Simulation details about BBA5 in NaF solution

We also performed simulations of BBA5 in NaF solutions. The molar ratio of electrolyte/water in NaF solutions is exactly the same as that in NaI solutions. The concentration of NaF is ~4.9 mol/L. Force field parameters of F were also taken from Joung and Cheatham [1]. Comparison between the three salt systems is given in the supplementary information.

We used the same simulation procedure that described in the simulation details to simulate BBA5 in NaF solution.

Results on the simulation of BBA5 in NaF solution.

Backbone	In	NaI	In	NaF	In	Na ₂ SO ₃	In Water
HB	solution		solution		soluti	on	
F8O-Y1H	0.00		0.00		0.00		0.00
Y1O-F8H	<u>0.00</u>		<u>0.00</u>		<u>0.00</u>		0.68
Y6O-V3H	<u>0.00</u>		0.96		0.96		0.96
V3O-Y6H	<u>0.00</u>		0.48		0.75		0.27
R10O-L14H	0.27		0.07		0.89		0.07
S110-A15H	<u>0.00</u>		0.68		0.62		0.19
D12O-K16	0.00		0.00		0.10		0.09
E13O-L17H	0.00		0.00		0.00		0.07
L14O-L18H	0.41		0.84		0.96		0.35
A15O-R19	0.40		<u>0.00</u>		0.38		0.27
K16O-Q20	<u>0.00</u>		<u>0.00</u>		<u>0.00</u>		0.12
L17O-H21H	0.45		<u>0.19</u>		<u>0.00</u>		0.30
L18O-A22H	<u>0.19</u>		<u>0.03</u>		0.28		0.36
R19O-G23	0.00		0.00		0.00		0.00

1.Hydrogen bond number

Table 1. The average number of backbone hydrogen bonds of BBA5 formed in NaI solution, NaF solution Na_2SO_3 solution, and pure water, respectively. The average is over the last 50 ns of the simulations. Overall, hydrogen bonds are strengthened (**bold**) in the Na₂SO₃ solution and weakened (*italic*) in the NaI solution, compared to those in pure water. The strengthening of hydrogen bond in the Na₂SO₃ solution is seen where strong hydrophobic contacts are formed between the alpha and the beta domains (residues 3,6 and 10-15).

2.Comparison between of polar and apolar SASA distribution functions for the three salt systems (black Na₂SO₃, red, NaI, and blue, NaF).

3.The RDF of Na⁺ around the carbonyl oxygen averaged for all residues in NaF (blue) and NaI (red) solutions.

4. The RDF of F (blue) and Γ (red) around the polypeptide backbone NH groups.

5.The number of Na⁺ (line)and water molecules(dash dot) around the BBA5 backbone carbonyl oxygen as a function of center-to-center distances in NaF solution

6. The averaged number of F^{-} (blue) and I^{-} (red) around Na⁺ as a function of center-to-center distances between the ions.

Reference

1. In Suk Joung; T. E. Cheatham III. J. Phys. Chem. B, 2008, 112, 9020.