Supporting information

Photoreactivity of the fungicide chlorothalonil in aqueous medium

Samira Bouchama^{1,2}, Pascal de Sainte-Claire^{1,3}, Emmanuel Arzoumanian⁴, Esther Oliveros⁴, Abdelaziz Boulkamh², Claire Richard^{1,5*}

¹ Clermont Université, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France.

² Laboratoire des Techniques Innovantes de Protection de l'Environnement, Université de

Constantine 1, Route de Aïn-el-Bey, 25000 Constantine, Algérie.

³ Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France.

⁴Laboratoire des IMRCP, UMR CNRS 5623, Université Toulouse III (Paul Sabatier, UPS),

31062 Toulouse Cedex 9, France.

⁵ Equipe Photochimie CNRS, UMR 6296, ICCF, F-63171 Aubière, France.

Figure SI-1: Emission spectrum of the fluorescent tubes

Figure SI-2: Absorption spectrum of CT (5×10^{-6} M) in acetonitrile/water pH 8 (5:95, v/v) in a cell of 2-cm path

Figure SI-3: Absorption spectrum of an aerated CT solution in 50% ACN, before (black line) and after (red line) irradiation.

Figure SI-4 : Influence of the percentage of acetonitrile on k_d^{aerated}

Figure SI-5: Absorbance profile measured at 320 nm upon irradiation of CT in isopropanol

Singlet oxygen measurements

The quantum yields of ${}^{1}O_{2}$ production (Φ_{Δ}) were determined by recording the ${}^{1}O_{2}$ emission signal upon continuous monochromatic excitation of the sensitizer¹⁻³. PN is a standard singlet oxygen sensitizer with a Φ_{Δ}^{PN} close to 1 in a large variety of solvents⁴⁻⁷ and was chosen as a reference in this work.

Wavelengths of 367 nm and 313 nm were chosen to irradiate solutions of PN and CT respectively. Under continuous irradiation, the quantum yield of ${}^{1}O_{2}$ emission is given by:

$$\Phi_e = C \, S_e \, P_a \tag{1}$$

where *C* is a proportionality factor depending on geometric and electronic characteristics of the detection system and on specific parameters of the medium (refractive index, NIR absorbance), S_e is the ${}^{1}O_2$ signal intensity, P_a that is equal to $P_0(1-10^{-A})$ is the photon flux absorbed by the sensitizer (P_0 and A are the incident photon flux and the absorbance of the sensitizer at the wavelength of excitation, respectively). Φ_e may be also expressed as:

$$\Phi_{\rm e} = \Phi_{\Delta} k_{\rm e} \,\tau_{\Delta} \tag{2}$$

where k_e is the rate constant of ${}^{1}O_2$ emission and τ_{Δ} the ${}^{1}O_2$ lifetime. In the absence of quencher one has:

$$\tau_{\Delta} = 1/k_{\rm d} \tag{3}$$

with k_d , rate constant in s⁻¹ of ¹O₂ deactivation by the solvent, k_e and k_d being medium dependent and $k_e \ll k_d$ in most solvents.⁸⁻¹⁰ while in the presence of a quencher (Q) that may be the sensitizer itself, one has:

$$\tau_{\Delta} = \frac{1}{(k_d + k_t^Q[Q])} \tag{4}$$

The rate constant of ${}^{1}O_{2}$ total quenching (physical and reactive quenching) (k_{t}^{CT}) and the quantum yield of ${}^{1}O_{2}$ production (Φ_{Δ}) by CT were determined by relative measurements,

using PN as a reference sensitizer. Combining eqns. (1) to (4), the ratio of the ${}^{1}O_{2}$ luminescence quantum yields for CT and PN in the same solvent is given by:

$$\frac{\Phi_e}{\Phi_e^{PN}} = \frac{\Phi_\Delta}{\Phi_\Delta^{PN}} \frac{k_d + k_t^{PN}[PN]}{k_d + k_t^{CT}[CT]} = \frac{CS_e}{C_{PN}S_e^{PN}} \frac{P_0^R (1 - 10^{-A(\lambda_{PN})})}{P_0 (1 - 10^{-A(\lambda)})}$$
(5)

where Φ_{Δ}^{PN} and Φ_{Δ} are, respectively, the quantum yields of ${}^{1}O_{2}$ production by the reference sensitizer (PN) and CT. The determination of $\frac{\Phi_{\Delta}}{\Phi_{\Delta}^{PN}}$ and of k_{t}^{CT} is possible when the following conditions are satisfied:

- The absorbance of the sample and reference are the same at the corresponding wavelengths of excitation (λ and λ_{PN}) : in this case, the absorption factors (1-10^{-A}) and the apparatus factor (C) remain identical in both systems;
- The reference sensitizer (PN) is chosen so that $k_t^{PN}[PN] \ll k_d$. Within the limits of error, the ratio $\frac{S_e^{PN}}{S_e^{CT}} \frac{(1-10^{-A(\lambda)})}{(1-10^{-A(\lambda_{PN})})} \frac{P_0}{P_0^{PN}}$ does not significantly change in the studied domain

of CT concentrations. Therefore, we conclude that the product $k_t^{Sens}[Sens] \ll k_d$. When these conditions are fulfilled, eqn. (5) simplifies to eqn. (6):

$$\frac{S_e^{PN}}{S_e^{CT}} = \frac{P_0^{PN}}{P_0} \frac{\Phi_\Delta^{PN}}{\Phi_\Delta} \left(1 + \tau_\Delta k_t^{CT}[CT]\right) \tag{6}$$

and the plot of $\frac{S_e^{PN}}{S_e^{CT}} = f([CT])$ should be linear. Thus, values of k_t^{CT} and $\frac{\Phi_{\Delta}^{PN}}{\Phi_{\Delta}}$ may be obtained from the slope and the intercept of this plot if the value of τ_{Δ} is known. In our case, probe and reference were irradiated at different wavelengths (313 nm and 367 nm respectively) and $\frac{P_0^{PN}}{P_0} = 1.88$.

1 T. Aminian-Saghafi, G. Nasini, T. Caronna, A. M. Braun and E. Oliveros, Helv. Chim. Acta, 1992, **75**, 531-538.

2 C. Lorente, A. H. Thomas, A. L. Capparelli, C. G. Martinez, A. M. Braun and E. Oliveros, Photochem. Photobiol. Sci., 2003, **2**, 245-250.

3 F. M. Cabrerizo, M. L. Dantola, G. Petroselli, A. L. Capparelli, A. H. Thomas, A. M. Braun, C. Lorente, E. Oliveros, Photochem. Photobiol., 2007, **83**, 526-534.

- 4 E. Oliveros, P. Suardi-Murasecco, T. Aminian-Saghafi, A. M. Braun and H.-J. Hansen, Helv. Chim. Acta, 1991, **74**, 79-90.
- 5 R. Schmidt, C. Tanielian, R. Dunsbach and C. Wolff, J. Photochem. Photobiol. A, 1994, **79**, 11-17.
- 6 C. Martí, O. Jürgens, O. Cuenca, M. Casals and S. Nonell, J. Photochem. Photobiol., A, 1996, **97**, 11–18.
- 7 J. Arnbjerg, M. J. Paterson, C. B. Nielsen, M. Jørgensen, O. Christiansen and P. R. Ogilby,J. Phys. Chem. A, 2007, 111, 5756- 5767.
- 8 F. Wilkinson, H. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 1995, 24, 663-934.
- 9 R. D. Scurlock, S. Nonell, S. E. Braslavsky, P. R. Ogilby, J. Phys. Chem., 1995, **99**, 3521-3526.
- 10 L. A. Martinez, C. G. Martinez, B. B. Klopotek, J. Lang, A. Neuner, A. M. Braun, E. Oliveros, J. Photochem. Photobiol. B: Biol., 2000, **58**, 94-107.

Table SI-1. Values of S_e^{PN} , S_e^{CT} , $\frac{S_e^{PN}}{S_e^{CT}} \frac{(1-10^{-A(\lambda)})}{(1-10^{-A(\lambda_{PN})})} \frac{P_0}{P_0^{PN}}$ and Φ_{Δ} in solutions with different percentages of acetonitrile (100, 80, 50 and 30) in acetonitrile/D₂O mixtures.

	$A^{\rm PN}$ (367	S_e^{PN}	(CT(212))	S_e^{CT}	S_e^{PN} $(1 - 10^{-A(\lambda)})$ P_0	Ŧ
	nm)	(a.u.)	A ⁻⁽³¹³ nm)	(a.u.)	$\overline{S_e^{CT}} (1 - 10^{-A(\lambda_{PN})}) \overline{P_0^{PN}}$	Φ_{Δ}
	0.82	124	0.82	58	0.88	
100 %	0.6	114	0.67	52	0.82	0.85
ACN	0.41	72	0.41	35	0.91	±0.06
	0.2	41	0.26	21	0.79	
	0.86	132	0.94	64	0.89	
80 %	0.63	105	0.7	51	0.87	0.85
ACN	0.42	79	0.48	39	0.86	±0.04
	0.2	43	0.26	22	0.79	
	0.88	86	0.91	40	0.87	
50 %	0.67	83	0.64	37	0.85	0.85
ACN	0.42	49	0.38	20	0.82	±0.02
	0.22	34.5	0.21	15	0.85	
30%	0.33	36	0.35	12	0.6	0.69
ACN	0.22	26	0.25	10.5	0.69	± 0.09
	0.11	14	0.14	7	0.76	