values between 1/3-2/3 of IDL, which adds uncertainty to this regression.

# **Regional Differences in nPFAS Levels**

**Figure S3** compares the levels of the seven analytes in four world regions. Given that nPFAS levels were correlated with proximity to people, sites are separated based on region and site type (remote vs. urban). Because of their limited number, the urban sites can hardly be considered representative for all urban areas in a region. Polar sites were not included in this analysis at all because of their small number. At the remote sites, the order of total nPFAS concentrations from lowest to highest generally is: South  $\leq$  North America < Europe < Asia. Lower nPFAS levels in the southern hemisphere might be expected, considering that use of nPFAS is much lower.<sup>24</sup> On the other hand, Asian countries, namely China, still manufacture PFOS and its derivatives, including perfluorooctane sulfonyl fluoride.<sup>25</sup> However, statistically, none of the differences between the four regions is significant (Table S11).

Pearson correlation statistics of individual compounds was conducted for the global environment and also for the four regions (Table S12). It was suggested previously that correlations between compounds imply similar sources and fates.<sup>26,27</sup> In North America, correlations were highly significant (R>0.61, p<0.01) for all compounds, in Asia and Europe, approximately half of the compounds correlate with one another, whereas in the South correlations between the nPFASs were weakest. Aside from EtFOSA, all the compounds were correlated with one another on a global scale. As the emissions of all of the analytes are concentrated in urban areas, the correlations are likely just another indication that sites with high PI have elevated nPFAS levels.

At a regional scale (Figure S6), both North America and Europe showed a remarkable nPFAS decrease between 2006 and 2007. After 2007, levels increase again, although not as high as those measured in 2006. Ahrens et al.<sup>28</sup> have observed an increase in FTOH amounts in the Canadian Archipelago between 2005 and 2007/2008. Interestingly, efforts since 2005 have been made to reduce fluorotelomer-based residuals in Canada<sup>29</sup> and the United States <sup>30</sup>. However, due to long product lifetimes, it will take some time for households to switch to newer products that contain fewer FTOH residuals.<sup>31</sup> Levels of all FTOHs in the South have remained steady, whereas in Asia, FTOH levels have been declining, although not significantly.

As for the FOSAs and FOSEs, there are no observable declines, aside from North America where after 2006 levels have dropped significantly (p<0.05, Table S9). The phase-out of perfluorooctane sulfonates and related compounds<sup>25</sup> occurred already in 2000-2002 in most parts of the world (aside from China<sup>25</sup> and Brazil<sup>32</sup>). It thus comes as no surprise that the FOSA and FOSE concentrations are near detection limits and show no significant decline during the period of sampling.



**Figure S5**. Box and whiskers plots for nPFAS separated according to the four major world regions and proximity to emissions (i.e. "remote" and "urban"). Polar sites were not included due to their small number.



Figure S6. Temporal trends (2006-2011) of nPFASs in XAD-PAS across the four global regions.

**Table S7.** 1-way ANOVA on nPFAS concentrations based on region. This analysis only considered sampling sites located in remote locations.

|                                          | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA | EtFOSA | MeFOSE | EtFOSE |
|------------------------------------------|----------|----------|-----------|--------|--------|--------|--------|
| p-value:                                 | 0.0026   | 0.12     | 0.14      | 0.31   | 0.24   | 0.36   | 0.59   |
| R <sup>2</sup> :                         | 0.30     | 0.14     | 0.13      | 0.084  | 0.099  | 0.076  | 0.046  |
| North America vs. South                  | NS       | NS       | NS        | NS     | NS     | NS     | NS     |
| North America vs. Europe                 | < 0.05   | NS       | NS        | NS     | NS     | NS     | NS     |
| North America vs. Asia                   | NS       | NS       | NS        | NS     | NS     | NS     | NS     |
| South vs. Europe                         | < 0.01   | NS       | NS        | NS     | NS     | NS     | NS     |
| South vs. Asia                           | NS       | NS       | NS        | NS     | NS     | NS     | NS     |
| Europe vs. Asia                          | NS       | NS       | NS        | NS     | NS     | NS     | NS     |
| Arithmetic Means [ng.PAS <sup>-1</sup> ] |          |          |           |        |        |        |        |
| North America                            | 0.69     | 1.9      | 0.79      | 0.054  | 0.045  | 0.13   | 0.14   |
| South                                    | 0.37     | 2.1      | 0.92      | 0.081  | 0.45   | 0.24   | 0.16   |
| Europe                                   | 1.4      | 4.7      | 1.9       | 0.11   | 0.065  | 0.13   | 0.16   |
| Asia                                     | 0.76     | 5.4      | 2.0       | 0.060  | 0.093  | 0.25   | 0.23   |

| <b>Table S8.</b> nPFAS correlations | (Pearson, r) among all samples in | the global environment and region | on, where <i>P</i> <0.05, <i>P</i> <0.01, |
|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------|
| and <i>P</i> <0.0001.               |                                   |                                   |                                           |

|          |           | 6:2 FTOH | 8:2 FTOH | 10:2 FTOH | MeFOSA      | EtFOSA | MeFOSE |
|----------|-----------|----------|----------|-----------|-------------|--------|--------|
| Global   | 6:2 FTOH  |          | -        |           |             |        |        |
| (all 4   |           | 0.57     |          |           |             |        |        |
| regions) | 8:2 FTOH  | 0.37     |          |           |             |        |        |
|          | 10:2 FTOH | 0.71     | 0.90     |           |             |        |        |
|          | MeFOSA    | 0.66     | 0.58     | 0.72      |             |        |        |
|          | EtFOSA    | 0.05     | 0.09     | 0.13      | 0.18        |        |        |
|          | MeFOSE    | 0.60     | 0.41     | 0.59      | 0.82        | 0.18   |        |
|          | EtFOSE    | 0.55     | 0.34     | 0.49      | 0.59        | 0.12   | 0.85   |
| North    |           |          |          |           |             |        |        |
| America  | 6:2 FTOH  |          |          |           |             |        |        |
|          | 8:2 FTOH  | 0.91     |          |           |             |        |        |
|          | 10:2 FTOH | 0.77     | 0.79     |           |             |        |        |
|          | MeFOSA    | 0.94     | 0.95     | 0.79      |             |        |        |
|          | EtFOSA    | 0.95     | 0.93     | 0.78      | 0.99        |        |        |
|          | MeFOSE    | 0.82     | 0.76     | 0.72      | 0.83        | 0.83   |        |
|          | EtFOSE    | 0.69     | 0.66     | 0.58      | 0.71        | 0.69   | 0.91   |
| South    | 6:2 FTOH  |          |          |           |             |        |        |
|          | 8:2 FTOH  | 0.27     |          |           |             |        |        |
|          | 10:2 FTOH | 0.07     | 0.77     |           |             |        |        |
|          | MeFOSA    | 0.15     | 0.44     | 0.25      |             |        |        |
|          | EtFOSA    | 0.13     | 0.21     | 0.28      | 0.05        |        |        |
|          | MeFOSE    | 0.30     | 0.39     | 0.26      | 0.57        | 0.08   |        |
|          | EtFOSE    | 0.07     | -0.19    | -0.11     | -0.04       | 0.08   | 0.51   |
| Europe   | 6:2 FTOH  |          |          |           |             |        |        |
|          | 8:2 FTOH  | 0.39     |          |           |             |        |        |
|          | 10:2 FTOH | 0.68     | 0.92     |           |             |        |        |
|          | MeFOSA    | 0.91     | 0.54     | 0.81      |             |        |        |
|          | EtFOSA    | 0.92     | 0.45     | 0.76      | 0.98        |        |        |
|          | MeFOSE    | 0.86     | 0.27     | 0.57      | 0.94        | 0.91   |        |
|          | EtFOSE    | 0.87     | 0.30     | 0.60      | <i>0.95</i> | 0.92   | 1.00   |
| Asia     | 6:2 FTOH  |          |          |           |             |        |        |
|          | 8:2 FTOH  | 0.72     |          |           |             |        |        |
|          | 10:2 FTOH | 0.79     | 0.91     |           |             |        |        |
|          | MeFOSA    | 0.61     | 0.66     | 0.74      |             |        |        |
|          | EtFOSA    | 0.55     | 0.77     | 0.81      | 0.88        |        |        |
|          | MeFOSE    | 0.72     | 0.59     | 0.66      | 0.82        | 0.72   |        |
|          | EtFOSE    | 0.78     | 0.45     | 0.53      | 0.56        | 0.51   | 0.88   |

**Table S9.** Average concentrations of nPFAS in duplicate XAD-PAS [ng.PAS<sup>-1</sup>] deployed across Costa Rica (Part 1) and Botswana (Part 2). Samples were normalized to 365 days of sampling. MDL = method detection limit; ND = not detected (below instrumental detection limit); BDL = below MDL. Additional sample site information for Botswana can be found in Table S1 in Shunthirasingham et al.<sup>1</sup>.

| City       | Sampling<br>Length |     | 6:2 FTOH          | 8:2 FTOH            | 10:2 FTOH           | MeFOSA              | EtFOSA              | MeFOSE              | EtFOSE              |
|------------|--------------------|-----|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|            | days               | MDL | 0.33              | 1.97                | 0.74                | .029                | 0.029               | 0.34                | 0.33                |
| Santa Rosa | 379                |     | ND                | 0.70 <u>+</u> 0.020 | 0.11 <u>+</u> 0.080 | ND                  | ND                  | ND                  | ND                  |
| Palo Verde | 379                |     | ND                | 0.17 <u>+</u> 0.12  | 0.14 <u>+</u> 0.10  | ND                  | 0.12 <u>+</u> 0.010 | ND                  | ND                  |
| Monteverde | 379                |     | ND                | 0.06*               | ND                  | ND                  | ND                  | ND                  | ND                  |
| EARTH      | 379                |     | ND                | 1.8 <u>+</u> 0.30   | 0.68 <u>+</u> 0.26  | ND                  | 2.0 <u>+</u> 0.090  | ND                  | ND                  |
| La Selva   | 379                |     | ND                | 1.2 <u>+</u> 0.44   | 0.87 <u>+</u> 0.080 | ND                  | 0.10*               | ND                  | ND                  |
| Carrara    | 379                |     | ND                | ND                  | 0.08 <u>*</u>       | ND                  | 0.35 <u>+</u> 0.080 | ND                  | 0.92*               |
| Belen      | 379                |     | 5.0 <u>+</u> 0.39 | 9.2 <u>+</u> 0.64   | 1.8 <u>+</u> 0.31   | 0.50 <u>+</u> 0.080 | 3.8 <u>+</u> 0.040  | 0.87 <u>+</u> 0.080 | 0.49 <u>+</u> 0.030 |

Part 1 Costa Rica

Part 2 Botswana

| City         | Sampling Length |     | 6:2 FTOH | 8:2 FTOH           | 10:2 FTOH         | MeFOSA             | EtFOSA              | MeFOSE            | EtFOSE |
|--------------|-----------------|-----|----------|--------------------|-------------------|--------------------|---------------------|-------------------|--------|
|              | Days            | MDL | 0.45     | 0.16               | 0.090             | 0.023              | 0.038               | 0.34              | 0.38   |
| Kasane       | 371             |     | ND       | 9.4 <u>+</u> 1.5   | 7.7 <u>+</u> 1.6  | 0.25 <u>+</u> 0.02 | 0.14 <u>+</u> 0.04  | 1.5 <u>+</u> 0.40 | ND     |
| Guma         | 370             |     | ND       | 7.9 <u>+</u> 0.30  | 3.8 <u>+</u> 0.70 | 0.21 <u>+</u> 0.04 | 0.16 <u>+</u> 0.00  | BDL               | ND     |
| Francistown  | 330             |     | ND       | 23.2 <u>+</u> 0.90 | 20.4 <u>+</u> 1.5 | 0.27 <u>+</u> 0.06 | 0.4 <u>+</u> 0.1    | ND                | ND     |
| Mahalapye    | 331             |     | ND       | 8.8 <u>+</u> 0.50  | 0.7 <u>+</u> 0.10 | 4.4 <u>+</u> 0.60  | ND                  | 1.9 <u>+</u> 0.40 | ND     |
| Sehitwa      | 307             |     | ND       | 1.16 <u>+</u> 0.09 | 3.0 <u>+</u> 0.50 | 0.16 <u>+</u> 0.01 | ND                  | ND                | ND     |
| Eagle Island | 299             |     | ND       | 8.8 <u>+</u> 0.20  | 6.5 <u>+</u> 0.70 | 2.9 <u>+</u> 0.70  | 0.08 <u>+</u> 0.00  | 5.7 <u>+</u> 1.1  | ND     |
| Maun         | 370             |     | ND       | ND                 | 2.7 <u>+</u> 0.20 | ND                 | ND                  | ND                | ND     |
| Xakanaxa     | 370             |     | ND       | 1.9 <u>+</u> 0.10  | 0.8 <u>+</u> 0.10 | 0.15 <u>+</u> 0.02 | ND                  | ND                | ND     |
| Gaborone     | 370             |     | ND       | 5.9 <u>+</u> 0.40  | 2.7 <u>+</u> 0.50 | 0.28 <u>+</u> 0.03 | 0.15*               | ND                | ND     |
| Nokaneng     | 307             |     | ND       | 6.6 <u>+</u> 0.60  | 2.9 <u>+</u> 0.70 | ND                 | 0.07*               | ND                | ND     |
| Seronga      | 370             |     | ND       | 4.9 <u>+</u> 0.30  | 4.1 <u>+</u> 0.50 | 0.30 <u>+</u> 0.03 | 0.14 <u>+</u> 0.020 | 2.2 <u>+</u> 0.30 | ND     |
| Stanley      | 295             |     | ND       | ND                 | 3.9 <u>+</u> 0.70 | 0.81 <u>+</u> 0.01 | 0.76 <u>+</u> 0.040 | 1.1 <u>+</u> 0.20 | ND     |
| Pandamatenga | 370             |     | ND       | 9.2 <u>+</u> 0.70  | ND                | BDL                | BDL                 | BDL               | ND     |
| Nxaraga      | 370             |     | ND       | ND                 | ND                | ND                 | ND                  | ND                | ND     |
| Maun Airport | 341             |     | ND       | 6.7 <u>+</u> 0.40  | 9.6 <u>+</u> 1.1  | 0.37 <u>+</u> 0.05 | 0.18 <u>+</u> 0.020 | ND                | ND     |

\* Detected in one of the two samples

### **International Partners**

We appreciate the efforts of our collaborators from all around the globe for setting up and retrieving the XAD-resin based passive air samplers. Listed below are additional collaborators, which have deployed XAD-PAS between 2009-2011. The original list of partners can be found in the supplemental information of Shunthirasingham et al.<sup>5</sup>.

#### Mt. Kenya, Kenya

Vincent Madadi, GAW Station, Department of Chemistry, University of Nairobi, Nairobi, Kenya

#### Puruzinho, Brazil

Sandra Hacon, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro, RJ, Brasil; and Wanderley Bastos, Laboratório de Biogeoquímica Ambiental Universidade Federal de Rondônia – UNIR, Porto Velho, Brasil

#### Ragged Point, St. Philip, Barbados

Shaina Goodridge, Environmental Protection Department, Dalkeith, St. Michael, Barbados; Allison Reeves and Justin Yearwood

#### Santa Cruz Island, Galapagos Islands, Ecuador

Maricruz Hernandez, Ministerio del Ambiente de Ecuador, Quito, Ecuador

### Temple Basin, Arthur's Pass, New Zealand

Kimberly Hageman, Department of Chemistry, University of Otago, Dunedin, New Zealand

#### Vanderbijlpark, South Africa

Henk Bouwman and Laura Quinn, Logistics Department, North-West University, Potchefstroom, South Africa

### References

- 1. C. Shunthirasingham, B. T. Mmereki, W. Masamba, C. E. Oyiliagu, Y. D. Lei, and F. Wania, *Environ. Sci. Technol.*, 2010, **44**, 8082–8088.
- 2. C. Shunthirasingham, T. Gouin, Y. D. Lei, C. Ruepert, L. E. Castillo, and F. Wania, *Environmental Toxicology and Chemistry*, 2011, **30**, 2709–2717.
- 3. T. Gouin, F. Wania, C. Ruepert, and L. E Castillo, *Environ. Sci. Technol.*, 2008, **42**, 6625–6630.
- 4. S. Genualdi, S. C. Lee, M. Shoeib, A. Gawor, L. Ahrens, and T. Harner, *Environ. Sci. Technol.*, 2010, **44**, 5534–5539.
- 5. C. Shunthirasingham, C. E. Oyiliagu, X. Cao, T. Gouin, F. Wania, S. C. Lee, K. Pozo, T. Harner, and D. C. G. Muir, *Journal of Environmental Monitoring*, 2010, **12**, 1650.
- 6. K. Pozo, T. Harner, F. Wania, D. C. G. Muir, K. C. Jones, and L. A. Barrie, *Environ. Sci. Technol.*, 2006, **40**, 4867–4873.
- 7. K. Pozo, T. Harner, S. C. Lee, F. Wania, D. C. G. Muir, and K. C. Jones, *Environ. Sci. Technol.*, 2009, **43**, 796–803.
- 8. M. Koblizkova, S. Genualdi, S. C. Lee, and T. Harner, *Environ. Sci. Technol.*, 2012, **46**, 391–396.
- 9. S. J. Hayward, T. Gouin, and F. Wania, *Environ. Sci. Technol.*, 2010, **44**, 3410–3416.
- 10. L. Shen, F. Wania, Y. D. Lei, C. Teixeira, D. C. G. Muir, and T. F. Bidleman, *Environ. Sci. Technol.*, 2005, **39**, 409–420.
- 11. G. L. Daly, Y. D. Lei, C. Teixeira, D. C. G. Muir, L. E. Castillo, L. M. M. Jantunen, and F. Wania, *Environ. Sci. Technol.*, 2007, **41**, 1124–1130.
- 12. N. L. Stock, F. K. Lau, D. A. Ellis, J. W. Martin, D. C. G. Muir, and S. A. Mabury, *Environ. Sci. Technol.*, 2004, **38**, 991–996.
- 13. A. Jahnke, L. Ahrens, R. Ebinghaus, and C. Temme, *Environ. Sci. Technol.*, 2007, **41**, 745–752.
- 14. A. B. A. Lindstrom, M. J. M. Strynar, and E. L. E. Libelo, *Environ. Sci. Technol.*, 2011, **45**, 7954–7961.
- 15. F. Wania, L. Shen, Y. D. Lei, C. Teixeira, and D. C. G. Muir, *Environ. Sci. Technol.*, 2003, **37**, 1352–1359.
- 16. S. J. Hayward, T. Gouin, and F. Wania, *J. Agric. Food Chem.*, 2010, **58**, 1077–1084.
- 17. *Application Note 347*, 2002, 1–4.
- 18. T. Primbs, S. Genualdi, and S. M. Simonich, *Environ. Toxicol. Chem.*, 2008, **27**, 1267–1272.
- 19. J. L. Barber, U. Berger, C. Chaemfa, S. Huber, A. Jahnke, C. Temme, and K. C. Jones, *Journal of Environmental Monitoring*, 2007, **9**, 530–541.
- 20. M. Shoeib, P. Vlahos, T. Harner, A. Peters, M. Graustein, and J. Narayan, *Atmospheric Environment*, 2010, **44**, 2887–2893.
- 21. A. Jahnke, S. Huber, C. Temme, H. Kylin, and U. Berger, *Journal of Chromatography A*, 2007, **1164**, 1–9.
- 22. A. Dreyer, C. Temme, R. Sturm, and R. Ebinghaus, Journal of Chromatography

*A*, 2008, **1178**, 199–205.

- 23. S. P. J. van Leeuwen and J. de Boer, *Journal of Chromatography A*, 2007, **1153**, 172–185.
- 24. K. Prevedouros, I. T. Cousins, R. C. Buck, and S. H. Korzeniowski, *Environ. Sci. Technol.*, 2006, **40**, 32–44.
- 25. R. C. Buck, J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. de Voogt, A. A. Jensen, K. Kannan, S. A. Mabury, and S. P. van Leeuwen, *Integrated Environmental Assessment and Management*, 2011, **7**, 513–541.
- 26. A. M. Piekarz, T. Primbs, J. A. Field, D. F. Barofsky, and S. Simonich, *Environ. Sci. Technol.*, 2007, **41**, 8248–8255.
- 27. J. Li, S. Del Vento, J. Schuster, G. Zhang, P. Chakraborty, Y. Kobara, and K. C. Jones, *Environ. Sci. Technol.*, 2011, **45**, 7241–7248.
- 28. L. Ahrens, M. Shoeib, S. Del Vento, G. Codling, and C. Halsall, *Environ. Chem.*, 2011, **8**, 399–406.
- 29. C. E. Canada, 2006, 1–15.
- 30. US EPA, Ed., 2010/2015 PFOA Stewardship Program, US EPA.
- 31. Z. Wang, M. Scheringer, M. MacLeod, C. Bogdal, C. E. Müller, A. C. Gerecke, and K. Hungerbühler, *Environmental Pollution*, 2012, **169**, 204–209.
- J. P. Benskin, D. C. G. Muir, B. F. Scott, C. Spencer, A. O. De Silva, H. Kylin, J. W. Martin, A. Morris, R. Lohmann, G. Tomy, B. Rosenberg, S. Taniyasu, and N. Yamashita, *Environ. Sci. Technol.*, 2012, 46, 5815–5823.