Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2014

Table S1: Summary of different type of wastewater treatment by hydrogen peroxide assisted electrocoagulation processes

Type of wastewater	Anode- Cathode	Current density or current	Time	рН	$[H_2O_2]$	Treatment efficiency
Olive mill ^[22]	Fe-Fe Al-Al	20-75 mA cm ⁻²	1-3 h	6.5 5.5	2.3%	COD = 62-86 % Fe electrodes is better
Nonylphenol polyethoxylate and Textile wastewater ^[20]	Fe-Fe Al-Al	1.5 A	5 min 15 min	8	40 mgL ⁻¹	Degradation = 95 %
Chemical-Mechanical Planarization wastewater ^[33]	Fe-Fe	1A	10 min	9	120 mgL ⁻¹	Turbidity = 100%
Food wastewater ^[21]	Al-Al	18.2 mA cm ⁻²	60 min	4	9.79 mM	COD removal = 96% BOD removal = 95%
Synthetic dye wastewater ^[18]	Fe-Stainless steel	25 mA cm ⁻²	8 min	6	3	Color removal = 98%
Synthetic wastewater (SDS) ^[17]	Fe-Fe	0.5 mA cm ⁻²	10 min	5	50 mg L ⁻¹	SDS removal = 81.6%
Metal plating effluent [19]	Fe-Fe	22 mA cm ⁻²		2.6	20 mM	TOC removal =70%
Pharmaceutical wastewater ^[35]	Fe-Fe	1.7–1.9 mAcm ⁻²	30 min	3	300 mgL ⁻¹	COD removal =57.7%
Liquid organic fertilizer wastewater ^[34]	Fe-Fe	50 mA cm ⁻²	45 min	3	25 mM	TOC removal = 87% COD removal =91%

Table S2: Characteristics of the dye molecules used in this study

Details of dye molecule

Molecular structure

Molecular Formula Molecular Weight (g/mol) Type λ_{max} (nm) Solubility in water(20°C) g/L : C₂₂ H₁₄ N₆ Na₂ O₉ S₂ : 615.5 : Diazo dye : 617-620 : 30

Fig. S3 - Degradation efficiency as a function of E_{con} at by EC in the presence of (a) PMS, (b) HP and (c) PDS at different NaCl concentration. ($C_{AB} = 0.16 \text{ mM}$, $C_{oxidant} = 0.07 \text{ mM}$, pH = 7 ± 0.2 and Current = 50 mA).

S4: Electrical energy consumption

The calculated E_{con} values along with obtained degradation efficiency are plotted against electrolysis time in Figure S3. Oxidant assisted EC processes are exhibits good degradation efficiency with less energy consumption. The more than 99% degradation efficiencies are achieved from EC assisted with PMS, HP and PDS at energy consumption of are 1.7, 4.1 and 3.3 Wh (g dye)⁻¹ respectively.

Fig. S4. Degradation efficiencies as a function of energy consumption by EC and oxidant assisted EC. (($C_{AB} = 0.16 \text{ mM}$, $C_{NaCl} = 17 \text{ mM}$, $C_{PMS} = C_{PDS} = 0.17 \text{ mM}$, $C_{HP} = 0.13 \text{ mM}$, current = 50 mA and initial pH = 5).