Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

MEASUREMENTS OF ORGANIC AND ELEMENTAL CARBON IN DOWNTOWN ROME AND BACKGROUND AREA: PHYSICAL BEHAVIOR AND CHEMICAL SPECIATION

Pasquale Avino^{1*}, Maurizio Manigrasso¹, Alberto Rosada², Alessandro Dodaro²

¹DIPIA, INAIL, via IV Novembre 144, 00187 Rome, Italy

²ENEA, R.C.-Casaccia, via Anguillarese 301, 00060 Rome, Italy

*Corresponding author: Pasquale Avino, DIPIA, INAIL settore Ricerca, via IV Novembre 144, 00187 Rome (Italy). Ph.: +39 06 97892611; Fax: +39 06 97891; E-mail: p.avino@inail.it.

Element	Product	Cross Section ⁴¹	Half life		γ-Ray used	LOD ^a
	nuclide	(barn)			(keV)	(ng m ⁻³)
Ag	^{110m}Ag	4.5	249.9	d	657.7	0.06
As	⁷⁶ As	4.3	1.096	d	559.2	1
Au	¹⁹⁸ Au	98.8	2.697	d	411.8	0.001ª
Ba	^{131}Ba	13.5	11.8	d	496.3	5
Br	$^{82}\mathrm{Br}$	2.69	1.47	d	776.5	0.5
Ca	⁴⁷ Sc	0.70	3.42	d	159.8	300
Cd	^{115m} In	300	53.38	h	527.8	0.3
Ce	¹⁴¹ Ce	0.57	32.38	d	145.4	0.05
Co	⁶⁰ Co	37.2	5.272	у	1332.5	0.01
Cr	⁵¹ Cr	15.9	27.7	d	320.0	0.2
Cs	¹³⁴ Cs	29.0	2.062	у	795.7	0.02
Eu	¹⁵² Eu	5900	12.7	у	1408.0	0.01
Fe	⁵⁹ Fe	1.15	45.1	d	1099.2	50
Hf	$^{181}\mathrm{Hf}$	12.6	42.5	d	482.2	0.01
Hg	²⁰³ Hg	3.8	46.59	d	279.0	0.02
K	⁴² K	1.46	12.36	h	1524.7	50
La	¹⁴⁰ La	9.0	40.27	h	1596.2	0.1
Mg	²⁷ Mg	0.0382	9.46	m	1014.1	50
Mn	⁵⁶ Mn	13.3	2.576	h	1810.7	0.5
Mo	⁹⁹ Mo	0.45	2.76	d	141.0	0.2
Na	²⁴ Na	0.53	15.0	h	1368.4	100
Nd	¹⁴⁷ Nd	1.3	11.06	d	531.0	1 ^a
Ni	⁵⁸ Co	0.113	70.78	d	810.7	1
Rb	⁸⁶ Rb	72.1	18.66	d	1076.7	1
Sb	¹²² Sb	6.25	2.70	d	564.0	0.2
Sc	⁴⁶ Sc	26.5	83.85	d	889.2	0.003
Se	⁷⁵ Se	51.8	120.4	d	264.6	0.1
Sm	¹⁵³ Sm	206	1.948	d	103.1	0.41 ^b
Th	²³³ Pa	7.40	27.4	d	311.8	0.1
V	^{52}V	4.88	3.75	m	1434.4	1
W	^{187}W	37.8	23.9	h	685.7	0.01 ^a
Yb	¹⁷⁵ Yb	65	4.19	d	396.1	0.01ª
Zn	⁶⁵ Zn	0.78	243.8	d	1115.5	0.5

Table 1.Nuclear data and Limit of Detection (LOD) of the elements determined by INAA. (m:minutes; h: hours; d: days; y: years).

^aCalculating according to [42].

^bThe values are expressed as ppb (ng g⁻¹)

Table 2. Results (mean \pm standard deviation) of INAA quality control on IAEA air filter and USGS GRX-1 Standard Reference Materials (µg g⁻¹). The "measured value" is the average of seven determinations on seven different replicates (n.d. = not determined; - = absent in the Standard Reference Material).

	IAEA a	ir filter	USGS GRX-1			
	measured	certified	measured	certified		
As	4.9±0.5	5.6	456±9	460±30		
Au	1.26 ± 0.10	1.15	n.d.	-		
Ba	43.4±0.5	53.8	n.d.	-		
Cd	10.6±1.0	9.96	n.d.	-		
Co	1.3 ± 0.1	1.12	6.3±0.2	9.3±1.1		
Cr	4.7 ± 0.8	5.6	11±1	10±2		
Cs	n.d.	-	1.6 ± 0.4	4.0±1.1		
Cu	51.6±0.5	48.8	n.d.	-		
Eu	n.d.	-	0.60 ± 0.05	0.68 ± 0.07		
Fe	193±17	207.9	25000 ± 2000	24700±1800		
Hg	0.96 ± 0.07	1.00	n.d.	-		
La	n.d.	-	5.7±0.6	6.1±0.3		
Mn	31.2±1.0	31.9	n.d.	-		
Mo	1.26±0.2	1.14	n.d.	-		
Na	n.d.	-	498±21	550±110		
Ni	7.6±0.5	8.0	44±6	42±10		
Sb	n.d.	-	152±6	124±6		
Se	1.01 ± 0.10	1.06	20.2±0.5	18.6 ± 0.8		
Sm	n.d.	-	9.7±3.9	10±2		
U	0.78 ± 0.10	1.02	n.d.	-		
V	8.04±0.35	8.00	n.d.	-		
Yb	n.d.	-	2.1±0.3	1.8±0.5		
Zn	132±18	152	681±49	740±110		

Figure 1. Master scheme for INAA investigation of samples and standards.

Figure 2. Master scheme of the analytical procedure for the separation of *n*-alkanes, *n*-alkanoic acids and PAHs in the fine organic particulate matter.

Figure 3. Daily evolution of primary gas pollutants (CO and benzene) and carbon particles along with the Radon modulation.

