Table S1: As	ssignment of sharp well-re-	solved peaks in LC	-MS chromatogram	s of thearubigins
Compound	Name	Experimental	Retention time	MS^2
		mass		
56	Bis flavanol gallaate	761.3	11.8	591.2, 609.2
7, 33	Theacitrin gallate	759.3	32.9	607.3, 741.2
	Ellagoyl-galloyl	633.2	14.7	301.1
	glucose			
7, 33	Theacitrin gallate	759.3	33.4	607.3, 741.2
-	EGCG	457.2	20.6	305.1, 331.1
34	Theacitrin di-gallate	911.2	22.7	893.2, 759.2
	EC-ECG	729.3	24.5	407.2, 441.2 ECG derivative
	Quercitin-glycoside	593.2	26.2	413.2, 293.1
	derivative			
7	Epicatechin gallate	441.1	29.7	289.1
22	Flavonol diglycoside	609.3	30.3	301.1
	Unassigned	775.2	31.6	739.4, 543.3
55	Kaempferol rutinoside	593.2	35.0	285.1
	Unassigned	753.2	36.2	601.3, 409.2 some gallate
×	Theaflavin	563.2	46.1	462.9 and many more
	Unassigned	901.3	46.4, 49.2	775.3 some deoxy hexose derivative
9, 10	Theaflavin gallate	715.2	49.1, 50.6	563.2, 407.2
11	Theaflavin 3,3'	867.2	51.2	715.3, 527.2, 563.2
	digallate			

of black tea thearubigins: Evidence by tandem LC-MS

Oxidative cascade reactions forming polyhydroxy theaflavins and theacitrins in the formation

Nikolai Kuhnert ^{a)*}, Michael N. Clifford ^{b)} and Anja Müller^{a)}

Supplementary information

		4		, ,	
Compound	Trivial name	Molecular formula	Theoretical mass ^{a)} [M-H]	Retention time [min] ^{b)}	MS^2 first peak refers to base peak
1	(-)-Epigallocatechin- gallate	$C_{22}H_{18}O_{11}$	457.0764	20.6	305.1, 331.1
7	(-)-Epicatechin-gallate	$C_{22}H_{18}O_{10}$	441.0816	29.7	289.1
e	(-)-Epigallocatechin	$C_{15}H_{14}O_7$	305.0656	Not found	
4	(-)-Epicatechin	$C_{15}H_{14}O_6$	289.0707	Not found	
S	(+)-Gallocatechin	$C_{15}H_{15}O_7$	305.0656	Not found	
9	(+)-Catechin	$C_{22}H_{18}O_6$	289.0707	Not found	
7	Theacitrin-3-gallate	$C_{37}H_{28}O_{18}$	759.1192	33.4	427.2, 520.8
×	Theaflavin	$C_{29}H_{24}O_{12}$	563.1184	46.1	462.9
12	Theasinensin	$C_{30}H_{26}O_{14}$	609.1239	31.5	439.2, 540.9, 287.1, 331.1
6	Theaflavin 3-gallate	$C_{36}H_{28}O_{16}$	715.1294	50.6	563.2, 407.2
10	Theaflavin-3'-gallate	$C_{36}H_{28}O_{16}$	715.1294	49.2	563.2
11	Theaflavin 3, 3'-	$C_{43}H_{32}O_{20}$	867.1403	51.2	715.3, 563.3, 527.2
	digallate				·
18	Dehydrotheaflavin	$C_{29}H_{22}O_{13}$	577.0977	20.4	Poor quality MS ²
19	Dehydrotheaflavin	$C_{29}H_{22}O_{13}$	577.0977		
20	Theanaphthoquinone	$C_{29}H_{24}O_{12}$	563.1184		See theaflavin (isomer of)
21	Dibenztropolone	$C_{50}H_{38}O_{21}$	973.1822	19.3	765.3, 935.2
22	Quercetin diglycoside	$C_{27}H_{30}O_{16}$	609.1450		Isomer of theasinensin 9
23	Malvin ^{a)}	$C_{29}H_{35}O_{17}$	655.1869	14.6	323.0
24	Quercetin	$C_{15}H_{10}O_7$	301.0343	28.1	284.1, 232.8, 185.0
25	Myricetin glycoside	$C_{21}H_{20}O_{13}$	479.0820	25.2, 26.1	316.1 two isomers found (in some
					teas 4)
26	Quinic acid ester	$C_{36}H_{32}O_{21}$	799.1352	Not found	ſ
27	Chalcan–flavan	$C_{43}H_{38}O_{24}$	937.1667	11.5	Poor quality MS^2
	dimer-gallate				
28	Chalcan-flavan dimer	$C_{36}H_{32}O_{20}$	783.1403	Not found	c
29	Oolongtheanin gallate	$C_{36}H_{28}O_{17}$	731.1243	30.2	Poor quality MS^2
30	Oolongtheanin	$C_{29}H_{24}O_{13}$	579.1133	Not found	

Table S2: Assignment of found masses to tea components described in the literature (see Ref. 15) by searching LC-MS data

31	Stereoisomer of 30	$C_{29}H_{24}O_{13}$	579.1133	Not found	
32	Theacitrin	$C_{30}H_{24}O_{14}$	607.1082	Not found	
33	Theacitrin-gallate ^{a)}	$\mathrm{C}_{37}\mathrm{H}_{28}\mathrm{O}_{18}$	759.1192	32.8	427.2, 520.8
34	Theacitrin-digallate	$C_{44}H_{32}O_{22}$	911.1302	21.8	591.3, 743.2, 759.2, 775.2
36	Theasinensin-digallate	$C_{44}H_{34}O_{22}$	913.1458	21.8	761.2, 743.2, 591.3
37	Theasinensin-digallate	$C_{44}H_{34}O_{22}$	913.1458	Not found	
38	Theasinensin-trigallate	$C_{66}H_{50}O_{33}$	1369.211	Not found	
39	Theaflavate	$C_{36}H_{28}O_{15}$	699.1345	Not found	
40	Theaflavate	$C_{36}H_{28}O_{15}$	699.1345	Not found	
41	Theaflavin-gallate	$\mathrm{C}_{27}\mathrm{H}_{20}\mathrm{O}_{12}$	535.0871	Not found	
42	Theaflavin	$C_{29}H_{24}O_{12}$	563.1184 (see 12)	Not found	
43	Theaflavic acid	$C_{21}H_{16}O_{10}$	427.0660	11.9	409.1, 360.9, 301.1, 383.1, 261.0,
					193.0
44	Theaflavic acid	$C_{21}H_{16}O_{10}$	427.0660	Not found	
45	Theaflavin	$C_{29}H_{24}O_{12}$	563.1184 (see 12)	Not found	
46	Theanaphthoquinone	$C_{28}H_{22}O_{11}$	533.1078	Not found	
47	Diastereomer of 46	$C_{28}H_{22}O_{11}$	533.1078	Not found	
48	No trivial name	$C_{45}H_{34}O_{21}$	909.1509	22.6, 29.5,	Poor quality MS ²
				11.5, 12.7	
49	No trivial name	$C_{44}H_{34}O_{23}$	929.1407	30.2, 32.2	Poor quality MS ²
50	No trivial name	$C_{45}H_{34}O_{22}$	925.1458	51.2	Poor quality MS ²
51	No trivial name	$C_{30}H_{24}O_{14}$	607.1082	Not found	
52	No trivial name	$C_{58}H_{48}O_{25}$	1143.24.01	Not found	
53	No trivial name	$\mathrm{C}_{57}\mathrm{H}_{46}\mathrm{O}_{23}$	1097.2346	Not found	
54	Quercetin glycoside derivative	$C_{27}H_{30}O_{15}$	593.110	38.6	524.9, 442.2 (possibly a gallate)
				Ţ	
55	Ellagoyl-galloyl-	$C_{27}H_{22}O_{18}$	633.0731	14.7	301.0, 271.1, 331.1
	glucose				
a) Masses	quoted here are two four digi	tal figures since th	ney originate from TOF	data (compare	to five figures for ESI-FT ICR data
in previou	is apper); b)The description 'r	lot found" relates	to MS peaks with an ab	solute intensity	below 1000 counts in EICs created
		for	this particular mass.		

Supplementary Material (ESI) for Food & Function This journal is (c) The Royal Society of Chemistry 2010

- 13 Figure S1: Structures of previously reported polyphenols from black tea in tables 1 and 2 (see
- 14 reference 12)
- 15

ÓН

- 16
- 17

Supplementary Material (ESI) for Food & Function This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Food & Function This journal is (c) The Royal Society of Chemistry 2010

OH

=0

Ю

42

OH

Supplementary Material (ESI) for Food & Function This journal is (c) The Royal Society of Chemistry 2010

OH

52

54 Kaempferol rutinoside

HO

OH

ЮH

HO

26

- **-**

27

28

- 29
- 30

31

- 33 Figure S2: a) Total ion chromatogram in negative ion mode of sample TR XII, b) EIC of ion at *m/z* 609.2, c)
- 34 EIC of ion at *m/z* 563.2, d) EIC of ion at *m/z* 441.1, e) EIC of ion at *m/z* 973.2.

- 44 Figure S3: a) TIC of all MSⁿ in negative ion mode of sample TR VI, b) constant neutral loss chromatogram of
- 45 neutral loss at m/z 18 (water), c) constant neutral loss chromatogram of neutral loss at m/z 15 (methyl), d)
- 46 constant neutral loss chromatogram of neutral loss at m/z 44 (CO₂).

- Figure S4: EIC chromatograms extracted from all MSⁿ data for RDA fragment ions in homologous series A: a) 55
- EIC of fragment ion at *m/z* 425.1, b) EIC of fragment ion at *m/z* 441.1, c) EIC of fragment ion at *m/z* 457.1, d) 56
- EIC of fragment ion at m/z 473.1, e) EIC of fragment ion at m/z 489.1. 57

- 66 Figure S5: EIC chromatograms extracted from all MSⁿ data for degallated fragment ions in homologous series
- 67 C: a) EIC of fragment ion at m/z 715.2, b) EIC of fragment ion at m/z 731.2, c) EIC of fragment ion at m/z
- 68 747.2, d) EIC of fragment ion at m/z 763.2, e) EIC of fragment ion at m/z 779.2.

- 77 Figure S6: Selected tandem MS² spectra from LC–MS runs in negative ion mode for three regioisomers of
- 78 **11+O1** in series C showing fragment ion at m/z 731.2 originating from parent ion **11+O1** at m/z 883.2.

- 88 Figure S6 continued: Selected tandem MS spectra from LC–MS runs in negative ion mode for three isomers in
- 89 series C showing fragment ion at m/z 763.2. originating from parent ions 11+O3 at m/z 915.2.

- Figure S7: EIC chromatograms for parent ions in homologous series **D**: a) EIC of ion 7 at m/z 759.2, EIC of
- 100 ions **7+O1** at *m/z* 775.2, b) EIC of ions **7+O2** at *m/z* 791.2, c) EIC of ions **7+O3** at *m/z* 807.2, d) EIC of ions
- **7+O4** at *m/z* 823.2.

- 110 Figure S8: EIC chromatograms extracted from all MSⁿ data for degallated fragment ions in homologous series
- 111 **D**: a) EIC of fragment ion at m/z 607.2, b) EIC of fragment ion at m/z 623.2, c) EIC of fragment ion at m/z
- 112 639.2, d)EIC of fragment ion at m/z 655.2, e)EIC of fragment ion at m/z 671.2.
- 113

116

117

118

119

- Figure S9: Selected MSⁿ spectra for compounds from series **D**: a) MS² spectrum of **7**, b) MS³ spectrum of **7**, c)
- MS^2 spectrum of 7+O1.

- 137 Figure S10: a) TIC of all MSⁿ in negative ion mode of sample TR VI treated with KMnO₄, b) constant neutral
- 138 loss chromatogram of neutral loss at m/z 15 (methyl), c) constant neutral loss of 18 water, d) constant neutral
- 139 loss chromatogram of neutral loss at m/z 44 (CO₂), d) constant neutral loss of 28 (CO).
- 140

