Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

## Distinct photoproducts of hydroxylated polybromodiphenyl ethers from different photodegradation pathways: A case of 2'-HO-BDE-68

Qing Xie, Jingwen Chen\*, Hongxia Zhao, Xingbao Wang, and Hong-Bin Xie

## Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

\*Corresponding Author: Phone: +86-411-8470 6269; e-mail: jwchen@dlut.edu.cn

Contents: 7 pages that include 1 text, 5 figures and 3 tables.

| Abbreviations in the figures and tables of this supporting informationPage S1 |
|-------------------------------------------------------------------------------|
| Text 1 ·····Page S2                                                           |
| Figure S1-S5·····Page S3-S6                                                   |
| Table S1-S3 Page S6- S3                                                       |

Abbreviations in the figures and tables of this supporting information

| Abbreviation | Full name                                        |  |  |
|--------------|--------------------------------------------------|--|--|
| 2,4-DBP      | 2,4-dibromophenol                                |  |  |
| di-HO-DBB    | dihydroxylated dibromobenzene                    |  |  |
| 1,3,8-TBDD   | 1,3,8-tribromodibenzo- <i>p</i> -dioxin          |  |  |
| di-HO-TBDE   | dihydroxylated tribromodiphenyl ether            |  |  |
|              | 1% trimethylchlorosilane (TMCS) in               |  |  |
| DSTIATINCS   | N,O-bis(trimethylsilyl)trifluoroacetamide (TMCS) |  |  |
| tri-HO-DBB   | trihydroxylated dibromobenzene                   |  |  |
| di-HO-TeBDE  | dihydroxylated tetrabromodiphenyl ether          |  |  |
| 2,4,6-TBP    | 2,4,6-tribromophenol                             |  |  |

## Text 1 GC/MS conditions

An Agilent 6890GC/5975MS equipped with a DB-XLB column (30 m × 0.25 mm, 0.25  $\mu$ m film thickness, J&W Scientific) were used for the product analysis. The injector temperature was 280 °C. 1  $\mu$ L sample was auto injected into inlet at the splitless mode. Helium was used as the carry gas at a flow rate of 1 mL/min. The GC oven temperature was programmed as follows: start from 90 °C for 2min, increase to 200 °C at a rate of 15 °C/min, then to 270 °C at the rate of 2.5 °C/min, thereafter to 310 °C at 20 °C/min and kept for 1.5 min. The temperatures of interface, EI source and NCI source were set at 280 °C, 230 °C and 150 °C, respectively. The scan mode was operated at the *m/z* range of 60-800. Selected ion monitoring of *m/z* = 79 and 81 with the NCI source was adopted for quantification of the brominated compounds.



Fig. S1 Total ion chromatograms of the products from direct photolysis of 2'-HO-BDE-68 when 68.4% (pH =3) and 89.0% (pH =10) of it photolyzed (The samples were derivatized by diazomethane and the chromatograms were obtained by GC-MS with a negative chemical ionization source at the selective ion monitoring mode with m/z = 79 and 81).







Fig. S2 Mass spectra for the derivatized and underivatized products generated from direct photolysis of 2'-HO-BDE-68, obtained with electron-impact ionization source (A, B, C, D, E, G and H) and negative chemical ionization source (F).



Fig. S3 Total ion chromatogram obtained by GC-MS with a negative chemical ionization source at the selective ion monitoring mode (m/z = 79 and 81) for the diazomethane derivatized products generated from reaction of 2'-HO-BDE-68 with  ${}^{1}O_{2}$  (pH = 10) when 64.8% of 2'-HO-BDE-68 degraded.



Fig. S4 Total ion chromatogram obtained by GC-MS with a negative chemical ionization source at the selective ion monitoring mode (m/z = 79, 81) for the diazomethane derivatized products generated from reaction of 2'-HO-BDE-68 with  $\cdot$ OH (pH = 3) when 31.6% of 2'-HO-BDE-68 degraded.



Fig. S5 Mass spectra (electron-impact ionization source) for the diazomethane derivatized tri-HO-DBB (A) and di-HO-TeBDE (B) generated from reaction of 2'-HO-BDE-68 with ·OH.

| Product    | pH = 3                                |                                       |               | pH = 10                               |                                       |               |
|------------|---------------------------------------|---------------------------------------|---------------|---------------------------------------|---------------------------------------|---------------|
|            | $k_{\rm p}({\rm min}^{-1})$           | $k_{-p} (\min^{-1})$                  | Y(%)          | $k_{\rm p}({\rm min}^{-1})$           | $k_{-p} (\min^{-1})$                  | Y(%)          |
| 2,4-DBP    | $(8.9 \pm 3.2)$<br>× 10 <sup>-4</sup> | $(5.2 \pm 3.8)$<br>× 10 <sup>-3</sup> | 35 ± 13       | $(6.6 \pm 2.7)$<br>× 10 <sup>-2</sup> | $(3.3 \pm 1.8)$<br>× 10 <sup>-1</sup> | $43 \pm 18$   |
| di-HO-DBB  | /*                                    | /*                                    | /*            | $(3.0 \pm 0.9)$<br>× 10 <sup>-3</sup> | /*                                    | $1.9 \pm 0.6$ |
| 1,3,8-TBDD | $(2.2 \pm 0.5) \times 10^{-5}$        | $(7.9 \pm 4.1)$<br>× 10 <sup>-3</sup> | $0.86\pm0.20$ | $(9.1 \pm 1.6) \times 10^{-3}$        | $(6.7 \pm 4.0)$<br>× 10 <sup>-2</sup> | 5.9±1.1       |
| di-HO-TBDE | $(1.3 \pm 0.2)$<br>× 10 <sup>-4</sup> | $(1.2 \pm 1.0)$<br>× 10 <sup>-3</sup> | $5.0\pm0.6$   | $(1.8 \pm 0.3)$<br>× 10 <sup>-2</sup> | $(7.6 \pm 2.7)$<br>× 10 <sup>-2</sup> | $12 \pm 2$    |

Table S1. Formation and degradation rate constants ( $k_p$  and  $k_{-p}$ ), yields (Y) of the products generated from direct photolysis of 2'-HO-BDE-68.

\* The data were not obtained, as the detected concentrations were very low and with high uncertainties.

| Product        |             | $k_{\rm p} ({\rm min}^{-1})$   | $k_{-p} (\min^{-1})$           | Y                   |  |
|----------------|-------------|--------------------------------|--------------------------------|---------------------|--|
| 10             | 2,4-DBP     | $(5.4 \pm 1.9) \times 10^{-2}$ | $(6.8 \pm 4.0) \times 10^{-2}$ | $(70 \pm 25)\%$     |  |
| U <sub>2</sub> | di-HO-DBB   | $(1.2 \pm 0.1) \times 10^{-3}$ | $(1.4 \pm 1.3) \times 10^{-2}$ | $(1.5 \pm 0.2)\%$   |  |
| reaction       | di-HO-TBDEs | $(2.5 \pm 0.3) \times 10^{-4}$ | $(5.6 \pm 1.4) \times 10^{-2}$ | $(0.32 \pm 0.03)\%$ |  |
| ·OH            | 2,4-DBP     | $(9.3 \pm 1.8) \times 10^{-1}$ | 4.7 ± 1.9                      | (75 ± 15)%          |  |
| reaction       | di-HO-TBDEs | $(3.0 \pm 0.9) \times 10^{-2}$ | $3.1 \pm 1.4$                  | $(2.4 \pm 0.8)\%$   |  |

Table S2. Formation and degradation rate constants ( $k_p$  and  $k_{-p}$ ), and yields (*Y*) of the products generated from <sup>1</sup>O<sub>2</sub> and OH reaction of 2'-HO-BDE-68.

Table S3. Apparent product yields  $(Y_{app})$  of the products from the reaction of 2'-HO-BDE-68 with  $\cdot$ OH.

| Degradation percentage<br>of 2'-HO-BDE-68 | 12.0% | 19.0% | 31.6% | 62.8% | 84.1% |
|-------------------------------------------|-------|-------|-------|-------|-------|
| di-HO-DBB                                 | 8.0%  | 11.0% | 15.2% | 6.8%  | 0.4%  |
| 2,4,6-TBP                                 | 1.8%  | 2.6%  | 2.5%  | 1.1%  | 0.0%  |
| tri-HO-DBB                                | 0.0%  | 4.7%  | 4.5%  | 2.4%  | 0.0%  |