Supporting information

A Ga₂O₃ underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting

List of the author

Takashi Hisatomi, Jérémie Brillet, Maurin Cornuz, Florian Le Formal, Nicolas Tétreault, Kevin Sivula,* and Michael Grätzel*

*Corresponding author

Dr. Kevin Sivula and Prof. Michael Grätzel

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland

Fax: (+) 41 (0)21 693 4111, E-mail address: kevin.sivula@epfl.ch, michael.graetzel@epfl.ch

Affiliation

Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne

Graphic Abstract

Figure S1. A SEM image of a FTO substrate covered with ATO nanoparticles.

Figure S2. SEM images of hematite photoanodes 27 nm in thickness deposited on (a) bare, (b) SiO_x -modified, and (c) Ga_2O_3 -modified FTO. (d) Bare FTO and (e) Ga_2O_3 -modified FTO before the deposition of hematite layers are shown for comparison.

Figure S3. Photocurrent-potential curves of a hematite photoanode (27 nm in thickness) deposited on a Ga_2O_3 -modified FTO and annealed at 773 K for (a), 0, (b) 2, (c) 4, and (d) 6h.

Figure S4. Transient photo-responses of hematite photoanodes (11 nm in thickness) deposited on a Ga_2O_3 -modified FTO. Electrolyte solution: (a) 1 M NaOH (pH 13.6) and (b) 0.1 M borate buffer (pH 9). The measurements were performed approximately every 4 min.

Figure S5. Current-voltage curves of hematite prepared on FTO (a) unmodified and (b) modified with ATO nanoparticles recorded in the darkness.