Supporting Information

## Photometric Hydroxyl Radical Scavenging Analysis of Standard Natural Organic Matter Isolates

J. E. Donham, E. J. Rosenfeldt, and K. Wigginton



**Fig. SI-1:** Consistant second order degradation of MB to 80% decay. Minimal photodecay (at 0 mg/L  $H_2O_2$ ) indicates resistance to  $UV_{254}$ . Linear decay curves at higher  $H_2O_2$  concentrations indicates predicatable second order behavior when reaciting with •OH, and limited generation of •OH scavenging byproducts.



Fig. SI-2: Consistant second order degradation of fluorescein (Fl.) to 30% decay. Indicates predicatable second order behavior when reacting with •OH, and limited generation of •OH scavenging byproducts.



Fig. SI-3: Correlation of NOM characteristics with •OH scavenging rate constants. 🔷 : PLFA-R NOM. Apparent relationship between the NOM characteristic shown and the molar-carbon •OH scavenging rate were only due to inclusion of the PLFA-R outlier, and were thus not statistically significant.

<sup>1</sup> IHHS, in *Elemental Compositions and Stable Isotopic Ratios of IHSS Samples. International Humic Substances Society Website*, 2013. Retrieved 6/26/2013 from <a href="http://www.humicsubstances.org/sources/20-%20PonyLake.html">http://www.humicsubstances.org/sources/20-%20PonyLake.html</a>.

<sup>2</sup> G. McKay, J. L. Kleinman, K. M. Johnston, M. M. Dong, F. L. Rosario-Ortiz, and S. P. Mezyk, J Soils Sediments, 2013, 1.

<sup>3</sup> Thorn, K.A., Folan, D.W., MacCarthy, P., 1989. Characterization of the international humic substances society standard and reference fulvic and humic acids by solution state carbon-13 (<sup>13</sup>C) and hydrogen-1 (<sup>1</sup>H) nuclear magnetic resonance spectrometry.



## **Derivation of Equation 2**

The steady state hydroxyl radical equation (Equation a) models the chemistry of the R-SAM when measuring scavenging rates of NOM.

$$\alpha_{\bullet OH} = \left( [NOM]k_{\bullet OH,NOM} + [t - BuOH]k_{\bullet OH,t - BuOH} + [P]k_{\bullet OH,P} + [H_2O_2]k_{\bullet OH,H_2O_2} \right) [\bullet OH]_{ss}$$
(a)

where  $\alpha_{\bullet OH}$ , the production rate of •OH, is set equal to the consumption of •OH by all scavenging species in solution, including NOM, test concentrations of t-BuOH, the probe dye (P), and unphotolyzed  $H_2O_2$ , which also scavenges •OH. [•OH]<sub>ss</sub> is the steady state concentration of •OH,  $k_{\bullet OH,X}$  is the reaction rate constant of •OH with a species X present in the test water.

To perform the R-SAM analysis, solutions of probe dye and  $H_2O_2$  were added to the sample waters to yeild concentrations of 1 or 5  $\mu$ M (depending on the dye) and 0.59 mM (20 mg/L), respectively. 40 ml aliquots were spiked with t-BuOH to concentrations ranging from 0 to 1,000  $\mu$ M. Probe decay rates ( $k^{app}_{P}$ ) were measured under UV exposure for each t-BuOH concentration with the R-SAM spectrophotometer using Equation (b).

$$ln\left(\frac{abs(P)_t}{abs(P)_0}\right) = -k_P^{app} \times t \tag{b}$$

where  $abs(P)_t$  and  $abs(P)_0$  are the absorbance-based concentration of the probe dye at times t and zero respectively.  $k^{app}_P$  is then used to determine  $[\bullet OH]_{ss}$  as in Equation (c) using the initial 20% of probe decay to minimize potential effects of oxidation byproducts.

$$k_P^{app} = k_{\bullet OH,P} [\bullet OH]_{ss} \tag{c}$$

Combining Eqs. a-c generates Eq. 2; a relationship between k<sup>app</sup><sub>P</sub> and [t-BuOH]:

$$k_{P}^{app} = \frac{k_{\bullet OH,P} \times \alpha_{\bullet OH}}{k_{\bullet OH,NOM}[NOM] + k_{\bullet OH,t-BuOH}[t-BuOH] + k_{\bullet OH,P}[P] + k_{\bullet OH,H_{2}O_{2}}[H_{2}O_{2}]}$$
(2)

## Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts This journal is © The Royal Society of Chemistry 2014

 Table SI-1: Fitting statistics for R-SAM analyses of NOM Isolates

|           |                |             |      |          |    |    |       | α <sub>•OH</sub> [NOM]k <sub>•OH,NOM</sub> |          |                         |         |       |                | М                       | k <sub>•OH,NOM</sub> |          |                         | Inverse Squared<br>SE-Weighted<br>Averagek.oh,NOM |         |
|-----------|----------------|-------------|------|----------|----|----|-------|--------------------------------------------|----------|-------------------------|---------|-------|----------------|-------------------------|----------------------|----------|-------------------------|---------------------------------------------------|---------|
| NOM       | [NOM]<br>(µMC) | SE<br>[NOM] | rep. | excluded | п  | DF | r2    | value                                      | SE       | 95% CI                  | value   | SE    | Relative<br>SE | 95% CI                  | value                | SE       | 95% CI                  | Value                                             | SE      |
| PLFA-R    | 467            | 1.7%        | 1    | 0        | 11 | 9  | 0.994 | 2.23E-07                                   | 7.28E-09 | 2.07E-07<br>to 2.40E-07 | 111,176 | 8,860 | 8.2%           | 9.11E+04<br>to 1.31E+05 | 2.38E+08             | 1.94E+07 | 1.94E+08<br>to 2.82E+08 | 2 03E+08                                          | 1.2E+07 |
| PLFA-R    | 300            | 1.7%        | 2    | 0        | 20 | 18 | 0.989 | 1.38E-07                                   | 4.28E-09 | 1.29E-07<br>to 1.47E-07 | 53,335  | 4,790 | 9.1%           | 4.33E+04<br>to 6.34E+04 | 1.78E+08             | 1.63E+07 | 1.44E+08<br>to 2.12E+08 | 2.002.100                                         |         |
| PPFA II-1 | 273            | 0.5%        | 1    | 0        | 17 | 15 | 0.981 | 9.80E-08                                   | 4.39E-09 | 8.86E-08<br>to 1.07E-07 | 31,593  | 5,677 | 18.0%          | 1.95E+04<br>to 4.37E+04 | 1.16E+08             | 2.08E+07 | 7.15E+07<br>to 1.60E+08 | 1.53E+08                                          | 1.3E+07 |
| PPFA II-1 | 273            | 0.5%        | 2    | 2        | 21 | 19 | 0.988 | 1.06E-07                                   | 3.27E-09 | 9.94E-08<br>to 1.13E-07 | 48,694  | 4,658 | 9.6%           | 3.89E+04<br>to 5.84E+04 | 1.79E+08             | 1.71E+07 | 1.43E+08<br>to 2.14E+08 |                                                   |         |
| ESHA-S    | 417            | 3.5%        | 1    | 0        | 10 | 8  | 0.998 | 1.20E-07                                   | 2.84E-09 | 1.13E-07<br>to 1.26E-07 | 59,350  | 4,152 | 7.8%           | 4.98E+04<br>to 6.89E+04 | 1.42E+08             | 1.11E+07 | 1.17E+08<br>to 1.68E+08 | 1.205.00                                          | 8.3E+06 |
| ESHA-S    | 300            | 3.5%        | 2    | 2        | 16 | 14 | 0.995 | 1.05E-07                                   | 2.46E-09 | 1.00E-07<br>to 1.11E-07 | 39,561  | 3,507 | 9.5%           | 3.21E+04<br>to 4.70E+04 | 1.32E+08             | 1.26E+07 | 1.05E+08<br>to 1.58E+08 | 1.38E+08                                          |         |
| SRHA1I-S  | 287            | 0.2%        | 1    | 3        | 16 | 14 | 0.993 | 9.91E-08                                   | 2.68E-09 | 9.34E-08<br>to 1.05E-07 | 35,985  | 3,671 | 10.2%          | 2.81E+04<br>to 4.39E+04 | 1.25E+08             | 1.28E+07 | 9.80E+07<br>to 1.53E+08 | 1.37E+08                                          | 1.0E+07 |
| SRHA1I-S  | 287            | 0.2%        | 2    | 0        | 18 | 16 | 0.989 | 1.09E-07                                   | 3.45E-09 | 1.02E-07<br>to 1.17E-07 | 44,843  | 4,666 | 10.4%          | 3.50E+04<br>to 5.47E+04 | 1.56E+08             | 1.63E+07 | 1.22E+08<br>to 1.91E+08 |                                                   |         |
| PPHA I-S  | 280            | 0.3%        | 1    | 0        | 19 | 17 | 0.984 | 1.08E-07                                   | 4.25E-09 | 9.92E-08<br>to 1.17E-07 | 31,943  | 5,094 | 16.0%          | 2.12E+04<br>to 4.27E+04 | 1.14E+08             | 1.82E+07 | 7.58E+07<br>to 1.53E+08 | -1.19E+08                                         | 1.2E+07 |
| PPHA I-S  | 280            | 0.3%        | 2    | 0        | 21 | 19 | 0.986 | 1.03E-07                                   | 3.42E-09 | 9.55E-08<br>to 1.10E-07 | 34,293  | 4,459 | 13.0%          | 2.50E+04<br>to 4.36E+04 | 1.23E+08             | 1.60E+07 | 8.94E+07<br>to 1.56E+08 |                                                   |         |
| SRFA1-S   | 475            | 1.9%        | 1    | 0        | 11 | 9  | 0.993 | 1.50E-07                                   | 6.84E-09 | 1.35E-07<br>to 1.65E-07 | 46,604  | 6,659 | 14.4%          | 3.15E+04<br>to 6.17E+04 | 9.81E+07             | 1.41E+07 | 6.63E+07<br>to 1.30E+08 | -1.02E+08                                         | 1.0E+07 |
| SRFA1-S   | 300            | 1.9%        | 2    | 0        | 13 | 11 | 0.991 | 1.08E-07                                   | 3.88E-09 | 9.97E-08<br>to 1.17E-07 | 31,988  | 4,634 | 14.6%          | 2.18E+04<br>to 4.22E+04 | 1.07E+08             | 1.56E+07 | 7.23E+07<br>to 1.41E+08 |                                                   |         |