SUPPLEMENTARY INFORMATION

Characterization of Particle Emissions and Fate of Nanomaterials During Incineration

Eric P. Vejerano, Elena C. Leon, Amara L. Holder, and Linsey C. Marr^a

Civil and Environmental Engineering Department, Virginia Tech

411 Durham Hall, Blacksburg, VA 24061, ^aCorresponding author,

Fax: 540 231 7532; Tel: 540 231 6071; e-mail: lmarr@vt.edu.

Table S1 Active surface area concentration in the dilutedexhaust from waste containing different nanomaterials

nanomaterial	active surface area (mm ² m ⁻³)			
	0.1 wt%	1 wt%	10 wt%	
silver	24 ± 4	23 ± 5	18 ± 5	
NiO	54 ± 8	26 ± 7	4 ± 3	
TiO ₂	33 ± 6	17 ± 5	6 ± 2	
ceria	39 ± 4	12 ± 4	4 ± 4	
C ₆₀	46 ± 7	5 ± 2	9 ± 4	
Fe ₂ O ₃	21 ± 5	9 ± 4	5 ± 3	
CdSe QD	26 ± 6	37 ± 7		
nanomaterial-free	0 wt%			
control ^a	15 ± 5			
paper	14 ± 4			
polyethylene	54 ± 7			
PVC	20 ± 4			
^a combination of paper, pol	yethylene, and P	VC.		

metal/metal oxide	concentration $(\mu g g^{-1} \text{ of surrogate waste})$		
	PM	bottom ash	
silver	nd	26±3	
nickel	16±1	350±40	
titanium	nd	38±8	
cerium	nd	40±17	
iron	120±16	440±90	
cadmium	nd	nd	
^{<i>a</i>} combination of paper, po C_{60} was not detected in the	lyethylene, and PV e unspiked control	C. waste.	

Table S2 Metal content in the control waste^a

nd not detected

Table S3 Concentration of nanomaterials in the PM and bottom ash fractions

		concentration ($\mu g g^{-1}$ of surrogate waste)				aste)	
	nanomatorial	0	.1 wt%	1	wt%	10	wt%
	Inditornaterial		botttom		bottom	DM	bottom
_		PIVI	ash	PIVI	ash	PIVI	ash
	silver	21	260	13	2400	44	29000
	NiO	24	620	10 ^a	7700	8 ^a	110000
	TiO ₂	1.9	58	0.44	1100	3.5	75000
	ceria	nd	57	nd	3800	2.3	82000
	C ₆₀ ^c	nd	nd	1800	nd	6800	nd
	Fe_2O_3	75 [°]	320	67 ^a	6700	82 ^a	100000
	CdSe QD ^b	6.6	15	56	570	4	40000

All values are corrected for the metal/metal $oxide/C_{60}$ concentration in the unspiked control waste except for values indicated with (a), in which the concentration for unspiked waste is higher than with nanomaterial, ^bmeasured as Cd, ^cmeasured by HPLC, nd not detected. The relative standard deviation for six of the samples (two samples at each mass loading) that were run in duplicate was less than 12%.

nanomaterial	median diameter (nm)		emission factor (# g ⁻¹ of waste) (×10 ¹³)	
	0.1 wt%	10 wt%	0.1 wt%	10 wt%
silver	385±17	312±2	1.9±1.8	3.0±0.23
NiO	397±12	319±8	2.2±1.6	3.2±0.19
TiO ₂	399±1	310±6	3.3±0.26	3.6±0.14
ceria	392±1	324±12	3.6±0.35	4.4±0.92
C ₆₀	397±1	311±2	4.5±0.57	2.4±0.56
Fe ₂ O ₃	398±1	339±14	3.3±0.17	2.9±0.51
CdSe QD	401±3		4.0±0.55	
anomaterial-free	0 wt%		0 wt%	
control	400±3		1.2±0.25	

Table S4 Particle size and particle number emission factor from the incineration of waste

Fig. S1 Loss in total number concentration for NaCl particles in the aerosol holding chamber.

Fig. S2 CO₂ mixing ratio in the undiluted exhaust from samples containing various nanomaterials at different mass loadings. The solid gray lines bound the 95 % confidence interval of the mixing ratio for the unspiked control waste.

Fig. S3 Brightfield images of particle from waste containing (A) silver, (D) NiO, (G) TiO_2 , (J) ceria, (M) Fe_2O_3 , and (P) CdSe QD. (B), (E), (H), (K), (N), and (Q) are the chlorine EDX maps and (C), (F), (I), (L), (O), and (R) are the sulfur EDX maps of the brightfield images on the left. Brighter colors indicate higher X-ray counts.

Equation 1 Propagated uncertainty for ratio

$$\sigma_{A/B} = \sqrt{\left(\frac{1}{B}\sigma_A\right)^2 + \left(\frac{A}{2B^2}\sigma_B\right)^2}$$

where A and B are the means, and σ_A and σ_B are the corresponding standard deviations.

Equation 2 Coagulation coefficient

$$\overline{K} = \frac{2kT}{3\eta} \left[1 + e^{\ln^2 \sigma_g} + \left(\frac{2.49\lambda}{\text{CMD}}\right) \times \left(e^{0.50\ln^2 \sigma_g} + e^{2.5\ln^2 \sigma_g}\right) \right]$$

Where:

 \overline{K} = Coagulation coefficient k = Boltzmann constant T = Temperature σ_g =Geometric standard deviation CMD = Class median diameter λ = Mean free path of air (0.066 µm at 293 K) η = viscosity of air (1.83 × 10⁻⁵ Pa·s at 293 K)