Electronic Supplementary Information

Amorphous calcium phosphate phase mediated crystal nucleation

kinetics and pathway

Shuqin Jiang,^a Haihua Pan,^{*b} Yan Chen,^b Xurong Xu^b and Ruikang Tang^{a,b}

^aDepartment of Chemistry, and Centre for Biomaterials and Biopathways, Zhejiang University, Hangzhou 310027, China. E-mail: rtang@zju.edu.cn

^b Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China. Email: panhh@zju.edu.cn

Tables

Table S1. The composition of SBF solutions with different calcium and phosphate concentrations and temperatures at pH = 7.4. The Ca/P is kept at 1.67.

Ion.			N	0.				
C/(mM)	1.	2.	3.	4.	5.	6.	7	
H^{+}	12.7	12.8	12.9	13.0	13.2	13.4	14.0	
Na ⁺	137.4	137.2	137.1	137.0	136.7	136.4	135.6	
K^+	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Mg^{2+}	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Cl-	148.0	148.0	148.0	148.0	148.0	148.0	148.0	
SO4 ²⁻	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Ca ²⁺	4.509	4.676	4.843	5.01	5.344	5.678	6.68	
PO ₄ ³⁻	2.7	2.8	2.9	3.0	3.2	3.4	4.0	
HEPES-	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
$\ln(S)$	27.94	28.21	28.47	28.72	29.19	29.64	30.83	
$\ln(S)_{\rm eff}$	27.68	27.69	27.69	27.69	27.69	27.69	27.70	

T=25°C

T=37°C								
Ion.				N	0.			
C/(mM)	1.	2.	3.	4.	5.	6.	7	8
H^{+}	12.0	12.1	12.2	12.3	12.5	13.2	14.2	17.49
Na ⁺	138.3	138.2	138.0	137.9	137.6	136.7	135.3	131.0
K^+	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Mg^{2+}	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Cl-	148.0	148.0	148.0	148.0	148.0	148.0	148.0	148.0
SO_4^{2-}	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ca ²⁺	3.34	3.507	3.674	3.841	4.175	5.344	7.041	12.508
PO ₄ ³⁻	2.0	2.1	2.2	2.3	2.5	3.2	4.2	7.49
HEPES-	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
$\ln(S)$	25.93	26.30	26.65	26.98	27.60	29.43	31.39	35.45
$\ln(S)_{\rm eff}$	25.30	25.31	25.31	25.31	25.31	25.32	25.33	25.36

T=45°C

Ion.			N	0.		
C/(mM)	1.	2.	3.	4.	5.	6.
H^{+}	11.7	11.8	12.0	12.5	13.0	13.5
Na ⁺	138.7	138.6	138.3	137.6	137.0	136.3
K^+	5.0	5.0	5.0	5.0	5.0	5.0
Mg ²⁺	1.5	1.5	1.5	1.5	1.5	1.5
Cl-	148.0	148.0	148.0	148.0	148.0	148.0
SO ₄ ²⁻	0.5	0.5	0.5	0.5	0.5	0.5
Ca ²⁺	2.839	3.006	3.34	4.175	5.01	5.845
PO ₄ ³⁻	1.7	1.8	2.0	2.5	3.0	3.5
HEPES-	10.0	10.0	10.0	10.0	10.0	10.0
$\ln(S)$	24.83	25.26	26.05	27.72	29.07	30.19
$\ln(S)_{\rm eff}$	23.82	23.82	23.82	23.83	23.84	23.84

Ion.	NO.										
C/(mM)	1.	2.	3.	4.	5.	6.					
H^{+}	11.6	11.7	11.8	12.0	12.5	13.0					
Na ⁺	138.9	138.7	138.6	138.3	137.7	137.0					
K^+	5.0	5.0	5.0	5.0	5.0	5.0					
Mg^{2+}	1.5	1.5	1.5	1.5	1.5	1.5					
Cl-	148.0	148.0	148.0	148.0	148.0	148.0					
SO_4^{2-}	0.5	0.5	0.5	0.5	0.5	0.5					
Ca ²⁺	2.672	2.839	3.006	3.34	4.175	5.01					
PO4 ³⁻	1.6	1.7	1.8	2.0	2.5	3.0					
HEPES-	10.0	10.0	10.0	10.0	10.0	10.0					
$\ln(S)$	24.48	24.94	25.37	26.16	27.83	29.17					
$\ln(S)_{\rm eff}$	22.07	22.07	22.07	22.07	22.08	22.09					

Table S2. The composition of calcium phosphate solution for polymer systems.

Ion.	Na ⁺	K ⁺	Mg ²⁺	Cl-	SO ₄ ²⁻	Ca ²⁺	PO ₄ ³⁻	HEPES-	[pH]
C/mM	134.6	5.0	1.5	148.0	0.5	8.0	4.8	10.0	7.4

Table S3. Solubility of ACP at different time at lower supersaturated solutions (as marked in Fig. 1, region I) at 25°C. [Ca] and [P] are the calcium and phosphate concentrations in solutions after the precipitation of ACP, which is determined by ICP-AES; pCa and pPO₄ are calculated activity by VMINTEQ 3.0.

Time (h)	[Ca] (mM)	[P] (mM)	рН	Ca/P	рСа	pPO ₄	pKs
1.0	4.563	2.744	7.399	1.50	2.85	8.89	25.84
3.5	4.580	2.738	7.391	1.54	2.85	8.89	25.86
5.0	4.504	2.646	7.388	1.48	2.86	8.91	25.91
Mean(sd)				1.54±0.05			25.87±0.04

Note: The Ca/P ratio of the amorphous phases is in the range 1.54 ± 0.05 . The composition of the amorphous phases can therefore be represented by the formula $Ca_3(PO_4)_{1.962}(OH)_{0.114}$, with pKs=3pCa+1.962pPO_4+0.114pOH.

Table S4. Solubility of ACP at different time at higher supersaturated solutions (as marked in Fig.

1, region II) at 25°C. [Ca] and [P] are the calcium and phosphate concentrations in solutions after the precipitation of ACP, which is determined by ICP-AES; pCa and pPO₄ are calculated activity by VMINTEQ 3.0.

Time (h)	[Ca] (mM)	[P] (mM)	рН	Ca/P	рСа	pPO ₄	pKs
0.5	4.467	2.738	7.397	1.57	2.86	8.89	25.87
2.0	4.284	2.585	7.398	1.49	2.88	8.91	25.97
3.0	4.142	2.532	7.394	1.55	2.90	8.93	26.03
Mean(sd)				1.54±0.04			25.96±0.08

Note: The Ca/P ratio of the amorphous phases is in the range 1.54 ± 0.04 . The composition of the amorphous phases can therefore be represented by the formula $Ca_3(PO_4)_{1.962}(OH)_{0.114}$, with pKs=3pCa+1.962pPO_4+0.114pOH.

Table S5. The amount of ACP (C_{ACP}) and effective activity of calcium (Ca_{eff}) changing with the increase of apparent supersaturation at pH=7.4.

T=25°C							
lnS	27.94	28.21	28.47	28.72	29.10	29.64	30.83
C _{ACP} /mM	0.048	0.101	0.155	0.208	0.315	0.422	0.743
Ca _{eff} /mM	1.206	1.208	1.210	1.212	1.216	1.220	1.233
T=37°C							
lnS	25.93	26.30	26.65	26.98	27.60	29.43	;
C _{ACP} /mM	0.085	0.138	0.192	0.245	0.352	0.726	
Ca _{eff} /mM	0.840	0.842	0844	0.846	0.850	0.86	5
T=45°C							
lnS	24.83	25.26	26.05	27.72	29.07	30.19)
C _{ACP} /mM	0.113	0.166	0.273	0.540	0.806	1.072	2
Ca _{eff} /mM	0.672	0.674	0.678	0.688	0.699	0.71	C
T=55°C							
lnS	25.93	26.30	26.65	26.98	27.60	29.43	;
C _{ACP} /mM	0.232	0.282	0.338	0.445	0.711	0.977	
Ca _{eff} /mM	0.522	0.524	0.526	0.530	0.540	0.55	0

Table S6. The composition of solutions with fixed C_{ACP} =1.648 mM (relative error is less then

Ion.			pl	H	
C/(mM)	7.6	7.4	7.2	7.0	6.8
H^{+}	14.58	14.92	15.40	16.0	16.89
Na ⁺	134.9	134.4	133.8	133.0	130.7
K ⁺	5.0	5.0	5.0	5.0	5.0
Mg^{2+}	1.5	1.5	1.5	1.5	1.5
Cl-	148.0	148.0	148.0	148.0	148.0
SO_4^{2-}	0.5	0.5	0.5	0.5	0.5
Ca ²⁺	7.649	8.216	9.018	10.0	11.52
PO ₄ ³⁻	4.58	4.92	5.4	6.0	6.89
HEPES-	10.0	10.0	10.0	10.0	10.0
$\{Ca\}_{eff}$	0.747	0.902	1.105	1.373	1.749
C _{ACP}	1.646	1.642	1.653	1.638	1.650
$\ln(S)$	33.94	32.53	31.18	29.82	28.59

 $\pm 0.8\%$) and varied pH at 37 °C. The Ca/P is kept at 1.67.

Figures

Fig. S1. Examples of pH curves reproducibility at pH=7.4 at different temperatures. At 25°C: (a) lnS=28.47 (b) lnS=29.19; At 37 °C: (c) lnS=29.43 (d) lnS=38.74. Detailed solution compositions see Table S1.

Fig. S2. TEM images of formed ACP particles at 30 min (a) and 6 h (b) at lnS=26.65, T=37°C, pH=7.4. (c) The size of ACP particles obtained from (a) and (b) (N=60)

Fig. S3. Zeta potentials of minerals at different time at pH=7.4, $T=25^{\circ}C$. (a) at region I, 4.843 mM Ca and 2.9 mM PO₄; (b) at region II, 5.344 mM Ca and 3.2 mM PO₄. I and II were marked by arrows in Fig. 1a. The composition of this two solutions see Table S1 of No.3 and No.5.

Fig. S4. (a) Representative pH curves of HAP crystallization in the presence (pre-mixing and postmixing) and absence (control) of (a) poly-Aspartate (20 ppm, M.W. 27k, Alamanda Polymers, US) and (b) Poly-Glutamate (50 ppm, M.W. 2k-15k, GL biochem(Shanghai), China).

Fig. S5. TEM images of ACP (a,c) and HAP (b,d) precipitations by pre-mixing (a,b) and post-mixing protocols (c,d).