Supplementary data

Table 1.

a) relative energy and the most important geometrical and topological parameters of $\rho(\mathbf{r})$ in CP (3,-1) for **1POC** at different θ angle values.

Θ	ΔE_{rel} , kcal mole ⁻¹	C1-C2, Å	C1-Ph, Å	C2B3, Å	C2B6, Å	$\rho(\mathbf{r}) (C1C2), e/Å^3$	$\nabla^2(\mathbf{r})$ (C1C2), e/Å ⁵ .
0	0.238	1.641	1.510	1.714	1.715	1.23	-4.38
10	0.144	1.642	1.511	1.713	1.716	1.22	-4.36
20	0.138	1.642	1.511	1.713	1.716	1.22	-4.34
30	0.000	1.645	1.512	1.712	1.717	1.21	-4.23
40	0.001	1.648	1.513	1.711	1.717	1.21	-4.12
50	0.075	1.652	1.514	1.711	1.717	1.20	-3.97
60	0.207	1.657	1.514	1.710	1.713	1.18	-3.78
70	0.207	1.663	1.514	1.708	1.711	1.17	-3.60
80	0.276	1.669	1.513	1.706	1.708	1.16	-3.39
90	0.270	1.672	1.513	1.705	1.706	1.15	-3.30

b) relative energy and the most important geometrical and topological parameters of $\rho(\mathbf{r})$ in CP (3,-1) for **3POC** at different θ angle values.

Θ	ΔE_{rel} , kcal mole ⁻¹	C2-C6, Å	B1-C6, Å	B1-C2, Å	B1-C13, Å	$\rho(\mathbf{r}) (B1C6), e/Å^3.$	$\nabla^2(\mathbf{r})$ (B1C6), e/Å ⁵ .
0	0.389	1.621	1.731	1.745	1.572	0.79	-1.02
10	0.338	1.621	1.731	1.742	1.572	0.79	-0.98
20	0.226	1.622	1.732	1.739	1.572	0.79	-0.95
30	0.136	1.623	1.733	1.735	1.572	0.79	-0.94
40	0.171	1.624	1.736	1.732	1.572	0.78	-1.03
50	0.277	1.624	1.739	1.730	1.572	0.79	-1.19
60	0.375	1.622	1.743	1.730	1.572	0.78	-1.40
70	0.375	1.620	1.747	1.731	1.572	0.77	-1.60
80	0.304	1.618	1.749	1.734	1.573	0.77	-1.74
90	0.156	1.616	1.751	1.737	1.573	0.77	-1.83
100	0.046	1.615	1.750	1.739	1.573	0.77	-1.87
110	0.002	1.616	1.747	1.741	1.574	0.78	-1.87
120	0.000	1.616	1.745	1.744	1.574	0.78	-1.86
130	0.010	1.616	1.743	1.746	1.574	0.78	-1.82
140	0.009	1.617	1.739	1.748	1.574	0.78	-1.72
150	0.084	1.617	1.737	1.748	1.573	0.79	-1.57
160	0.210	1.619	1.734	1.748	1.573	0.79	-1.37
170	0.338	1.620	1.732	1.747	1.572	0.79	-1.18

c) relative energy and the most important geometrical and topological parameters of $\rho(\mathbf{r})$ in CP

Supplementary Material (ESI) for *Faraday Discussions* This journal is © The Royal Society of Chemistry 2006

Supplementary data

Θ	ΔE_{rel} , kcal mole ⁻¹	C1-B2, Å	C1-B3, Å	C1-B4, Å	C1-B5, Å	C1-B6, Å
0	0.23	1.713	1.710	1.735	1.736	1.733
10	0.06	1.716	1.712	1.734	1.734	1.734
20	0.18	1.714	1.711	1.736	1.734	1.735
30	0.00	1.715	1.712	1.736	1.730	1.734
40	0.09	1.713	1.711	1.739	1.732	1.734
50	0.13	1.712	1.712	1.74	1.731	1.735
60	0.12	1.71	1.711	1.741	1.733	1.736
70	0.10	1.711	1.71	1.739	1.732	1.738
80	0.11	1.71	1.71	1.737	1.733	1.741
90	0.19	1.711	1.71	1.736	1.732	1.74
100	0.02	1.712	1.713	1.734	1.732	1.74
110	0.09	1.709	1.713	1.735	1.734	1.737
120	0.07	1.714	1.716	1.734	1.729	1.736
130	0.10	1.712	1.715	1.734	1.733	1.734
140	0.17	1.712	1.714	1.734	1.734	1.735
150	0.22	1.713	1.714	1.732	1.734	1.735
160	0.26	1.711	1.711	1.734	1.739	1.735
170	0.25	1.712	1.711	1.734	1.739	1.734

(3,-1) for **1PMC** at different θ angle values.

Table 2.

a) The geometrical parameters of C_{ph} -H...H-C and C_{ph} -H...H-B contacts, their energy and also topological parameters of $\rho(\mathbf{r})$ in the corresponding CP (3,-1) for **1POC** according to the B3LYP/6-31G** calculations.

Θ	H(14)H(X), Å	X ^{a)}	$\rho(\mathbf{r}), e/Å^3$	$\nabla^2(\mathbf{r}), \mathbf{e}/\mathrm{\AA}^5$	H(18)H(Y), Å	Y ^{a)}	$\rho(\mathbf{r}), e/Å^3$	$\nabla^2(\mathbf{r}), \mathbf{e}/\mathrm{\AA}^5$
0	2.007	2	0.079	1.13	N/A			
10	2.030	2	0.076	1.11	2.264	4	0.063	0.87
20	2.086	2	0.072	1.09	2.166	4	0.070	0.94
30	N/A				2.106	4	0.076	0.99
40	2.232	6	0.067	0.94	2.092	4	0.078	1.01
50	2.110	6	0.079	1.06	2.122	4	0.075	0.99
60	2.041	6	0.086	1.12	2.206	4	0.068	0.93

Supplementary data

70	2.023	6	0.094	1.14	N/A			
80	2.043	6	0.086	1.13	2.266	3	0.067	0.98
90	2.105	6	0.080	1.09	2.134	3	0.078	1.07

^{a)}X and Y denote hydrogen atom number according to Fig. 1 of the manuscript

b) The geometrical parameters of C_{ph} -H...H-C and C_{ph} -H...H-B contacts, their energy and also topological parameters of $\rho(\mathbf{r})$ in the corresponding CP (3,-1) for **3POC** according to the B3LYP/6-31G** calculations.

Θ	H(14)H(X), Å	X ^{a)}	$\rho(\mathbf{r}), e/Å^3$	$\nabla^2(\mathbf{r}), \mathbf{e}/\mathbf{A}^5$	H(18)H(Y), Å	Y ^{a)}	$\rho(\mathbf{r}), e/Å^3$	$\nabla^2(\mathbf{r}), \mathbf{e}/\mathbf{A}^5$
0	2.188	6	0.055	0.79	N/A			
10	2.214	6	0.053	0.77	N/A			
20	2.281	6	0.049	0.74	N/A			
30	N/A				N/A			
40	N/A				N/A			
50	2.247	2	0.051	0.75	N/A			
60	2.199	2	0.054	0.78	N/A			
70	2.189	2	0.055	0.79	N/A			
80	2.216	2	0.053	0.79	N/A			
90	N/A				N/A			
100	N/A				2.357	5	0.049	0.63
110	N/A				2.331	5	0.050	0.65
120	2.371	3	0.048	0.64	2.353	5	0.049	0.64
130	2.334	3	0.050	0.65	N/A			
140	2.342	3	0.049	0.64	N/A			
150	2.380	3	0.047	0.63	N/A			
160	N/A				N/A			
170	N/A				2.206	6	0.054	0.78

^{a)}X and Y denote hydrogen atom number according to Fig. 1 of the manuscript

c) The geometrical parameters of C_{ph} -H...H-C and C_{ph} -H...H-B contacts, their energy and also topological parameters of $\rho(\mathbf{r})$ in the corresponding CP (3,-1) for **1PMC** according to the B3LYP/6-31G** calculations.

Θ	H(14)H(X), Å	X ^{a)}	$\rho(\mathbf{r}), e/Å^3$	$\nabla^2(\mathbf{r}), \mathbf{e}/\mathrm{\AA}^5$	H(18)H(Y), Å	Y ^{a)}	$\rho(\mathbf{r}), e/Å^3$	$\nabla^2(\mathbf{r}), \mathbf{e}/\mathrm{\AA}^5$
0	2.071	6	0.081	1.05	N/A			

Supplementary Material (ESI) for *Faraday Discussions* This journal is © The Royal Society of Chemistry 2006

10	2.096	6	0.108	1.03	N/A			
20	2.169	6	0.072	0.98	2.195	3	0.070	0.95
30	2.283	6	0.063	0.90	2.139	3	0.074	0.99
40	N/A				2.123	3	0.076	1.00
50	2.189	5	0.070	0.95	2.150	3	0.074	0.98
60	2.106	5	0.077	1.02	2.230	3	0.067	0.92
70	2.071	5	0.081	1.05	N/A			
80	2.085	5	0.080	1.03	2.289	2	0.063	0.89
90	2.144	5	0.074	0.99	2.179	2	0.071	0.96
100	2.257	5	0.065	0.90	2.130	2	0.075	0.99
110	N/A				2.133	2	0.075	0.99
120	2.201	4	0.069	0.95	2.165	2	0.072	0.98
130	2.116	4	0.076	1.01	2.265	2	0.065	0.91
140	2.082	4	0.080	1.04	N/A		0.000	0.00
150	2.074	4	0.081	1.05	2.300	6	0.062	0.88
160	2.115	4	0.077	1.02	2.169	6	0.072	0.98
170	2.209	4	0.069	0.94	2.097	6	0.078	1.03

Supplementary data

^{a)}X and Y denote hydrogen atom number according to Fig. 1 of the manuscript

Table 3. Intermolecular H...H contacts according to the X-ray diffraction experiment and

 PBE calculation of **1POC**.

	Experimental da	ata			Calculated data	L		
Contact	Symm. trans. ^{a)}	НН	Х-НН	ХН-Х	Symm trans. ^{a)}	НН	Х-НН	ХН-Х
$C(2)_{-}H(2) = H(7')_{-}B(7')$	3655	2 280	156.4	104.8	3655	2 614	147 4	110.2
C(2)-II(2)II(7)-D(7)	3645	2.200	150.4	104.0	3645	2.014	147.4	110.2
$C(2)_{H(2)} = H(12')_{R(12')}$	3655	2 578	111.5	101 7				
$C(2) - H(2) \dots H(12) - D(12)$	3645	2.570	111.5	101.7				
B(3) H(3) H(8') B(8')					3555	2 241	166.6	155 7
D (3)-II(3)II(8)-D(8)					3545	2,241	100.0	100.1
B(3)-H(3) H(11')-B(11')	1455	2 583	115.6	145 3				
D (0)-II(0)II(11)-D(11)	1655	2.305		145.5				
B(3)-H(3) H(17')-C(17')	3545	2 427	128 3	124.7	3545	2 423	116.2	120.0
B (0)- H (0) H (17)-C(17)	3555	2.427	120.5	124.7	3555	2.425	110.2	120.0
B(3)-H(3) H(18')-C(18')					3545	2 513	113.5	117.2
					3555	2.515	110.5	117.2

B(4)-H(4)H(10')-B(10')	1455	2.491	158.9	109.1				
B(5)-H(5)H(10')-B(10')	2655	2.519	108.7	172.8	2655	2.191	113.4	174.7
	2655 2565				2655			
B(6)-H(6)H(15')-C(15')	2565	2.327	150.6	127.7				
B(7)-H(7)H(12')-B(12')	3655 3645	2.450	112.4	117.1	3655 3645	2.365	122.4	129.0
B(8)-H(8)H(11')-B(11')	3645 3655	2.430	139.2	120.8				
B(9)-H(9)H(14')-C(14')	2555 2555	2.411	114.8	118.1				
B(9)-H(9)H(15')-C(15')	2555 2555	2.360	160.1	120.5	2555 2555	2.387	157.9	132.6
B(10)-H(10)H(10')-B(10')	2655	2.601	109.7	109.7				
B(12)-H(12)H(17')-C(17')	1645 1465	2.323	146.5	130.0	1645 1465	2.254	152.0	128.5
^{a)} Symmetrical transfor	rmations, wh	ere 365	5 = 1 - x	, 0.5+y,	0.5-z; 3645	= 1 - x	x, -0.5+y	, 0.5-z;

Supplementary data

1455 = -1+x, y, z; 1655 = 1+x, y, z; 2655 = 1-x, -y, -z; 2565 = -x, 1-y, -z; 2555 = -x, -y, -z; 1645 = 1+x, -1+y, z; 1465 = -1+x, 1+y, z; 3545 = -x, -0.5+y, 0.5-z; 3555 = -x, 0.5+y, 0.5-z.

Table 4. Topological parameters of intermolecular H...H contacts in the crystal of **1POC** according to the X-ray diffraction experiment.

Contact	Symm. trans. ^{a)}	ρ(r), e/Å ³	$\nabla^2 \rho(\mathbf{r}), \mathbf{e}/\mathbf{\dot{A}}^5$	3	g(r)	V(r)	h _e (r)	E _{cont.} kcal/mole
С(2)-Н(2)Н(7')-В(7')	3655	0.041	0.55	0.057	0.0044	-0.003	0.0013	0.94
С(2)-Н(2)Н(12')-В(12')	3655	0.032	0.4	0.762	0.0032	-0.0022	0.001	0.69
B(3)-H(3)H(11')-B(11')	1455	0.023	0.28	0.229	0.0022	-0.0014	0.0007	0.44
B(3)-H(3)H(17')-C(17')	3545	0.03	0.38	0.068	0.003	-0.0020	0.001	0.63
B(4)-H(4)H(10')-B(10')	1455	0.029	0.39	0.151	0.003	-0.0020	0.001	0.63
B(5)-H(5)H(10')-B(10')	2655	0.021	0.42	0.723	0.0031	-0.0018	0.0013	0.56
B(6)-H(6)H(15')-C(15')	2565	0.029	0.39	0.143	0.003	-0.0020	0.001	0.63
B(7)-H(7)H(12')-B(12')	3655	0.041	0.44	0.079	0.0036	-0.0027	0.0009	0.85
B(8)-H(8)H(11')-B(11')	3645	0.032	0.37	0.187	0.003	-0.0021	0.0009	0.66
B(9)-H(9)H(14')-C(14')	2555	0.036	0.45	0.076	0.0036	-0.0025	0.0011	0.78
B(9)-H(9)H(15')-C(15')	2555	0.027	0.41	0.16	0.0031	-0.0020	0.0011	0.63
B(10)-H(10)H(10')-B(10')	2655	0.039	0.36	0.336	0.003	-0.0023	0.0007	0.72
B(12)-H(12)H(17')-C(17')	1645	0.031	0.42	0.033	0.0033	-0.0022	0.0011	0.69

a) For symmetry transformations see Table 3.