# Supporting Information Coiled coil driven membrane fusion: zipper-like vs. nonzipper-like peptide orientation

Frank Versluis, Juan Dominguez, Jens Voskuhl and Alexander Kros

Soft Matter Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands

# **Table of Contents**

## Page

| Materials and Methods                                                            | 2 |
|----------------------------------------------------------------------------------|---|
| Table S1: Masses and yields of the lipidated peptides                            | 3 |
| Procedures for sample preparation for and characterization of the fusion process | 4 |
| Figure S1: Post fusion CD data of E+K liposomes                                  | 6 |
| Figure S2: Control experiments for lipid mixing                                  | 7 |
| Figure S3: Control experiments for content mixing                                | 7 |

## **Experimental section**

### Materials and Methods

#### Materials

The Fmoc-protected amino acids were purchased from Novabiochem. The Sieber Amide resin was purchased from Agilent Technologies. Fmoc-NH-PEG<sub>12</sub>-COOH was purchased from IRIS Biotech. DOPE and DOPC were obtained from Avanti Polar Lipids and cholesterol was obtained from Sigma Aldrich. DOPE-NBD and DOPE-LR were obtained from Avanti Polar Lipids. Solvents were obtained from Biosolve Ltd.

## General Methods

The purification of the lipidated peptides was performed by RP-HPLC with a Shimadzu system with two LC-8A pumps and a SPD-10AVP UV-VIS detector. UV detection was performed at 214 nm. The peptide hybrids were dissolved in a mixture of tert-butanol:acetonitril:water (1:1:1 v/v) and eluted with a flow rate of 20 mL/min.and with a linear gradient from A to B, where A was H<sub>2</sub>O with 0.1 vol% TFA and B was acetonitrile with 0.1 vol% TFA. Purification was performed on a Gemini C18 column. Initially, samples were eluted with a linear gradient from 10% to 90% B over 3 column volumes. After this initial run, the product peak was identified and the gradient was adjusted to run from x% to x + 10%. Analysis on the purity of synthesized compounds was performed via LCMS.

| Compound | Observed mass (g/mol) | % Yield |
|----------|-----------------------|---------|
| СРЕ      | 3351                  | 11.3%   |
| СРК      | 3348                  | 9.8%    |
| EPC      | 3478                  | 8.2%    |
| КРС      | 3475                  | 8.0%    |
| СРКРС    | 4542                  | 4.7%    |

**Table S1.** Overview of observed masses (by LCMS) of all the lipidated peptides and their yields

#### Liposome preparation

To prepare unlabelled liposomes, a 1 mM stock solution with the composition DOPC:DOPE:Cholesterol (50:25:25 mol%) in chloroform was used. For the lipid mixing assay, a stock solution with the compositition DOPC:DOPE:Cholesterol:DOPE-LR:DOPE-NBD (49.5:24.75:24.75:0.5:0.5 mol%) in chloroform was used. The lipidated peptides were dissolved in a mixture of Chloroform:Methanol (1:1 v/v), to a concentration of 50  $\mu$ M. Typically, liposomes decorated with 1 mol% of the lipidated peptides were used and therefore the peptide hybrid and lipid stock solutions were mixed in equal amounts. The solvent was subsequently removed under a stream of air. For lipid mixing, DLS and CD experiments PBS was added to the dry lipid layer. For the content mixing experiments, PBS buffer containing 20 mM sulphorhodamine B was added to the dry lipid layer. Subsequent sonication yielded ~100 nm liposomes.

## Characterization

#### **Optical density measurements**

Optical density measurements were carried out using a Cary UV-Visible spectrometer. A quartz cuvette with a 1cm pathlength was used. The wavelength was set to 400 nm and samples were continuously measured for 30 minutes, subsequent to combining K decorated liposomes with E decorated liposomes (total lipid concentration 0.25 mM and 1 mol% of lipidated peptide).

### Circular Dichroism

CD spectra were measured using a Jasco J-815 spectropolarimeter. The observed ellipticity is given in millidegrees, the conversion to the mean residue molar ellipticity is performed by the following equation:

$$\left[\theta\right] = \theta_{obs} \frac{MRW}{10lc}.$$

Here,  $\Theta_{obs}$  is the ellipiticity in millidegrees, MRW is the mean residue molecular weight, *l* is the path length of the cuvette in cm and *c* is the peptide concentration in mg/mL. Spectra were obtained with a total sample concentration of 0.5 mM with 1 mol% peptide in a 0.2 cm quartz cuvette at room temperature. The datapoints were collected at a 0.5 nm interval, at a scanning speed of 100 nm/min and a 1 nm bandwith. Each spectrum was the average of 10 scans.

Helical content was determined using the following formula:

$$f_H = \frac{\Theta_{(225nm)}}{-39500 \times (1 - \frac{2,57}{n})}$$

where  $f_H$  is the helical fraction,  $\Theta_{(225nm)}$  is the ellipticity at 225 nm and *n* is the number of peptide bonds.

## Dynamic Light Scattering

Particle size distributions were obtained with the aid of a Malvern Zetasizer Nano ZS which was equipped with a peltier controlled thermostatic holder. The laser wavelength was 633 nm and the scattering angle was 173°. To obtain an estimation of the hydrodynamic radius,  $D_h$ , the Stokes-Einstein relation was used:

$$D = \frac{k_B T}{3\pi\eta D_h}.$$

Here,  $k_B$  is the Boltzmann constant and  $\eta$  is the viscosity of the solvent. Measurements were carried out at room temperature.

### Fluorescence spectroscopy

Fluorescence measurements for content mixing were performed using a luminescence spectrometer LS50B (Perkin Elmer). All spectra were obtained at room temperature using a cuvette with a 1 cm path length. Fluorescence time series measurements were started immediately after mixing 600  $\mu$ L of the fluorescent-labeled liposome suspension with 600  $\mu$ L of unlabeled liposome suspension in the cuvette. The sulphorhodamine fluorescence intensity at 580 nm was monitored in a continuous fashion for 1800 seconds. After that the liposomes were lysed by the addition of 150 mL of 10 wt% Triton X-100 in PBS to obtain 100% increments. The percentage of fluorescence intensity measured seconds.

at time t,  $F_0$  is the 0% fluorescence and  $F_{max}$  is the fluorescence intensity measured after addition of Triton X-100.

Fluorescence measurements for lipid mixing were performed on a Tecan Plate Reader Infinite M1000. NBD emission was measured continuously upon mixing fluorescent K decorated liposomes with non-fluorescent E decorated liposomes at 530 nm for 1800s. The 0% value was determined by measuring NBD emission of K liposomes to which an equal amount of PBS was added. The 100% value was determined by using liposomes which contained half the probe (NBD and LR) concentrations. The percentage of fluorescence increase (%F(t)) was calculated as:  $\%F(t)=(F(t)-F_0)/(F_{max}-F_0)$  where F(t) is the fluorescence intensity measured at time t, F<sub>0</sub> is the 0% fluorescence and F<sub>max</sub> is the fluorescence intensity measured after addition of Triton X-100.

CD experiments on the combination of E and K decorated liposomes



**Figure S1**. CD data for a 1:1 mixture of E and K decorated liposomes. Total lipid concentration 0.25 mM and 3 mol% lipidated peptide, in PBS.

# Control experiments for lipid mixing



**Figure S2.** Lipid mixing between E or K decorated liposomes and plain liposomes, as indicated by an increase in NBD fluorescence. Non-fluorescent liposomes (0.1 mM) were added to fluorescent K liposomes (0.1 mM, 1% peptide E or K).

## Control experiments for content mixing



**Figure S3**. Content mixing between E or K decorated liposomes and sulphorhodamine loaded (20 mM) plain liposomes, as indicated by an increase in sulphorhodamine emission. Non-fluorescent liposomes (0.1 mM) were added to fluorescent K liposomes (0.1 mM, 1% peptide E or K).