Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2014

1	Supporting information for
2	
3	Quantitative measurement of nanoparticle size and number
4	concentration from liquid suspensions by atomic force microscopy
5	<i>M. Baalousha</i> ^{$\delta^{\dagger+}*$, <i>A Prasad</i>^{$\dagger+$} and <i>J. R. Lead</i>^{$\delta^{\dagger}*$}}
6 7 8 9 10 11	 [§] Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University South Carolina, Columbia, South Carolina 29208 [†] School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Weight Market Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Weight Market Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Weight Market Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Sciences, University Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Sciences, University Sci
12 13 14	⁺ joint first authors
15	Corresponding author:* <u>mbaalous@mailbox.sc.edu</u> .
16	
17	
18	

19 Synthesis and characterisation of Citrate and PVP coated gold nanoparticles

20 21 **Materials:** tetrachloroauric acid (HAuCl₄.3H₂O), poly(*N*-vinyl-2-pyrrolidone) with the

average molecular weight of 10 000 g/mol (PVP10), trisodium citrate dihydrate HOC(COONa)(CH₂COONa)₂·2H₂O and NaOH were purchased from Sigma-Aldrich. These chemicals were analytical grade, and used without further purification. The water used for all reactions and preparations was ultra high purity with a resistivity of 18.2 M Ω cm at 25 °C.

27

28 Synthesis of PVP-coated AuNPs

A detailed method of the process was given elsewhere¹. Briefly, an aqueous solution of tetrachloroauric acid was added to a solution of polyvinylpyrrolidone (PVP) with vigorous stirring at room temperature. Then aliquot (100 ml) of 0.1M NaOH solution was added to initiate the reduction of the gold ions which then was capped and stabilised by PVP. The synthesized NPs were used without any further purification, cleaning or filtration.

35

36 Synthesis of citrate-coated AuNPs

37 AuNPs were prepared by citrate reduction of HAuCl₄.3H₂O according to the procedure by Turkevich² later modified by Frens³ and others⁴. A 100 ml stock solution 38 39 of 25 mM Hydrogen tetrachloroaurate was prepared using ultra high purity (UHP) water, 40 of which one ml was further diluted in 99 ml of UHP water. A second stock solution of 41 trisodium citrate was prepared. The diluted solution of HAuCl₄ was heated to boiling 42 point while stirring vigorously and then 4 ml of the trisodium citrate stock solution was 43 added quickly. The solutions were kept at the boiling point for 15 minutes to ensure 44 completion of the reaction and were finally allowed to cool to room temperature. The 45 synthesized NPs were used without any further purification, cleaning or filtration.

- 46
- 47 Centrifugation equations

48
$$t = \frac{18\mu ln \left(\frac{R_2}{R_1}\right)}{d^2 (\rho_p - \rho_w) w^2}$$
 Eq.S1

49 Where

50 t is the time required for the particles to reach the AFM substrate (seconds)

- μ is the viscosity of the water (Pa.S)
- R_2 is the distance of the AFM substrate from the axis of the ultracentrifuge (cm)
- R_1 is the distance of the upper liquid in the centrifuge tube from the axis of the

54 ultracentrifuge (cm)

- 55 d is the nanoparticle diameter (cm)
- ρ_p is the density of the AuNPs (g cm⁻³)
- ρ_w is the density of the water (g cm⁻³)
- *w* is the angular velocity of (rad S^{-1}) and can be calculated according to Eq.S2
 - $w = \frac{2\pi RPM}{60}$ Eq.S2
- 60 Where
- 61 RPM is the centrifuge speed in revolution per minutes

Table S1: Physicochemical properties of citrate and PVP coated AuNPs measured by

66 different analytical techniques.

'							
		Z-dh (nm)	Number average	Equivalent	Particle	Zeta	Wavelength
	Coting	(polydispersity	Hydrodynamic diameter	circular	height	Potential	of
	of	index)	(nm)	diameter	(nm)	(mV)	maximum
	AuNPs			(nm)			UV-vis
		DLS	NTA	TEM	AFM	DLS	absorbance
	PVP	20.6 (0.15)	53.25	10±2.8	12.2±2.2	-8.31	525
_	Citrate	21.4 (0.17)	23	15±3.3	13.3±2.1	-43	519

68 Z-dh: z-average hydrodynamic diameter

69 DLS: dynamic light scattering

70 NTA: nanoparticle tracking analysis

71 AFM: atomic force microscopy

72 UV-vis: ultraviolet-visible scpectroscopy

73 Shape factor represents the circularity of the projected images of the NPs.

- Figure S1. Areas and images scanned by AFM for each sample. Three areas at different locations
- 85 on the AFM substrate and (a) 5 and (b) 9 images were collected by area, resulting in collecting
- 15-29 images for each sample.

- **Figure S2**. Typical AFM micrographs (5 μ m x 5 μ m) of Cit-AuNPs in ultrahigh purity water (UHPW) prepared on freshly cleaved bared mica substrate at different concentrations (a) 101.6 89
- ppb Au and (b) 40.64 ppb Au.

C (ppb)	Image 1	Image 2	Image 3
203.2			
101.6			
20.3		8 ¹⁴	
10.2			
2.0			
1.0			

Figure S3. Typical AFM micrographs (5 µm x 5 µm) of Cit-AuNPs suspended in 100 µM CaCl₂
and ultracentrifuged on freshly cleaved bared mica substrate at different concentrations of AuNPs
(1-203.2 ppb) expressed as ppb Au.

99Figure S4. Typical AFM micrographs of Cit-AuNPs suspended in 200 μ M CaCl₂ and100ultracentrifuged on freshly cleaved bared mica substrate at different concentrations of AuNPs (1-101203.2 ppb) expressed as ppb Au.

103 Figure S5. Typical AFM micrographs of Cit-AuNPs suspended in 300 µM CaCl₂ and

104 105 ultracentrifuged on freshly cleaved bared mica substrate at different concentrations of AuNPs (1-

203.2 ppb) expressed as ppb Au

Figure S6. Typical AFM micrographs (5 μm x 5 μm) of PVP-AuNPs suspended in UHPW and
 ultracentrifuged on freshly cleaved bared mica substrate at different concentrations of AuNPs
 (33.5-670.5 ppb) expressed as ppb Au. Batch 01

- Figure S7. Typical AFM micrographs of PVP-AuNPs suspended in UHPW and ultracentrifuged on freshly cleaved bared mica substrate at different concentrations of AuNPs (1.7-67.1 ppb)
- expressed as ppb Au. Batch 2 and 3
- NA: not analysed

C (ppb)	With washing-B1	With washing-B2	With washing-B3	Without washing
67.1				
	2 μm x 2 μm	1 μm x 1 μm	3 µm x 3 µm	1 μm x 1 μm
33.5			•	
	5 μm x 5 μm	1 μm x 1 μm	3 μm x 3 μm	1 μm x 1 μm
16.8	Sum × Sum	June & June	NA	NA
	5 μm x 5 μm	2 μm x 2 μm		
3.4				
	5 µm x 5 µm	5 µm x 5 µm	5 μm x 5 μm	5 µm x 5 µm
1.7				
	5 μm x 5 μm	5 µm x 5 µm	5 µm x 5 µm	5 µm x 5 µm
0.34				
1	5 µm x 5 µm	5 um x 5 um	5 um x 5 um	5 um x 5 um

C (ppb)	Image 1	Image 2	Image 3
203.2 1μm x 1μm	ο Ο Ιμm x 1μm	2µт х 2µт	• 5μm x 5μm
101.6 1μm x 1μm			
20.3 2μm x 2μm			
10.2 3µm x 3µm			
2.0 3μm x 3μm			
1.0 5μm x 5μm			

Figure S9. Typical AFM micrographs (5 μm x 5 μm) of Cit-AuNPs in UHPW and
ultracentrifuged on poly-l-lysine functionalized mica substrate at different concentrations of
AuNPs (1.0-203.2 ppb) expressed as ppb Au.

Figure S10. Typical AFM micrographs of PVP-AuNPs suspended in 10 mM CaCl₂ and ultracentrifuged bared mica substrate at different concentrations of AuNPs (0.34-67.1 ppb)
 expressed as ppb Au.

Concentration			100 µM	200 µM	300 µM	Poly-l-lysine	Poly-l-lysine
(pph Au)	CV	CV	$CaCl_2$	CaCl ₂	CaCl ₂	B1	B2
(ppb Au)	Cv	CV	CV	CV	CV	CV	CV
202.2		214	2.5±1.0	34.1±2.1	19.9±14.5	01	01
203.2	NA	NA	(0.42)	(0.06)	(0.73)	OL	OL
101.6	$0.4{\pm}0.1$	1.1±0.5	ND	23.8±3.8	4.4±3.2	203.0±19.7	200.7±20.5
101.6	(0.22)	(0.46)	ND	(0.16)	(0.73)	(0.10)	(0.10)
20.2	NC	NA	1.5±0.3	4.2±1.4	10.6±2.8	38.9±2.9	38.3±3.2
20.5			(0.24)	(0.34)	(0.26)	(0.07)	(0.08)
10.0	NA	NIA	ND	2.6±0.7	0.7±0.2	15.4±1.6	15.2±0.9
10.2		NA	ND	(0.27)	(0.28)	(0.10)	(0.06)
2.0	NIA	NTA	1.7±0.4	1.4±0.4	0.7±0.7	3.8±0.5	3.2±0.6
2.0	INA	NA	(0.24)	(0.27)	(0.93)	(12)	(0.18)
1.0	NA	NIA	ND	0.9±0.3	0.9±0.2	2.1±0.2	1.6±0.2
1.0	INA	NA	ND	(0.34)	(0.17)	(0.08)	(0.12)

Table S2. Number of NPs counted per μm^2 of AFM substrate for cit-AuNPs 132

133 134 The number between the brackets is the coefficient of variation of the number of NP per μm^2 of the

substrate

135 NA: Not analysed

136 ND: not detected/not sufficient number of particles to be counted

137 OL: overloading

138 CV: coefficient of variation

139

Table S3: Number of NPs counted per μm^2 of AFM substrate for PVP-AuNPs 140

Concentration (ppb	UHPW -B1	UHPW -B2	UHPW -B3	10 mM CaCl ₂ -B1	10 mM CaCl ₂ -B2
Au)	CV	CV	CV	CV	CV
670.5, 335.3 and 167.6	Overloading	NA	NA	NA	NA
(7.1	ND	147.4±7.8	68.6±43.5	83.6±11.5	102.5±8.3
67.1	ND	(0.05)	(0.63)	(0.14)	(0.08)
22.5	19.4±4.8	7.3±1.8	ND	50.8±4.5	31.1±5.3
33.5	(0.25)	(0.26)	ND	(0.09)	(0.17)
16.9	NA	ND	ND	16.4±2.1	15.8±1.4
16.8			ND	(0.13)	(0.09)
2.4			NIA	4.7±1.7	3.9±0.4
3.4	NA	ND	NA	(0.15)	(0.10)
17	NA	ND	NIA	1.9±0.3	2.1±0.2
1./			NA	(0.14)	(0.11)
0.24	NIA	ND	NIA	0.6±0.2	0.6±0.1
0.34	NA	ND	NA	(0.33)	(0.24)

141 NA: Not analysed

142 ND: not detected/not sufficient number of particles to be counted

143 CV: coefficient of variation

Concentration			100 µM	200 µM	300 µM	Poly-l-lysine	Poly-1-lysine
Concentration	UHPW-BI	UHPW-B2	CaCl ₂	CaCl ₂	CaCl ₂	B1	B2
(ppb Au)	CV	Cv	CV	CV	CV	CV	CV
203.2	ΝA	NA	2.96 x 10 ¹⁰	4.08 x 10 ¹¹	2.38 x 10 ¹¹	OI	OI
203.2	na -	na -	0.42	0.06	0.73	OL	OL
101.6	5.90 x 10 ⁰⁹	$1.34 \ge 10^{10}$	ND	2.84 x 10 ¹¹	5.3×10^{10}	2.70×10^{12}	2.67 x 10 ¹²
101.0	0.22	0.46	ND	0.16	0.73	0.10	0.10
20.3	NC	NA	1.75 x 10 ¹⁰	5.00 x 10 ¹⁰	1.27 x 10 ¹¹	5.10 x 10 ¹¹	5.09 x 10 ¹¹
20.3	NC	1411	0.24	0.34	0.26	0.07	0.08
10.2	ΝA	NA	ND	$3.12 \ge 10^{10}$	9.0 x 10 ⁰⁹	2.05 x 10 ¹¹	2.02×10^{11}
10.2	na -	INA	ND	0.27	0.28	0.10	0.06
2.0	NA	NA	1.99 x 10 ¹⁰	1.73 x 10 ¹⁰	8.79 x 10 ⁰⁹	5.05 x 10 ¹⁰	$4.20 \ge 10^{10}$
2.0	NA	NA	0.24	0.27	0.93	0.12	0.18
1.0	ΝA	NA	ND	$1.04 \ge 10^{10}$	$1.10 \ge 10^{10}$	2.77×10^{10}	2.17×10^{10}
1.0	INA	INA	ND	0.34	0.17	0.10	0.12

145 **Table S4**: Number concentration (particle.L⁻¹) of cit-AuNPs in diluted samples

146 NA: Not analysed

147 ND: not detected/not sufficient number of particles to be counted

148 OL: overloading

149 WA: waiting analysis

150 151

152 **Table S5**: Number concentration (particle. L^{-1}) of PVP-AuNPs in diluted samples

Concentration (ppb	UHPW -B1	UHPW -B2	UHPW -B3	10 mM CaCl ₂ -B1	10 mM CaCl ₂ -B2
Au)	CV	CV	CV	CV	CV
670.5, 335.3 and 167.6	Overloading	NA	NA	NA	NA
67.1	ND	1.76 x 10 ¹² 0.05	8.21 x 10 ¹¹ 0.63	1.11 x 10 ¹² 0.14	1.36 x 10 ¹² 0.08
33.5	2.50 x 10 ¹¹ 0.25	9.43 x 10 ¹⁰ 0.26	ND	6.75 x 10 ¹¹ 0.09	4.13 x 10 ¹¹ 0.17
16.8	NA	ND	ND	2.17 x 10 ¹¹ 0.13	2.10 x 10 ¹¹ 0.09
3.4	NA	ND	NA	6.22 x 10 ¹⁰ 0.15	5.15 x 10 ¹⁰ 0.10
1.7	NA	ND	NA	2.51 x 10 ¹⁰ 0.14	2.74 x 10 ¹⁰ 0.11
0.34	NA	ND	NA	7.58 x 10 ⁰⁹ 0.33	7.44 x 10 ⁰⁹ 0.24

153 NA: Not analysed

154 ND: not detected/not sufficient number of particles to be counted

155 CV: coefficient of variation

Figure S11. Correlation between the mass and number concentration of NPs of (a) 200 μm CaCl₂

159 and (b) 300 μm CaCl₂

Figure S13. Dependence of the calculated mean number concentration and standard deviation of the mean on the number of images scanned by atomic force microscopy of the cit-coated AuNPs prepared by adding 300 μ M CaCl₂ on a bared mica substrate at different concentrations expressed as ppb Au: (a) 101.6, (b) 20.3, (c) 10.2 (d) 2.0 and (e) 1.0.

- 171
- 172
- 173

174		Reference List
175 176 177	1.	M. Zhou, B. Wang, Z. Rozynek, Z. Xie, O. J. Fossum, X. Yu, and S. Raaen, <i>Nanotechnol.</i> , 2009, 20 , 505606.
178	2.	J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss.Faraday Soc., 1951, 11, 55.
179	3.	G. Frens, Nature Phys.Sci., 1973, 241, 20.
180 181 182 183	4.	S. Kumar, K. S. Gandhi, and R. Kumar, Ind.Eng.Chem.Res., 2006, 46, 3128.