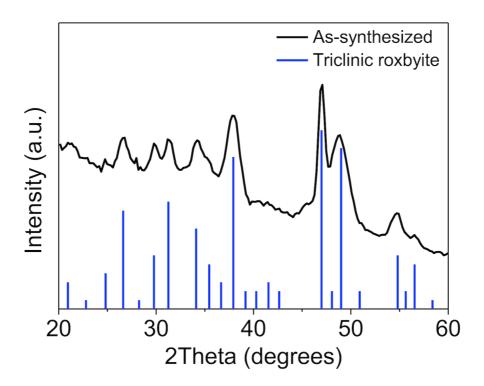
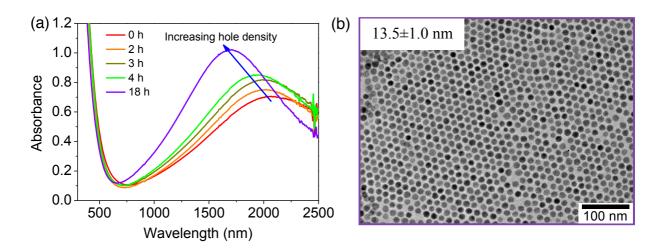
Electronic Supplementary Information for

Determination of a localized surface plasmon resonance mode of Cu_7S_4 nanodisks by plasmon coupling


L. Chen, M. Sakamoto, R. Sato and T. Teranishi*b

^a Department of Chemistry, Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.


^b Institute for Chemical Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

^c PRESTO, Japan Science and Technology Agency, Gokasho, Uji, Kyoto 611-0011, Japan.

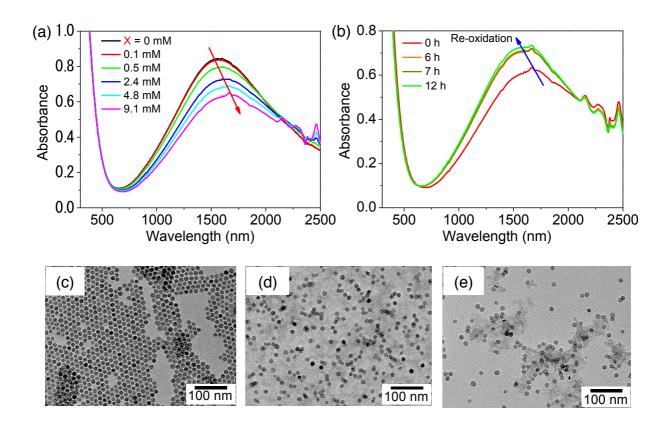

^{*}E-mail: teranisi@scl.kyoto-u.ac.jp

Figure S1. (a) XRD pattern of as-synthesized Cu_7S_4 nanodisks with reference data of triclinic roxbyite $Cu_{58}S_{32}$.¹ The diffraction pattern of monoclinic Cu_7S_4 phase identified in our previous report² is approximately the same as that of triclinic $Cu_{58}S_{32}$ phase. Thus, the crystal structure of monoclinic Cu_7S_4 is equal to triclinic $Cu_{58}S_{32}$.

Figure S2. (a) Time evolution of UV-Vis-NIR absorption spectra of as-synthesized Cu₇S₄ nanodisks in toluene during oxidation with air. (b) TEM image of oxidized (oxidation for 18 h) Cu₇S₄ nanodisks oxidized for 18 h. The Cu₇S₄ nanodisks stored in a glovebox were diluted and transferred to 5-mL flask, stabilized by a trace amount of OAm, taken out from a glovebox, and oxidized under air exposure without magnetic stirring. The slight decrease in size is due to the formation of Cu:OAm complexes.

Figure S3. (a) UV-Vis-NIR absorption spectra of oxidized Cu₇S₄ nanodisks in toluene (a) after reduction with various amounts of DIBAH for 5min and (b) after subsequent reoxidation with air. TEM images of (c) air oxidized, (d) DIBAH reduced and (e) air reoxidized Cu₇S₄ nanodisks. The shape and size of Cu₇S₄ nanodisks were conserved during the oxidation and reduction. Reduction with DIBAH: in a glovebox, 10 mL of oxidized nanodisks in toluene was transferred to a glass vial. Then, 0.1 M DIBAH toluene solution was stepwise added and shaken for 5 min. A total volume of 1.0 mL of DIBAH toluene solution was added. Re-oxidation with air: in a glovebox, the reduced Cu₇S₄ nanodisks were transferred to 5-mL volumetric flask, taken out from a glovebox and oxidized under air exposure without magnetic stirring.

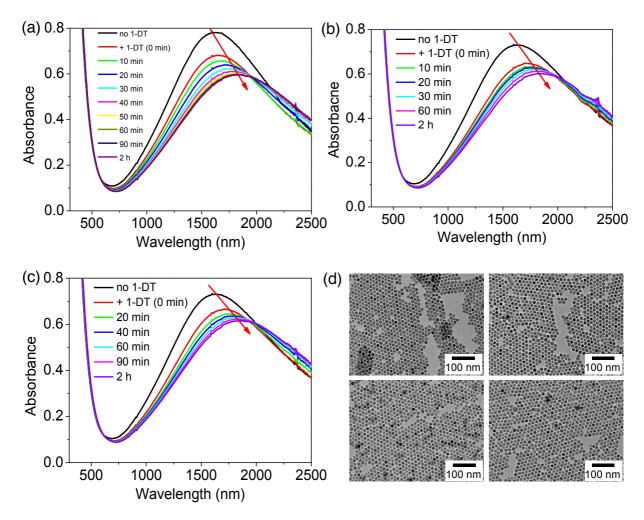



Figure S4. (a) TEM and (b) SEM images of the Cu₇S₄ nanodisk arrays.

Figure S5. Time evolution of UV-Vis-NIR absorption spectra of oxidized Cu₇S₄ nanodisks in CHCl₃ (5 mL) after an addition of (a) 100 μL of 0.1 M 1-DT CHCl₃ solution (including 10 μmol 1-DT), (b) 100 μL of 1.0 M 1-DT CHCl₃ solution (including 100 μmol 1-DT), and (c) 1-DT (80 μmol) and shaken for 30 min. All the experiments were conducted in a glovebox. (d) TEM images of Cu₇S₄ nanodisks (top left) oxidized by air, (top right), reduced by 10 μmol 1-DT, (bottom left) 100 μmol 1-DT, and 80 μmol of pure 1-DT (bottom right). For TEM observation, samples after 2 h reduction by 1-DT were dried in glovebox. The shape and size of the Cu₇S₄ nanodisks are preserved after reduction. The increase of 1-DT concentration does not trigger the formation of nanodisk arrays.

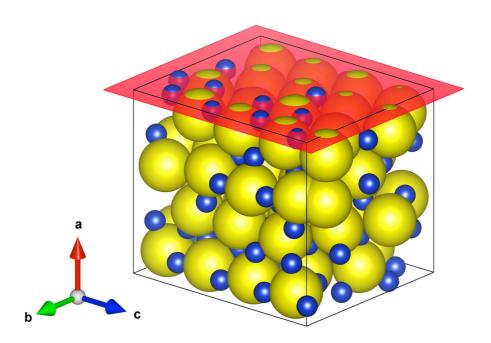
Calculation of amount of 1-DT required to completely cover the hexagonal {100} facets of nanodisks

We roughly calculated the amount of 1-DT required to completely cover the hexagonal facets of Cu_7S_4 nanodisks as follows. First, we calculated the surface area of a hexagonal {100} facet (S_{disk}) of the Cu_7S_4 nanodisk to be 127 nm² as a regular hexagon. A volume of a single nanodisk ($V_{disk} = 573 \text{ nm}^3$) was obtained as the S_{disk} value and its thickness. According to the previous work, the crystal structure of roxbyite $Cu_{58}S_{32}$ is triclinic (see details in Figure S6). Because the structure of a unit cell is similar to the cuboid, the volume of a unit cell ($V_{unit cell}$) can be calculated to be 2.79 nm³ by the following formula,

$$V_{\text{unit cell}} = a \times b \times c$$

The number of Cu atoms in a single nanodisk ($N_{\text{Cu, disk}}$) is calculated to be 2.38 \times 10⁴ according to the following formula,

$$N_{\text{Cu. disk}} = (V_{\text{disk}} / V_{\text{unit cell}}) \times N_{\text{Cu. unit cell}}$$


where $N_{\text{Cu, unit cell}}$ is the number of Cu atoms in a unit cell (58 × 2 = 116). The concentration of Cu atoms in the whole Cu₇S₄ nanodisks in Figure 5c was estimated to be 24.5 mM from the O.D. Thus, the number of Cu₇S₄ nanodisks (N_{disk}) in 5.0 mL of CHCl₃ solution is calculated to be 3.1 × 10¹⁵ by the following equation,

$$N_{\rm disk} = (5.0 \times 10^{-3} \times 24.5 \times 10^{-3} \times N_{\rm A}) / N_{\rm Cu, \, disk}$$

Where N_A is the Avogadro's constant. The total surface area of the hexagonal facets of Cu₇S₄ nanodisks (S) was estimated to be 7.9×10^{17} nm² from the following equation,

$$S = 2 \times S_{\text{disk}} \times N_{\text{disk}}$$

Figure S6 shows that ten Cu atoms are exposed on the (100) facet with the area of $2.08~\text{nm}^2$ in a unit cell of roxbyite. When we assume that one 1-DT molecule is adsorbed to a single Cu atom on $\{100\}$ planes, the maximum amount of 1-DT adsorbed on the hexagonal facets is roughly estimated to be $6.3~\mu\text{mol}$.

Figure S6. Unit cell of triclinic roxbyite Cu₅₈S₃₂ as ideal formula. Cu cations and S anions are shown in small blue spheres and large yellow spheres, respectively. The detailed crystal structure is as follows: a = 13.4051(9), b = 13.4090(8), c = 15.4852(3) Å; $\alpha = 90.022(2)$, $\beta = 90.021(2)$, $\gamma = 90.020(3)^{\circ}$; $Z = 2.^{1}$ The translucent red plane represents the (100) plane.

References

- 1 W. G. Mumme, R. W. Gable and V. Petříček, *Can. Mineral.* 2012, **50**, 423–430.
- 2 M. Kanehara, H. Arakawa, T. Honda, M. Saruyama and T. Teranishi, *Chem. Eur. J.* 2012, **18**, 9230–9238.