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This Electronic Supplementary Information (ESI) contains two ap-
pendices with some technical details of the calcuations:
App. A on ‘Spontaneous curvature induced by adsorption’ and
App. B on ‘Stress-free shapes of spherical and cylindrical mem-
branes’.

Appendix A: Spontaneous curvature induced by adsorption

In this appendix, the membrane is viewed as an ultrathin film bounded
by two surfaces or membrane/water interfaces. These two surfaces
are characterized by a certain surface tension that depends on the
coverage of the adsorbed ‘particles’, which may be atomic ions,
small molecules, or macromolecules such as peptides and proteins.
For simplicity, I will focus on a single species of adsorbing parti-
cles; the case with several species of such particles has been dis-
cussed in Refs.1,2, albeit in a rather condensed manner.

A.1 Langmuir-type adsorption onto membrane surfaces.

The membrane is described as an ultrathin film of thickness `me that
separates the aqueous medium into two compartments, an interior
and an exterior one, compare Fig. 3. Let us now focus, for the time
being, on one of these compartments, and denote the correspond-
ing molar concentration by C. The membrane surface exposed to
this compartment provides a certain number of binding sites for the
adsorbing particles. The surface density of these binding sites is de-
noted by 1/Abs, i.e., the average separation of binding sites is equal
to
√

Abs.
When one particle is adsorbed onto the membrane surface, it will

cover a certain surface area denoted by Apa. As shown in Fig. 3 and
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Fig. 8, it is assumed here that the particle size is small compared to
the membrane thickness lme ' 4nm, i.e., that the area Apa is small
compared to l2

me ' 16nm2.
For a membrane surface of area A, the maximal number Nmax

of particles that can be adsorbed onto this surface depends on the
relative size of Apa and Abs according to

Nmax = A/Apa for Apa > Abs
= A/Abs for Abs > Apa .

(A.1)

The maximal coverage

Γmax ≡ Nmax/A (A.2)

of the membrane surface is then given by

Γmax = 1/Apa for Apa > Abs
= 1/Abs for Abs > Apa .

(A.3)

In general, the maximal coverage can vary over a wide range. If
both areas Abs and and Apa are comparable to the area of a lipid
head group, the maximal coverage Γmax will be of the order of
1/nm2. On the other hand, if the binding sites are provided by
membrane-anchored molecules that represent a minority compo-
nent in the membrane and cover only 1 percent of the membrane
area, the maximal coverage Γmax will be of the order of 1/(100nm2).

For each binding site, the adsorption rate is proportional to the
concentration C and, thus, has the form κonC while desorption is
an activated process with rate ωoff. The number N of particles ad-
sorbed onto the membrane surface under consideration then changes
with time t according to

dN/dt = κonC (Nmax−N)−ωoff N . (A.4)

If the adsorbing particles are added at time t = t0, the number N
increases with time according to

N(t) = Nmax
C

Kd +C

[
1− e−ω(t−t0)

]
(A.5)

with the equilibrium constant

Kd ≡ ωoff/κon (A.6)

and the relaxation rate

ω = κonC+ωoff . (A.7)
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Chemical equilibrium between the membrane surface and the
bulk is reached in the long-time limit, which implies the equilibrium
value

N(∞) = Nmax
C

Kd +C
. (A.8)

The corresponding value of the surface coverage Γ is then given by

Γ≡ N(∞)

A
= Γmax

C
Kd +C

(A.9)

which implies

Γ≈ Γmax
C
Kd

for C� Kd (A.10)

and
Γ≈ Γmax for C� Kd . (A.11)

For C = Kd, the expressions (A.10) and (A.11) differ from (A.9)
only by a factor 1

2 and, thus, still provide order of magnitude esti-
mates for Γ.

A.2 Concentration dependence of surface tensions.

For a planar surface, the equilibrium coverage Γeq is related to the
surface tension Σ via the Gibbs adsorption equation as given by

Γ =−(∂Σ/∂µ)T (A.12)

where µ is the chemical potential of the adsorbing particle species.
For dilute solutions, the chemical potential has the form µ = µ0 +
kBT ln(C/C0) which implies

(∂Σ/∂C)T =−kBT Γ/C . (A.13)

Inserting the expression (A.9) for Γ = Γ(C) into this latter relation,
one obtains the concentration-dependent surface tension

Σ(C) = Σ(0)− kBT Γmax ln(1+C/Kd) (A.14)

for dilute solutions of the absorbing particles.
For small concentrations C . Kd, this expression becomes

Σ(C)≈ Σ(0)− kBT ΓmaxC/Kd ≈ Σ(0)− kBT Γ . (A.15)

The concentration dependence of the surface tension as given by
(A.14) can now be applied to both membrane surfaces separately.
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Thus, the exterior membrane surface, which is exposed to the bulk
concentration Cex in the exterior compartment, has the tension

Σex ≡ Σ(Cex)≈ Σ(0)− kBT Γex (A.16)

with
Γex ≈ Γmax

Cex

Kd
for Cex . Kd . (A.17)

Likewise, the interior membrane surface, which is exposed to the
bulk concentration Cin in the interior compartment, has the tension

Σin ≡ Σ(Cin)≈ Σ(0)− kBT Γin (A.18)

with
Γin ≈ Γmax

Cin

Kd
for Cin . Kd . (A.19)

A.3 Available adsorption areas of curved membrane surfaces.

So far, a planar membrane segment as in Fig. 8(a) has been dis-
cussed. This membrane segment is now slightly curved in such a
way that its volume is conserved up to first order in the curvature
radii. The segment then contains a neutral surface that does not
change its area.

In the absence of adsorbed particles, the bilayer membrane has
constant thickness and the neutral surface corresponds to the mid-
plane of the planar bilayer. In the presence of adsorbed particles, the
bilayer thickness varies and the neutral surface is somewhat shifted
from the midplane if the exterior coverage Γex differs from the in-
terior coverage Γin.

In general, the location of the neutral surface is obtained as fol-
lows. The bilayer consists of two leaflets or monolayers. The local
thickness of one leaflet is equal to ` in the absence of an adsorbed
particle and `+ hpa in the presence of an absorbed particle, where
hpa denotes the size of the particle perpendicular to the membrane.
The exterior leaflet of the bilayer has the average thickness

`ex = (1−Γex)`+Γex(`+hpa) . (A.20)

whereas the interior leaflet has the average thickness

`in = (1−Γin)`+Γin(`+hpa) . (A.21)

Furthermore, the average thickness of the bilayer membrane is

`me = `ex + `in . (A.22)
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This bilayer is now symmetrically partitioned into two fictitious lay-
ers of equal thickness

L≡ 1
2 `me =

1
2 (`ex + `in) . (A.23)

The neutral surface corresponds to the midplane between these fic-
titious layers and is displaced by 1

2 (`ex− `in) from its position in
the absence of adsorbed particles. This displacement is positive
and negative for Γex > Γin and Γex < Γin, and the neutral surface is
shifted towards the exterior and interior membrane surface, respec-
tively.

When the neutral surface is bent and aquires the mean curvature
M > 0 as in Fig. 8(b), the area of the exterior membrane surface is
increased and becomes

A′ex ≈ A(1+2LM) = A(1+ `me M) (A.24)

to leading order in M while the area of the interior membrane sur-
face is reduced according to

A′in ≈ A(1−2LM) = A(1− `me M) . (A.25)

(a)                                                  (b)

neutral
surface

A   = Aex

A  = Ain

A   > Aex
/

A  < Ain
/

Fig. 8 Available adsorption areas for (a) a planar membrane and (b) a curved membrane.
In (a), the available adsorption areas Aex and Ain of the exterior and interior membrane
surface are both equal to the area A of the neutral surface. In (b), the neutral surface has
again the area A but the interior and exterior surface areas are now smaller and larger
than A, respectively. The two dotted lines through the particles both have the distance
L = `me/2 from the neural surface. Note that the neutral surface has been slightly shifted
upwards because the exterior surface contains more adsorbed particles.

A.4 Free energy changes and spontaneous curvature.

The planar state in Fig. 8(a) then has the surface free energy Fa =
ΣexA+ ΣinA whereas the curved state in Fig. 8(b) has the surface
free energy Fb = ΣexA′ex + ΣinA′in with A′in < A < A′ex. Thus, as
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the membrane is deformed from the planar state in Fig. 8(a) to the
curved state in Fig. 8(b), its surface free energy changes according
to

∆Fs ≡ Fb−Fa = Σex(A′ex−A)+Σin(A′in−A) . (A.26)

Combining this relation with the expressions (A.24) and (A.25), the
free energy change becomes

∆Fs ≈ (Σex−Σin)`me M A (A.27)

or
∆Fs ≈ kBT (Γex−Γin)`me M A (A.28)

where the relations (A.16) and (A.18) have been used.
Finally, the surface free energy change is balanced against the

bending energy 2κM2A of the membrane segment by minimizing
the total free energy change

∆F ≡ ∆Fs +2κM2 A . (A.29)

In principle, the bending rigidity κ may also change by the adsorp-
tion process but this change is of higher order in the coverages Γex
and Γin or the concentrations Cex and Cin. The value M = Mmin that
minimizes the total free energy change ∆F represents the sponta-
neous curvature

m≡Mmin ≈
kBT
4κ

`me (Γex−Γin)≈
kBT

κ

`meΓmax

4
Cex−Cin

Kd
(A.30)

where the expressions (A.17) and (A.19) have been used. Thus,
the spontaneous curvature is proportional to the ratio kBT/κ, to
the membrane thickness `me, as well as to the coverage difference
Γex−Γin ∝ Cex−Cin. Note that m > 0 for Cex > Cin and m < 0
for Cex <Cin which implies that the membrane bends away from or
bulges towards the compartment with the higher concentration of
adsorbing particles.

App. B. Stress-free shapes of spherical and cylindrical mem-
branes

In this Appendix, stress-free states of giant vesicles as shown in
Fig. 5 with cylindrical tubules as in Fig. 6 will be considered.
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B.1 Stress balance for spheres and spherical caps.

As a rather simple but instructive example, let us first consider an
inflated vesicle, which attains a spherical shape with radius Rsp as
shown in Fig. 5(a). For this shape, the general form (49) of the
shape energy leads to the explicit expression

Esp =−∆P 4π

3 R3
sp +Σ4πR2

sp +2κm2R2
sp−16πκmRsp +8πκ .

(B.1)
This energy contains two terms proportional to the membrane area,
4πR2

sp, which can be combined into the total membrane tension Σ̂≡
Σ+ 2κm2 = Σ+σ as in (50). The shape energy of the spherical
vesicle now becomes

Esp =−∆P 4π

3 R3
sp + Σ̂4πR2

sp−16πκmRsp +8πκ . (B.2)

In mechanical equilibrium, the radial stresses along the spherical
membrane must balance which is described by

∂Esp/∂Rsp = 0 (B.3)

or

∆P = 2Σ̂Msp−4κmM2
sp = 2ΣMsp +4κm2Msp(1−Msp/m) (B.4)

with the mean curvature Msp = 1/Rsp of the sphere which is iden-
tical to (52). A spherical vesicle that satisfies this radial stress bal-
ance condition will be regarded as ‘stress-free’. ∗

The stress balance relation as given by (B.4) and (52) is a local
relation that applies to any point of the spherical membrane. In fact,
the same relation is obtained if we start from the shape energy of a
spherical cap with curvature radius Rsp. Thus, the stress balance re-
lation (52) also applies, in particular, to the spherical caps depicted
in Fig. 5.

B.2 Laplace-like equation for small Msp/m.

Inspection of (B.4) shows that the nonlinear term proportional to
M2

sp can be neglected if the spontaneous curvature m is large com-
pared to the mean curvature Msp of the spherical segment. In the
latter case, the radial stress balance becomes

∆P≈ 2Σ̂Msp = 2(Σ+σ)Msp for m�Msp. (B.5)

∗The intuitive term ‘stress-free’ is used here for all shapes that correspond to extrema of the shape
energy (49). If such an extremum represents a minimum, the stress-free shape is stable; if it represents
a saddle point or maximum, the stress-free shape is unstable.
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The error introduced by the omission of the M2
sp-term is of the order

of Msp/m. Thus, for a spherical vesicle with radius Rsp ' 20µm,
this error is smaller than 10 percent if the spontaneous curvature is
larger than 1/(2µm). Inspection of Table 1 shows that this situation
applies to membranes decorated by anchored DNA molecules or
adsorbed BAR domain proteins as well as to membranes exposed
to PEG/dextran solutions.

B.3 Radial and axial stress balance for tubules.

The general expression (49) for the shape energy implies that the
vesicles in Fig. 6(a,b) with one out- or one in-tube have the shape
energies

E = Esp∓∆PπR2
cyL+ Σ̂2πRcyL∓4πκmL+πκL/Rcy (B.6)

which again depends on the total membrane tension Σ̂≡ Σ+σ. The
minus sign (of the ∓-signs) corresponds to an out-tube, the plus
sign to an in-tube.

In mechanical equilibrium, the stresses along the spherical and
cylindrical membrane segments must balance. For the spherical
vesicle, the radial stress balance is again described by the relations
(B.4) and (B.5) discussed in the previous section. For the cylindri-
cal tubes, the balance of radial stresses implies

∂E/∂Rcy = 0 or ∆P = 2Σ̂Mcy−4κM3
cy , (B.7)

where the latter relation holds both for out- and for in-tubes, respec-
tively.

The retraction force at the end of the tube is given by ∂E/∂L,
where ∂E/∂L > 0 leads to a shortening of the tube. It is now useful
to consider an external force f which is defined in such a way that
f > 0 corresponds to a pulling force for both out-tubes and in-tubes.
The axial force balance at the tube end then has the form

f = ∂E/∂L or ± f = πR2
cy (−∆P+4Σ̂Mcy−16κmM2

cy+8κM3
cy)

(B.8)
where the plus and minus sign in front of f corresponds to out- and
in-tubes.

The two relations (B.7) and (B.8) for the radial and axial force
balance at the tube membrane can be solved for the total tension Σ̂

and the pressure difference ∆P which leads to

Σ̂ = 8κmMcy−6κM2
cy± 2

π
f Mcy (B.9)
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or

Σ = Σ̂−σ =−6κ(Mcy−m)(Mcy− 1
3m)± 2

π
f Mcy (B.10)

and
∆P = 16κM2

cy(m−Mcy)± 4
π

f M2
cy , (B.11)

where the plus and minus signs in front of the f -terms correspond
again to out- and in-tubes. Note that the substitution Mcy→−Mcy,
m→ −m, and ∆P→ −∆P transforms the stress balance relations
(B.9) and (B.11) for the in-tube into those for the out-tube and
vice versa. Since these relations are equivalent to the equations
∂E/∂Rcy = 0 and f = ∂E/∂L, a tube that satisfies these two rela-
tions with f = 0 will be considered as stress-free.

B.4 Mechanical balance between spherical caps and cylindrical tubules.

So far, the spherical vesicle and the cylindrical tubes have been con-
sidered separately. Now, I take into account that these two segments
belong to the same membrane, which implies that the stress balance
relations (B.9) and (B.11) for the tube must be fulfilled together
with the stress balance relation (B.4) for the spherical membrane
segment.3

A combination of the three equations (B.4), (B.9), and (B.11)
eliminates both the pressure difference ∆P and the tension Σ̂ and
leads to the cubic equation

g(Mcy) = 0 (B.12)

with

g(x)≡ 4x3−
(

4m± f
πκ

+3Msp

)
x2 +

(
4m± f

πκ

)
Msp x−mM2

sp

(B.13)
for the mean curvature Mcy of the tube, where the plus and minus
sign corresponds to out- and in-tubes, respectively, as before. This
equation shows that Mcy depends only on three parameters: the
spontaneous curvature m, which may be positive or negative, the
positive mean curvature Msp of the sphere, and the external force f
that pulls on the tube ends. †

† It is straightforward to extend this approach to vesicles, for which the spherical membrane segment
and the tubules consist of different intramembrane phases and, thus, have different elastic parameters.
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B.5 Seperation of length scales.

The basic assumption underlying the shapes in Fig. 6 is that the tube
radius Rcy is much smaller than the curvature radius Rsp of the large
spherical segment which implies that the physically meaningful so-
lutions of g(Mcy) = 0 with g(x) as in (B.13) must satisfy

|Mcy|=
1

2Rcy
�Msp (B.14)

with |Mcy|=−Mcy for in-tubes.
For m = 0, the condition (B.14) implies that the external force f

must be sufficiently large. Indeed, for m = 0, the solution of (B.13)
behaves as

Mcy ≈±
f

4πκ
for f � 3πκMsp , (B.15)

which is physically meaningful since |Mcy| �Msp, but as

Mcy ≈ 3
4 Msp for f � 3πκMsp , (B.16)

which respresents an unphysical solution with Mcy ' Msp, There-
fore, in the small- f regime with f . 3πκMsp, tubes with radius
Rcy� Rsp are only possible for nonzero spontaneous curvature.

B.6 Radii of stress-free tubules.

Let us now focus on stress-free tubules in the absence of an external
force, i.e., for f = 0, and let us first consider the limit of a very large
sphere, i.e., the limit of vanishing Msp. In this limit, the solution to
(B.13) is easily obtained from the first two terms on the right hand
side of this equation, which leads to

Mcy ≈ m for small Msp . (B.17)

Thus, for f = 0, out- and in-tubes with positive and negative mean
curvature Mcy are only possible for positive and negative sponta-
neous curvature m > 0 and m < 0, respectively. It is interesting
to note that the limit of vanishing Msp corresponds to a large pla-
nar membrane, for which the pressure difference ∆P must vanish
in mechanical equilibrium. This property is correctly described by
the stress balance condition (B.11), which implies ∆P = 0 for f = 0
and Mcy = 0.

A combination of the asymptotic equality (B.17) with the con-
dition (B.14) implies that the spontaneous curvatures must satisfy

m�Msp (out-tube) and −m�Msp (in-tube) , (B.18)
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i.e., their absolute values must be large compared to Msp = 1/Rsp.
In these regimes, the equation g(Mcy) = 0 as given by (B.13)

with f = 0 has only one solution, ‡ which behaves as

Mcy ≈ m− 1
4 Msp

[
1− 1

4

(
Msp
m

)2
]

for small Msp/|m|= 2Rcy/Rsp .

(B.19)
The functional form of this solution applies to both out- and in-
tubes.

B.7 Tube radii in the presence of external pulling forces.

If the external force f pulls at the end of the tubes, the cubic equa-
tion g(Mcy) = 0 with g(x) as in (B.13) leads to the tube mean cur-
vature

Mcy ≈ m− 1
4 Msp±

f
4πκ

for small Msp/|m|= 2Rcy/Rsp (B.20)

up to terms of order Msp(Msp/m)2 and ( f/κ)(Msp/m)2, where the
plus and minus sign corresponds again to out- and in-tubes, respec-
tively.

B.8 Many tubules connected to the same vesicle.

It is straightforward to generalize the results just described to sev-
eral tubules connected to the same spherical vesicle or spherical
membrane cap. If we label the different tubules by the index i, each
tubule i with radius Rcy,i and length Li gives a contribution to the
shape energy E that has the same form as the single tube contri-
bution in (B.6). The stress-free state of this vesicle then implies
∂E/∂Rcy,i = 0 and ∂E/∂Li = 0. Apart from the index i, all of these
equations lead again to the stress balance relations (B.9) and (B.11).
This simple structure has two immediate consequences:
(i) A spherical vesicle cannot be connected, at the same time, to
both stress-free out-tubes and stress-free in-tubes; and
(ii) When connected to the same vesicle, all stress-free out- and in-
tubes have the same radius as given by (57) and (58), respectively,
provided all membrane segments have the same composition and,
thus, the same elastic properties.

‡ The uniqueness of the solution can be shown by close inspection of the functional form of g(x). This
function has two extrema with ∂g(x)/∂x = 0 at x1 = 1

2 Msp and x2 = 2
3 m where the first extremum

has a negative g-value since g( 1
2 Msp) =− 1

4 M3
sp < 0.
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B.9 Pressure ranges for stable spheres and cylinders.

The stability of membrane tubes has been theoretically studied in
Refs.4–6. For f = 0, i.e., in the absence of external pulling forces,
the results of these studies imply that tubes are only stable if the os-
motic pressure difference Pcy = Pcy,in−Pcy,ex across the tube mem-
brane is negative and satisfies the inequalities

−P∗cy < Pcy ≤ 0 (stable tubes) (B.21)

with the pressure threshold

P∗cy ≡ 3κ/R3
cy (B.22)

that depends only on the tube radius Rcy and the bending rigidity κ

but not on the spontaneous curvature m. §

The stability criterion for the tube pressure Pcy as given by (B.21)
must now be compared with the pressure difference ∆P that charac-
terizes stress-free tubes. This pressure difference is given by

∆P = 16κM2
cy(m−Mcy)≈ 4κm2Msp−2κmM2

sp (B.23)

as follows from a combination of the expression (B.11) for ∆P with
the asymptotic equality Mcy ≈ m− 1

4 Msp, see (B.19), for the tubes’
mean curvature Mcy. In addition, since the leading term on the right
hand side of (B.23) is positive irrespective of the sign of the spon-
taneous curvature m, the pressure difference ∆P becomes

∆P≈ 4κm2Msp ≈ 4κM2
cyMsp = κ/(R2

cyRsp) (stress-free tubes) ,
(B.24)

a relation that applies to both out- and in-tubes.
A spherical vesicle with radius Rsp, on the other hand, is stable

if the pressure difference Psp = Psp,in−Psp,ex across its membrane
satisfies4,7

Psp > P∗sp (B.25)

with the pressure threshold

P∗sp ≡
4κ

R3
sp
(mRsp−3) = 4κM2

sp(m−3Msp) (B.26)

that depends on the sphere radius Rsp, the bending rigidity κ, and the
spontanous curvature m. The pressure thresholds for spherical caps

§ As shown in citebukm96, the pressure threshold P∗cy is also independent of the additional bending
rigidity for the area-difference elasticity arising in the absence of flip-flops between the two leaflets
of the bilayer membranes.

12 | 1–14

Electronic Supplementary Material (ESI) for Faraday Discussions
This journal is © The Royal Society of Chemistry 2012



with curvature radius Rsp will, in general, be somewhat different
from the expression (B.26) derived for complete spheres with radius
Rsp but this difference does not affect the results described in the
following.

Thus, in order to determine the stability of nanotubes connected
to large spheres or spherical caps, we now have to look for a pres-
sure regime, in which tubes are both stress-free and stable. In ad-
dition, we also need to show that the large spherical segments, to
which these tubes are connected, are stable in the same pressure
regime.

B.10 Instability of stress-free out-tubes.

Stress-free out-tubes can only occur for sufficiently large positive
values of the spontaneous curvature m and are characterized by the
pressure difference Pcy = Pcy,in−Pcy,ex = +∆P. In this case, the
stability criterion (B.21) leads to

−3κ/Rcy3 < ∆P≤ 0 (B.27)

which contradicts the relation (B.24) for stress-free out-tubes since

∆P≈ κ/(R2
cyRsp)> 0 . (B.28)

Thus, stress-free out-tubes are unstable and can only be present
as transient structures. This conclusion is in accordance with the
results of Ref.6.

B.11 Stability of stress-free in-tubes.

Stress-free in-tubes can only occur for sufficiently large negative
values of the spontaneous curvature m and are characterized by the
pressure difference Pcy = Pcy,in−Pcy,ex = −∆P. In this latter case,
the stability criterion (B.21) leads to

0≤ ∆P < 3κ/R3
cy (B.29)

which is consistent with the relation (B.24) for stress-free in-tubes
since

0 < ∆P≈ κ/(R2
cyRsp)� κ/(R3

cy)< 3κ/Rcy3 . (B.30)

Thus, stress-free in-tubes are stable in contrast to stress-free out-
tubes.
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This conclusion is confirmed by examining the stability of the
large sphere. Now, the pressure threshold Psp∗ for the sphere as
given by (B.26) becomes

P∗sp ≈ 4κM2
spm≈ 4κM2

spMcy =−2κ/(R2
spRcy) (B.31)

since m and Mcy are negative for in-tubes. Thus, the negative spon-
taneous curvature m < 0 enhances the stability of the large sphere
and makes the pressure threshold P∗sp negative. Since the sphere is
characterized by positive ∆P as in (B.30), one has ∆P > P∗sp cor-
responding to a stable sphere. This conclusion should also apply
to large spherical caps with curvature radius Rsp, even though the
eigenmodes will be somewhat different.
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