

1

Supplementary Material

2 **Assessment of fetal exposure and maternal elimination to**

3 **perfluoroalkyl substances**

4

5 Tao Zhang,^{*ab} Xiaolei Qin,^b

6

7 ^a School of Environmental Science and Engineering; Guangdong Provincial Key

8 Laboratory of Environmental Pollution Control and Remediation Technology, Sun

9 Yat-Sen University, Guangzhou 510275, China

10 ^b College of Environmental Sciences and Engineering, Ministry of Education Key

11 Laboratory of Pollution Processes and Environmental Criteria, Nankai University,

12 Tianjin 300071, China

13

14

15 ***Corresponding Author:**

16 **Tao Zhang**

17 **School of Environmental Science and Engineering, Sun Yat-Sen University**

18 **135 Xingang West Street, Guangzhou, 510275, China**

19 **Tel: 86-22-84113454**

20 **Email: taozhang.swiss@gmail.com**

21

22

23 **Submission to: Environmental Science: Processes & Impacts**

24 **Reagents and Chemicals.** All reagents used for the analysis of poly- and
25 perfluoroalkyl substances (PFASs) were of trace analysis grade. Methyl tert-butyl
26 ether (MTBE) and methanol were purchased from Dima Technology Inc (Richmond
27 Hill, ON, Canada). Sodium carbonate, sodium bicarbonate, ammonium acetate,
28 ammonium hydroxide and tetrabutyl ammonium hydrogen sulfate (TBAHS) used as
29 ion-pair reagent were obtained from Aldrich (St Louis, MO, USA).

30 PFASs were purchased from following: potassium salt of perfluorobutane
31 sulfonate (PFBS), potassium salt of perfluorohexane sulfonate (PFHxS), potassium
32 salt of perfluoroctane sulfonate (PFOS), and perfluorododecanoic acid (PFDoDA)
33 were purchased from Aldrich (St Louis, MO, USA); perfluoropentanoic acid (PFPeA),
34 perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and
35 perfluoroundecanoic acid (PFUnDA) were purchased from Matrix Scientific
36 (Columbia, SC, USA); Perfluorononanoic acid (PFNA) and perfluorodecanoic acid
37 (PFDA) were purchased from Fluorochem (Derbyshire, UK); perfluorooctanoic acid
38 (PFOA) was purchased from Strem Chemicals (Bischheim, France). Two internal
39 standards used in this study, including perfluoro-n-[¹³C₈]octanoic acid (M8PFOA),
40 sodium perfluoro-1-[1,2,3,4-¹³C₈]octanesulfonate (MPFOS), were purchased from
41 Wellington Laboratories (Guelph, ON, Canada). Purities of all standards were $\geq 95\%$.

42 Oasis WAX extraction cartridges (3cc, 60 mg) were purchased from Waters
43 Company (Milford, MA, USA). The Envi-carbon particle was obtained from Supelco
44 (Bellefonte, PA, USA).

45 **Sample Preparation.** Maternal blood (MB), cord blood (CB) and placenta:

46 Prior to extraction, samples of whole blood and placenta were thawed and allowed to

47 return to room temperature; and approximately 10 g fresh weight full thickness

48 placenta samples from multiple sites were freeze-dried with a Telstar Laboratory

49 freeze-dryer Cryodos-80 for 24 h, then dried placenta samples were homogenized, the

50 moisture content of the placenta was recorded to enable reporting of PFAS

51 concentrations on a fresh weight basis. Prior to freeze-drying samples, all placenta

52 samples were washed by using Milli-Q water. Blood and homogenized placenta

53 samples were extracted by ion-pairing method similar to that described by Hansen et

54 al. with some modifications. One milliliter of blood sample (or 0.15 to 0.20 g dry

55 weight homogenized placenta) was added to a 15 mL polypropylene (PP) tube, 5.0 ng

56 of internal standards (MPFOS and M8PFOA, 50 μ L, 0.10 ng μ L $^{-1}$), 2.0 mL of 0.25 M

57 sodium carbonate buffer and 1.0 mL of 0.5 M TBAHS (adjusted to pH 10) were

58 added. After thorough mixing, the extraction was carried out by the addition of 5 mL of

59 MTBE, and the mixture was shaken vigorously for 40 min. The organic layer were

60 separated from the aqueous layer by centrifugation at 3800 ($\times g$) for 5 min and then

61 transferred into a new 15 mL PP-tube. The extraction procedure was repeated with 3

62 mL of MTBE; the mixture was shaken vigorously for 20 min and combined with the

63 first fraction. The solvent was evaporated to near-dryness under a gentle stream of

64 high-purity nitrogen and then reconstituted with 1.0 mL of methanol. After

65 centrifugation at 3800 ($\times g$) for 2 min, the solution were transferred into an

66 autosampler vial for UPLC-MS/MS (Waters Acquity ultra performance liquid
67 chromatography equipped with Waters Acquity TQD triple quadrupole mass
68 spectrometer) analysis.

69 Amniotic fluid (AF): A total of 20 to 50 mL of AF sample was transferred into
70 a 50 mL PP-tube, and then spiked with 3 ng (30 μ L, 0.10 ng μ L $^{-1}$) of each internal
71 standard (MPFOS and M8PFOA). The spiked samples were extracted using Oasis
72 WAX extraction cartridges. Prior to loading of the samples, the WAX cartridges were
73 conditioned with 4 mL of 0.1% ammonium hydroxide in methanol, and 4 mL of milli-
74 Q water. The samples were loaded on the conditioned cartridge at a rate of 3 mL min $^{-1}$.
75 The cartridges were then washed with 4 mL of 25 mM sodium acetate buffer (pH = 4).
76 Then, the target fraction was eluted with 3 mL of 0.1% ammonium hydroxide in
77 methanol with gravity drop. One hundred and fifty milligram of Envi-carbon particle
78 was added into elutes. Then, elutes was performed by shaking the slurry for 10 min,
79 and centrifugation at 3800 ($\times g$) for 8 min. Finally, the extracted solutions were
80 transferred into an autosampler vial for UPLC-MS/MS analysis.

81 **Instrumental Analysis.** Concentrations of 11 PFASs, PFBS, PFHxS, PFOS,
82 PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA were
83 determined by using Waters Acquity UPLC-MS/MS. Aliquots of five microliters
84 were injected into ACQUITY UPLC BEH C₁₈ column (2.1 \times 50 mm, Waters, Ireland)
85 at a flow rate of 0.40 mL min $^{-1}$. The two mobile phases were methanol (A) and 2 mM
86 ammonium acetate in milli-Q water (B), with an initial gradient of 25% A; it was hold

87 at 25% A for 0.5 min; the gradient increased to 85% A at 5 min; then continuously
88 increased to 100% in 0.1 min; it was hold at 100% A for 1.9 min, and then reverted to
89 25% A at 9 min; the total running time is 9 min. The MS-MS was operated in
90 electrospray negative ionization mode. The parameters were: Capillary voltage at -2.7
91 kV, source temperature at 150 °C for all target compounds; desolvation temperature at
92 350 °C; cone gas flow 20 L hr⁻¹; desolvation gas flow 700 L hr⁻¹. The MS/MS was
93 operated in a multiple reaction monitoring (MRM) mode; the mass transitions
94 monitored were: 299.1 > 80.0 for PFBS, 399.2 > 80.0 for PFHxS, 499.2 > 99.0 for
95 PFOS, 263.2 > 219.1 for PFPeA, 313.2 > 269.1 for PFHxA, 363.2 > 319.1 for PFHpA,
96 413.2 > 369.1 for PFOA, 463.2 > 419.1 for PFNA, 513.2 > 469.1 for PFDA, 563.2 >
97 519.1 for PFUnDA, 613.2 > 569.1 for PFDoDA, 421.2 > 376.1 for M8PFOA, 503.2 >
98 80.0 for MPFOS. When possible, multiple daughter ions were monitored for
99 confirmation, but quantitation was based on a single product ion.

100 **Quality Control and Assurance.** Recoveries of the PFASs (10 ng each)
101 spiked into sample matrices ranged from 70 ± 8% to 141 ± 17% for placenta (*n* = 3)
102 and from 84 ± 12% to 135 ± 1% for whole blood (*n* = 5). A few exceptions with low
103 recovery were noted: perfluorobutane sulfonate (PFBS) in placenta and whole blood
104 showed abnormal recovery (< 50%). As internal standards, sodium perfluoro-1-
105 [1,2,3,4-¹³C₈]octanesulfonate (MPFOS) and perfluoro-n-[¹³C₈]octanoic acid
106 (M8PFOA) were spiked (5.0 ng each) into all samples prior to extraction. Respective
107 mean recoveries of MPFOS and M8PFOA were 81 ± 7% and 78 ± 6% for placenta

108 and $102 \pm 7\%$ and $98 \pm 9\%$ for whole blood (**Table S2**). Method precision was good,
109 with relative standard deviations (RSDs) for each sample matrix were in the range of
110 1 to 17% for all PFASs (**Table S2**).

111 The recoveries of PFOS and PFOA were $55 \pm 8\%$ and $57 \pm 9\%$ ($n = 3$),
112 respectively (**Table S2**), in AF. Although the recoveries of PFOS and PFOA were low
113 for AF, corresponding internal standards (i.e., MPFOS and M8PFOA) were spiked
114 (level: 0.10 ng mL^{-1} in AF; $n = 29$) into all samples before extraction. The mean
115 recoveries of MPFOS and M8PFOA were $49 \pm 4\%$ and $53 \pm 9\%$, respectively (**Table**
116 **S2**). The concentrations of PFOS and PFOA in AF samples were corrected by the
117 recoveries of the corresponding internal standard. Method precision was good for all
118 PFASs in AF (RSDs < 10%) (**Table S2**). The limit of quantitation (LOQ) was
119 determined as the lowest concentration of PFC in calibration curve which measured
120 concentration of calibration standards were 70% to 130% of the theoretical
121 concentrations. The LOQs of PFASs were 0.05 ng g^{-1} fresh weight (fw) for placenta,
122 and 0.05 ng mL^{-1} for blood; the LOQs of PFASs in AF ranged from 0.01 to 0.03 ng
124 mL^{-1} (**Table S2**).

Table S1 Characteristics of investigated pregnant women and their fetuses.

	N	range	mean	SD	median
<i>Pregnant Women</i>					
age (year)	27	21-39	30.9	3.44	30.0
predelivery weight (kg)	27	59-105	74.7	9.06	73.3
postdelivery weight (kg)	27	52-92	68.8	8.61	67.8
BMI ^a (kg m ⁻²)	27	19.6-47.3	28.6	4.48	26.8
parity ^b	27	0-1	0.18	0.28	0
gestational age at delivery (wks)	27	35-47	40.3	2.3	39.0
<i>Matched Newborn Babies</i>					
BMI (kg m ⁻²)	27	9.96-15.2	12.6	1.46	12.6
head circumference (cm)	27	31-35	33.3	1.05	34.0
chest circumference (cm)	27	30-35	32.8	1.04	33.0
sex	27		male: 13, female: 14		

^a BMI = Body Mass Index, BMI were calculated based on predelivery weight; ^b 82% of pregnant women were primiparous women.

Table S2 The limit of quantitation (LOQ, ng/mL) and mean recoveries (%) of native standards and ^{13}C -labeled internal standards spiked into each category of samples

	Native Standards											Internal Standards	
	PFBS	PFHxS	PFOS	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	MPFOS	M8PFOA
<i>LOQ of PFASs in whole blood and placenta</i>													
	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
<i>LOQ of PFASs in amniotic fluid</i>													
	NC ^b	NC	0.03	NC	NC	NC	0.01	NC	NC	NC	NC	0.03	0.01
<i>Whole blood</i>													
Mean	43	102	84	107	96	93	117	102	135	102	133	102	98
RSDs ^a	2	3	12	13	1	1	7	2	1	2	4	7	9
<i>Placenta</i>													
Mean	35	97	70	118	138	120	111	134	141	115	139	81	78
RSDs	1	17	8	17	17	8	10	11	17	12	16	5	6
<i>Amniotic fluid</i>													
Mean	NC	NC	55	NC	NC	NC	57	NC	NC	NC	NC	50	53
RSDs	NC	NC	8	NC	NC	NC	9	NC	NC	NC	NC	4	9

^a RSDs = relative standard deviations; ^b NC = not calculated.