Supplementary Information

Molecular Diodes Enabled by Quantum Interference

Arunabh Batra¹, Jeffrey S. Meisner², Pierre Darancet¹, Qishui Chen², Michael L. Steigerwald², Colin Nuckolls^{2,*}, Latha Venkataraman^{1,*}

¹Department of Applied Physics and Applied Mathematics and ²Department of Chemistry, Columbia University, New York, NY

* Corresponding Authors: (CN) cn37@columbia.edu, (LV) lv2117@columbia.edu

Synthesis Details:

<u>General</u>: Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker DRX500 (500 MHz) spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to NMR solvent ($C_2D_2Cl_4$: δ 5.91). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and referenced to the carbon resonances of the solvent ($C_2D_2Cl_4$: δ 74.2). Spectra were analyzed with MestraNova software (Version 7.1). Data are represented as follows: chemical shift, multiplicity (s = singlet, bs=broad singlet, d = doublet, m = multiplet), coupling constants in Hertz (Hz), and integration. High resolution mass spectroscopic data (HRMS) were obtained at the Columbia University mass spectrometry facility using a JEOL JMSHX110A/110A tandem mass spectrometer.

<u>Synthesis:</u> Preparation of molecules 1-3 has been described previously^{1, 2}. Here we describe procedures for preparing molecules 4-5.

7-(3-(methylthio)phenyl)hepta-2,4,6-trienal: General Wittig homologation procedure described previously.³ HRMS: m/z calcd for ($C_{14}H_{14}OS$): 230.0765, found: 230.0754.

9-(3-(methylthio)phenyl)nona-2,4,6,8-tetraenal: General Wittig homologation procedure. HR-MS: m/z calcd for ($C_{16}H_{16}OS$): 256.0922, found: 256.0922.

l-(3-(methylthio)phenyl)-8-(4-(methylthio)phenyl)-octa-1,3,5,7-tetraene: A General Horner Wadsworth Emmons (HWE) procedure reported previously¹ was followed. The product was prepared from the corresponding trienal and dimethyl 4-(methylthio)benzyl phosphonate and was isolated by recrystallization from CH₂Cl₂/MeOH as a yellow solid in 49% yield. ¹H NMR (500 MHz, C₂D₂Cl₄): δ 7.35 (d, J = 8.4 Hz, 2H), 7.28 (bs, 1H), 7.26 (d, J = 7.7 Hz, 1H), 7.21 (m, 3H), 7.12 (d, J = 7.7 Hz, 1H), 6.94-6.78 (m, 2H), 6.56 (d, J = 15.5 Hz, 1H), 6.55 (d, J = 15.5 Hz, 1H), 6.52 (s, 3H), 2.51 (s, 3H); ¹³C NMR (125 MHz, C₂D₂Cl₄): δ 138.21, 137.43, 137.29, 133.66, 133.54, 133.33, 132.74, 132.69, 131.67, 131.35, 129.38, 128.64, 128.08, 126.30, 125.95, 124.93, 123.66, 122.68, 15.24, 15.17; HRMS: m/z calcd for (C₂₂H₂₂S₂): 350.1163, found: 350.1169.

1-(3-(methylthio)phenyl)-10-(4-(methylthio)phenyl)-deca-1,3,5,9-pentaene : General HWE procedure was followed. The product was prepared from the corresponding trienal and dimethyl 4-(methylthio)benzyl phosphonate and was isolated by recrystallization from CH₂Cl₂/MeOH as a light orange solid in 40% yield. ¹H NMR (500 MHz, C₂D₂Cl₄): δ 7.34 (d, J = 8.3 Hz, 2H), 7.28 (bs,1H), 7.25(d,J=87.7 Hz,1H), 7.20 (m, 3H), 7.12 (d, J=7.7 Hz,1H), 6.91-6.79 (m, 2H), 6.54 (d,J=15.5 Hz, 1H), 6.53 (d,J=15.5 Hz, 1H), 6.49-6.37 (m,6H), 2.51 (s,3H), 2.50 (s,3H); ¹³C NMR (125 MHz, C₂D₂Cl₄): δ 138.21, 137.44, 137.26, 133.69, 133.63, 133.31, 133.23, 132.90, 132.79, 131.73, 131.59, 131.35, 129.41, 128.64, 128.14, 126.29, 125.95, 124.94, 123.66, 122.68, 15.24, 15.18; HRMS could not be obtained due to insolubility in methanol.

References:

- 1. J. S. Meisner, S. Ahn, S. V. Aradhya, M. Krikorian, R. Parameswaran, M. Steigerwald, L. Venkataraman and C. Nuckolls, *J Am Chem Soc*, 2012, **134**, 20440-20445.
- 2. S. V. Aradhya, J. S. Meisner, M. Krikorian, S. Ahn, R. Parameswaran, M. L. Steigerwald, C. Nuckolls and L. Venkataraman, *Nano Lett.*, 2012, **12**, 1643-1647.
- J. S. Meisner, D. F. Sedbrook, M. Krikorian, J. Chen, A. Sattler, M. E. Carnes, C. B. Murray, M. Steigerwald and C. Nuckolls, *Chemical Science*, 2012, 3, 1007-1014.