Supporting information

Characterisation of "caramel-type" thermal decomposition products of selected monosaccharides including fructose, mannose, galactose, arabinose and ribose by advanced electrospray ionization mass spectrometry methods

Agnieszka Golon and Nikolai Kuhnert*

School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

To whom correspondence should be addressed. E-mail: n.kuhnert@jacobs-university.de

Table of Contents:

Figure S1. Mass spectra of caramelised: a) fructose, b) galactose, c) mannose in the positive ion mode using a direct infusion into an ESI-TOF-MS instrument

Table S1 High resolution mass (MS-TOF) data of caramelised: a) fructose, b) galactose, c) ribose and d) arabinose and their parent ions (M-H) in the negative ion mode

Figure S2 Two dimensional Kendrick plots for mass increment H_2O showing the distribution of the Kendrick mass defect plotted against the nominal Kendrick mass of pseudo-molecular ions for caramelised: a) fructose, b) galactose, c) ribose and d) arabinose in the negative ion mode

Figure S3 Thermogravimetric curves of caramelised: a) fructose, b) galactose and c) mannose

Figure S4 Infrared spectra of caramelised: a) fructose b) galactose and c) mannose

Figure S5 ¹H NMR spectra of caramelized a) fructose, b) galactose and c) mannose

Figure S6 EIC at m/z 341.0 (C₁₂H₂₂O₁₁) for caramelised fructose in the negative ion mode

Figure S7 EIC at m/z 341.0 (C₁₂H₂₂O₁₁) for caramelised galactose in the negative ion mode

Figure S8 MS^2 spectra of fragment at m/z 341.0 ($C_{12}H_{22}O_{11}$) for five chromatographic peaks of caramelised fructose in the negative ion mode

Figure S9 MS² spectra of fragment at m/z 503.0 (C₁₈H₃₂O₁₆) for ten chromatographic peaks of caramelised fructose in the negative ion mode

Figure S10 MS² spectra of fragment at m/z 647.0 (C₂₄H₄₀O₂₀) for ten chromatographic peaks of caramelised fructose in the negative ion mode

Figure S11 MS² spectra of fragment at m/z 809.0 (C₃₀H₅₀O₂₅) for seven chromatographic peaks of caramelised fructose in the negative ion mode

Figure S12 MS² spectra of fragment at m/z 341.0 (C₁₂H₂₂O₁₁) for two chromatographic peaks of caramelised galactose in the negative ion mode

Figure S13 MS² spectra of fragment at m/z 503.0 (C₁₈H₃₂O₁₆) for four chromatographic peaks of caramelised galactose in the negative ion mode

Figure S14 MS² spectra of fragment at m/z 503.0 (C₁₈H₃₂O₁₆) for four chromatographic peaks of caramelised mannose in the negative ion mode

Figure S15 MS² spectra of fragment at m/z 647.0 (C₂₄H₄₀O₂₀) for ten chromatographic peaks of caramelised mannose in the negative ion mode

Figure S16 MS² spectra of fragment at m/z 809.0 (C₃₀H₅₀O₂₅) for seven chromatographic peaks of caramelised mannose in the negative ion mode

Figure S17 EIC at m/z 161.0 (C₆H₁₀O₅) for caramelised fructose in the negative ion mode

Figure S18 EIC at m/z 323.0 (C₁₂H₂₀O₁₀) for caramelised fructose in the negative ion mode

Figure S19 EIC at m/z 161.0 (C₆H₁₀O₅) for caramelised galactose in the negative ion mode

Figure S20 EIC at m/z 323.0 (C₁₂H₂₀O₁₀) for caramelised galactose in the negative ion mode

Figure S21 EIC at m/z 323.0 (C₁₂H₂₀O₁₀) for caramelised mannose in the negative ion mode

Figure S22 EIC at m/z 359.0 (C₁₂H₂₄O₁₂) for caramelised fructose in the negative ion mode Figure S23 EIC at m/z 359.0 (C₁₂H₂₄O₁₂) for caramelised galactose in the negative ion mode Figure S24 EIC at m/z 149.0 (C₅H₁₀O₅) for caramelised rybose in negative ion mode Figure S25 MS² spectra of fragment at m/z 149.0 (C₅H₁₀O₅) for three chromatographic peaks of caramelised rybose in the negative ion mode

Figure S26 EIC at m/z 149.0 (C₅H₁₀O₅) for caramelised arabinose in the negative ion mode

Figure S27 MS² spectra of fragment at m/z 149 (C₅H₈O₄) for three chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S28 EIC at m/z 281.0 (C₁₀H₁₈O₉) for caramelised rybose in the negative ion mode **Figure S29** MS² spectra of fragment at m/z 281.0 (C₁₀H₁₈O₉) for four chromatographic peaks of caramelised rybose in the negative ion mode

Figure S30 EIC at m/z 281.0 (C₁₀H₁₈O₉) for caramelised arabinose in the negative ion mode

Figure S31 MS² spectra of fragment at m/z 281.0 (C₁₀H₁₈O₉) for ten chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S32 EIC at m/z 413.0 (C₁₅H₂₆O₁₃) for caramelised rybose in the negative ion mode Figure S33 MS² spectra of fragment at m/z 413.0 (C₁₅H₂₆O₁₃) for three chromatographic peaks of caramelised rybose in the negative ion mode

Figure S34 EIC at m/z 413.0 (C₁₅H₂₆O₁₃) for caramelised arabinose in the negative ion mode

Figure S35 MS² spectra of fragment at m/z 413.0 (C₁₅H₂₆O₁₃) for six chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S36 EIC at m/z 113.0 (C₅H₆O₃) for caramelised rybose in the negative ion mode

Figure S37 EIC at m/z 113.0 (C₅H₆O₃) for caramelised arabinose in the negative ion mode

Figure S38 EIC at m/z 263.0 (C₁₀H₁₆O₈) for caramelised rybose in the negative ion mode

Figure S39 MS² spectra of fragment at m/z 263.0 (C₁₀H₁₆O₈) for seven chromatographic peaks of caramelised rybose in the negative ion mode

Figure S40 EIC at m/z 263.0 (C₁₀H₁₆O₈) for caramelised arabinose in the negative ion mode

Figure S41 MS² spectra of fragment at m/z 263 (C₁₀H₁₆O₈) for three chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S42 EIC at m/z 395.0 (C₁₅H₂₄O₁₂) for caramelised arabinose in the negative ion mode

Figure S43 MS² spectra of fragment at m/z 395.0 (C₁₅H₂₄O₁₂) for six chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S44 EIC at m/z 527.0 (C₂₀H₃₂O₁₆) for caramelised rybose in the negative ion mode **Figure S45** MS² spectra of fragment at m/z 527.0 (C₂₀H₃₂O₁₆) for six chromatographic peaks of caramelised rybose in the negative ion mode

Figure S46 EIC at m/z 791.0 (C₃₀H₄₈O₂₄) for caramelised rybose in the negative ion mode

Figure S47 MS² spectra of fragment at m/z 791.0 (C₃₀H₄₈O₂₄) for six chromatographic peaks of caramelised rybose in the negative ion mode

TableS2 Negative ion mode ESI-MS/MS data for caramelised fructose

TableS3 Negative ion mode ESI-MS/MS data for caramelised galactose

TableS4 Negative ion mode ESI-MS/MS data for caramelised mannose

b)

Figure S1. Mass spectra of caramelised: a) fructose, b) galactose and c) mannose in the positive ion mode using a direct infusion into an ESI-TOF-MS instrument

Table S1 High resolution mass (MS-TOF) data of caramelised: a) fructose, b) galactose, c) ribose, d) arabinose and their parent ions (M-H) in the negative ion mode

a)

Peak numbering	Assignment	Mol. Formula	Experimental <i>m/z</i> [M-H]	Theoretical <i>m/z</i> [M-H]	Relative Error [ppm]
1		C ₉ H ₁₈ O ₂	157.1236	157.1234	1.5
2	Fru - H ₂ O	C ₆ H ₁₀ O ₅	161.0457	161.0455	0.7
3	Fru	C ₆ H ₁₂ O ₆	179.0561	179.0561	0.0
4		C ₇ H ₁₄ O ₈	225.0608	225.0616	3.7
5		C ₁₄ H ₂₈ O ₂ 227.2018 227.2017		227.2017	0.7
6		$C_{15}H_{30}O_2$	241.2181	241.2173	3.3
7		$C_{16}H_{32}O_2$	255.2341	255.2330	4.6
8		$C_{18}H_{36}O_2$	283.2653	283.2643	3.8
9		$C_{12}H_{16}O_8$	287.0765	287.0772	2.8
10		C ₁₇ H ₂₆ O ₄	293.1760	293.1758	0.7
11	$(Fru)_2 - 2 \times H_2O$	C ₁₂ H ₁₈ O ₉	305.0891	305.0878	4.3
12	(Fru) ₂ - H ₂ O	$C_{12}H_{20}O_{10}$	323.0977	323.0984	2.0
13	(Fru) ₂	C ₁₂ H ₂₂ O ₁₁	341.1083	341.1089	1.9
14	$(Fru)_2 + H_2O$	C ₁₂ H ₂₄ O ₁₂	359.1189	359.1195	1.7
15		C ₁₃ H ₂₄ O ₁₃	387.1150	387.1144	1.5
16		$C_{22}H_{44}O_8$	435.2970	435.2963	1.5
17	$(Fru)_3 - 3 \times H_2O$	C ₁₈ H ₂₆ O ₁₃	449.1305	449.1301	0.9
18	$(Fru)_3 - 2 \times H_2O$	C ₁₈ H ₂₈ O ₁₄	467.1408	467.1406	0.4
19	(Fru) ₃ - H ₂ O	C ₁₈ H ₃₀ O ₁₅	485.1518	485.1512	1.3

20	(Fru) ₃	$C_{18}H_{32}O_{16}$	503.1628	503.1618	2.0
21	$(Fru)_3 + H_2O$	$C_{18}H_{34}O_{17}$	521.1710	521.1723	2.5
22	$(Fru)_4 - 3 \times H_2O$	$C_{24}H_{36}O_{18}$	611.1846	611.1829	2.9
23	$(Fru)_4 - 2 \times H_2O$	$(Fru)_4 - 2 \times H_2O$ $C_{24}H_{38}O_{19}$ 629.1920 629.1935		629.1935	1.4
24	(Fru) ₄ - H ₂ O	$C_{24}H_{40}O_{20}$	647.2027	647.2040	2.0
25	(Fru) ₄	$C_{24}H_{42}O_{21}$	665.2134	665.2146	1.8
26	$(Fru)_4 + H_2O$	$C_{24}H_{44}O_{22}$	683.2268	683.2251	2.4
27	$(Fru)_5 - 3 \times H_2O$	$C_{30}H_{46}O_{23}$	773.2334	773.2357	2.9
28	$(Fru)_5 - 2 \times H_2O$	$C_{30}H_{48}O_{24}$	791.2431	791.2463	4.0
29	(Fru) ₅ - H ₂ O	$C_{30}H_{50}O_{25}$	809.2545	809.2568	2.9
30	(Fru) ₅	$C_{30}H_{52}O_{26}$	827.2701	827.2674	3.2
31	$(Fru)_5 + H_2O$	$C_{30}H_{54}O_{27}$	845.2815	845.2780	4.2
32	$(Fru)_6 - H_2O$	C ₃₆ H ₆₀ O ₃₀	971.3119	971.3097	2.3
33	(Fru) ₆	$C_{36}H_{62}O_{31}$	989.3173	989.3202	2.9

Electronic Supplementary Material (ESI) for Food & Function This journal is C The Royal Society of Chemistry 2013

b)

Peak numbering	Assignment	Mol. Formula	Experimental <i>m/z</i> [M-H]	Theoretical <i>m/z</i> [M-H]	Relative Error [ppm]
1		C ₆ H ₁₂ O ₂ 115.0767 115.0765		2.1	
2		$C_7H_6O_2$	C ₇ H ₆ O ₂ 121.0294 121.0295		0.7
3		$C_4H_8O_4$	119.0349	119.0350	0.7
4		$C_7H_{14}O_2$	129.0925	129.0921	3.0
5		$C_8H_{16}O_2$	143.1084	143.1078	4.9
6		$C_9H_{18}O_2$	157.1236	157.1234	1.0
7	Gal - H ₂ O	$C_{6}H_{10}O_{5}$	161.0461	161.0455	3.7
8	Galactose	$C_6H_{12}O_6$	179.0564	179.0561	1.4
9		$C_7H_{14}O_8$	225.0608	225.0616	3.6
10		$C_{16}H_{32}O_2$	255.2324	255.2330	2.0
11		$C_{15}H_{22}O_4$	265.1452	265.1445	2.5
12		$C_9H_{18}O_9$	269.0869	269.0878	3.5
13		$C_{18}H_{36}O_2$	283.2629	283.2643	4.6
14	(Gal) ₂ - 3×H ₂ O	$C_{12}H_{16}O_8$	287.0769	287.0772	1.2
15		$C_{17}H_{26}O_4$	293.1758	293.1758	0.1
16	(Gal) ₂ - 2×H ₂ O	$C_{12}H_{18}O_9$	305.0863	305.0878	4.9
17	$(Gal)_2 - H_2O$	$C_{12}H_{20}O_{10}$	323.0985	323.0984	0.3
18	(Gal) ₂	$C_{12}H_{22}O_{11}$	341.1094	341.1089	1.3
19	$(Gal)_2 + H_2O$	$C_{12}H_{24}O_{12}$	359.1183	359.1195	3.2
20	$(Gal)_3 - 4 \times H_2O$	$C_{18}H_{24}O_{12}$	431.1211	431.1195	3.8
21	$(Gal)_3$ - 3×H ₂ O	$C_{18}H_{26}O_{13}$	449.1281	449.1301	4.4
22	(Gal) ₃ - 2×H ₂ O	$C_{18}H_{28}O_{14}$	467.1401	467.1406	1.2

23	$(Gal)_3 - H_2O$	$C_{18}H_{30}O_{15}$	485.1500	485.1512	2.4
24	(Gal) ₃	$C_{18}H_{32}O_{16}$ 503.1606 503.1618		503.1618	2.3
25	$(Gal)_3 + H_2O$	$C_{18}H_{34}O_{17}$	521.1729	521.1723	1.1
26	$(Gal)_4 - 3 \times H_2O$	$C_{24}H_{36}O_{18}$	611.1805	611.1829	3.9
27	$(Gal)_4 - 2 \times H_2O$	$C_{24}H_{38}O_{19}$	629.1907	629.1935	4.4
28	(Gal) ₄ - H ₂ O	$C_{24}H_{40}O_{20}$	647.2021	647.2040	3.0
29	(Gal) ₄	$(Gal)_4 C_{24}H_{42}O_{21} 665.2135$		665.2146	1.6
30	$(Gal)_4 + H_2O$	$C_{24}H_{44}O_{22}$	683.2222	683.2251	4.3
31	(Gal) ₅ - 5×H ₂ O	$C_{30}H_{42}O_{21}$	737.2156	737.2146	1.4
32	$(Gal)_5 - 4 \times H_2O$	$C_{30}H_{44}O_{22}$	755.2227	755.2251	3.2
33	$(Gal)_5 - 3 \times H_2O$	$C_{30}H_{46}O_{23}$	773.2324	773.2357	4.2
34	$(Gal)_5 - 2 \times H_2O$	$C_{30}H_{48}O_{24}$	791.2425	791.2463	4.7
35	(Gal) ₅ - H ₂ O	$C_{30}H_{50}O_{25}$	809.2538	809.2568	3.4
36	(Gal) ₅	$C_{30}H_{52}O_{26}$	827.2671	827.2674	0.3
37	$(Gal)_5 + H_2O$	$C_{30}H_{54}O_{27}$	845.2752	845.2780	3.0
38	$(Gal)_6 - 3 \times H_2O$	$C_{36}H_{56}O_{28}$	935.2877	935.2885	0.9
39	$(Gal)_6 - 2 \times H_2O$	$C_{36}H_{58}O_{29}$	953.3013	953.2991	2.3
40	(Gal) ₆ - H ₂ O	C ₃₆ H ₆₀ O ₃₀	971.3096	971.3097	0.0
41	(Gal) ₆	$C_{36}H_{62}O_{31}$	989.3187	989.3202	1.5
42	$(Gal)_6 + H_2O$	C ₃₆ H ₆₄ O ₃₂	1007.3352	1007.3308	4.3

Electronic Supplementary Material (ESI) for Food & Function This journal is C The Royal Society of Chemistry 2013

c)

Peak numbering	k numbering Assignment Mol. Formula Theoretical <i>m/z</i> [M-H] ⁻ Experimental <i>m/z</i> [M-H] ⁻		Relative Error [ppm]		
1	Rib - 2×H ₂ O	$C_5H_6O_3$	C ₅ H ₆ O ₃ 113.0244 113.0246		1.7
2	Rib - H ₂ O	$C_5H_8O_4$	131.0350 131.0344		4.4
3	Ribose	$C_{5}H_{10}O_{5}$	149.0455	149.0456	0.5
4	Rib + HCOOH	$C_{6}H_{12}O_{7}$	195.0510	195.0516	3.0
6	(Rib) ₂ - 3×H ₂ O	$C_{10}H_{12}O_{6}$	227.0561	227.0572	4.7
7	(Rib) ₂ - 2×H ₂ O	$C_{10}H_{14}O_7$	245.0667	245.0666	0.5
8	(Rib) ₂ - H ₂ O	$C_{10}H_{16}O_8$	263.0772	267.0779	2.4
9	(Rib) ₂	$C_{10}H_{18}O_9$	281.0878	281.0864	5.0
10		$C_{11}H_{16}O_9$	291.0722	291.0714	2.4
11	(Rib) ₂ +HCOOH	$C_{11}H_{20}O_{11}$	327.0933	327.0923	2.9
12	$(Rib)_3 - 3 \times H_2O$	$C_{15}H_{20}O_{10}$	359.0984	359.0994	3.0
13	$(Rib)_3 - 2 \times H_2O$	$C_{15}H_{22}O_{11}$	377.1089	377.1090	0.1
14	(Rib) ₃ - H ₂ O	$C_{15}H_{24}O_{12}$	395.1195	395.1199	1.0
15	(Rib) ₃	$C_{15}H_{26}O_{13}$	413.1301	413.1293	1.8
16	(Rib) ₃ + HCOOH	$C_{16}H_{28}O_{15}$	459.1355	459.1355	0.1
17	(Rib) ₄ - 3×H ₂ O	$C_{20}H_{28}O_{14}$	491.1406	491.1378	2.8
18	$(Ryb)_4 - 2 \times H_2O$	$C_{20}H_{30}O_{15}$	509.1512	509.1487	4.9
19	(Ryb) ₄ - H ₂ O	$C_{20}H_{32}O_{16}$	527.1618	527.1609	1.7
20	(Ryb) ₄	$C_{20}H_{34}O_{17}$	545.1723	545.1739	2.8
21	$(Ryb)_4 + H_2O$	$C_{20}H_{36}O_{18}$	563.1829	563.1829	0.0
22	(Ryb) ₄ + HCOOH	$C_{21}H_{36}O_{19}$	591.1778	591.1793	2.5
23	(Rib) ₅ - 3×H ₂ O	$C_{25}H_{36}O_{18}$	623.1829	623.1751	7.8

24	$(Rib)_5 - 2 \times H_2O$	$C_{25}H_{38}O_{19}$	641.1935	641.1904	4.7
25	(Rib) ₅ - H ₂ O	$C_{25}H_{40}O_{20}$	659.2040	659.2033	1.1
26	(Rib) ₅	$C_{25}H_{42}O_{21}$	677.2146	677.2162	2.3
27	$(Rib)_5 + H_2O$	$C_{25}H_{44}O_{22}$	695.2251	695.2266	2.1
28	(Rib) ₅ + HCOOH	$C_{26}H_{44}O_{23}$	723.2201	723.2236	4.9
30	(Rib) ₆ - 3×H ₂ O	$C_{30}H_{44}O_{22}$	755.2252	755.2272	2.0
31	$(Rib)_6 - 2 \times H_2O$	$C_{30}H_{46}O_{23}$	773.2357	773.2327	3.1
32	(Rib) ₆ - H ₂ O	$C_{30}H_{48}O_{24}$	791.2463	791.2450	1.6
33	(Rib) ₆	$C_{30}H_{50}O_{25}$	809.2568	809.2604	4.4
34	$(Rib)_6 + H_2O$	$C_{30}H_{52}O_{26}$	827.2674	827.2709	4.2

d)

Peak numbering	Assignment	Mol. Formula	Experimental <i>m</i> / <i>z</i> [M-H] ⁻	Theoretical m/z [M-H ⁻	Relative Error [ppm]
1	Ara - H ₂ O	$C_5H_8O_4$	131.0350	131.0350	0.1
2	2 Arabinose C ₅ H ₁₀ O ₅ 149.0454		149.0455	1.0	
3	$(Ara)_2 - 3 \times H_2O$	$C_{10}H_{12}O_{6}$	227.0550	227.0561	5.0
4	$(Ara)_2 - 2 \times H_2O$	$C_{10}H_{14}O_7$	245.0673	245.0667	2.5
5	$(Ara)_2 - H_2O$	$C_{10}H_{16}O_8$	263.0761	263.0772	1.8
6	(Ara) ₂	$C_{10}H_{18}O_9$	281.0867	281.0878	2.0
7	$(Ara)_2 + H_2O$	$C_{10}H_{20}O_{10}$	299.0972	299.0984	7.6

8	(Ara) ₂ +HCOOH	$C_{11}H_{20}O_{11}$	327.0922	327.0933	2.3
9	$(Ara)_3 - 2 \times H_2O$	$C_{15}H_{22}O_{11}$	377.1078 377.1089		4.0
10	$(Ara)_3 - H_2O$ $C_{15}H_{24}O_{12}$ 395.1184		395.1184	395.1195	0.3
11	(Ara) ₃	$C_{15}H_{26}O_{13}$	413.1290	413.1301	2.2
12	$(Ara)_3 + H_2O$	$C_{15}H_{28}O_{14}$	431.1395	431.1406	1.4
13	(Ara) ₃ + HCOOH	$C_{16}H_{28}O_{15}$	459.1344	459.1355	2.8
14	$(Ara)_4 - 2 \times H_2O$	$C_{20}H_{30}O_{15}$	509.1501	509.1512	4.3
15	(Ara) ₄ - H ₂ O	$C_{20}H_{32}O_{16}$	527.1607	527.1618	1.7
16	(Ara) ₄	$C_{20}H_{34}O_{17}$	545.1712	545.1723	1.0
17	$(Ara)_4 + H_2O$	$C_{20}H_{36}O_{18}$	563.1818	563.1829	0.0
18	(Ara) ₄ + HCOOH	$C_{21}H_{36}O_{19}$	591.1767	591.1778	0.4
19	$(Ara)_5 - 2 \times H_2O$	$C_{25}H_{38}O_{19}$	641.1924	641.1935	0.3
20	$(Ara)_5 - H_2O$	$C_{25}H_{40}O_{20}$	659.2029	659.2040	0.8
21	(Ara) ₅	$C_{25}H_{42}O_{21}$	677.2135	677.2146	0.5
22	$(Ara)_5 + H_2O$	$C_{25}H_{44}O_{22}$	695.2241	695.2251	0.6
23	(Ara) ₅ + HCOOH	$C_{26}H_{44}O_{23}$	723.2190	723.2201	1.9
24	$(Ara)_6 - 2 \times H_2O$	$C_{30}H_{46}O_{23}$	773.2346	773.2357	1.2
25	$(Ara)_6 - H_2O$	$C_{30}H_{48}O_{24}$	791.2452	791.2463	4.0
26	(Ara) ₆	$C_{30}H_{50}O_{25}$	809.2557	809.2568	2.2
27	$(Ara)_6 + H_2O$	$C_{30}H_{52}O_{26}$	827.2663	827.2674	2.1
28	(Ara) ₆ + HCOOH	$C_{31}H_{52}O_{27}$	855.2612	855.2623	0.9

a)

b)

c)

d)

Figure S2 Two dimensional Kendrick plots for mass increment H_2O showing the distribution of the Kendrick mass defect plotted against the nominal Kendrick mass of pseudo-molecular ions for caramelised: a) fructose, b) galactose, c) ribose and d) arabinose in the negative ion mode. The colours indicate the homologous series of monomers, dimers, trimers, tetramers, pentamers, hexamers

Figure S3 Thermogravimetric curves of caramelised: a) fructose, b) galactose and c) mannose. The temperature was ramped from 25 to 180 °C (140 °C, fructose) and kept at final temperature for 2 h

Figure S4 Infrared spectra of caramelized: a) fructose, b) galactose and c) mannose

a) IR: 3318.9, 2933.6, 2888.3, 1648.6, 1415.7, 1340.2, 1252.1, 1024.5, 978.9, 924.0, 866.4, 817.4, 778.6 cm⁻¹

b) IR: 3308.6, 2926.3, 2360.1, 2340.7, 1645.5, 1416.8, 1320.6, 1243.4, 1024.1, 773.7 cm⁻¹

c) IR: 3332.0, 2927.1, 2360.4, 1645.2, 1337.2, 995.8, 842.6, 783.14 cm⁻¹

a)

b)

c)

Figure S5 ¹H NMR spectra of caramelized: a) fructose, b) galactose and c) mannose

a) ¹H NMR (400 MHz, D₂O): δ 9.33 (CHO, m), 7.40 (m, Ar-H), 6.54 (m, Ar-H), 3.44-3.91 (m, >CHOH), 1.98 (m, -CH₃).

b) ¹H NMR (400 MHz, D₂O): δ 9.35 (CHO, m), 7.40 (m, Ar-H), 6.41 (m, Ar-H), 4.44-5.19 (m, >C=C-H), 3.35-4.13 (m, >CHOH).

c) ¹H NMR (400 MHz, D₂O): δ 9.31 (CHO, m), 7.39 (m, Ar-H), 6.52 (m, Ar-H), 4.92-5.25 (m, >C=C-H), 3.22-4.37 (m, >CHOH).

b) ¹H NMR

Oligomers of hexose:

Figure S6 EIC at m/z 341.0 (C₁₂H₂₂O₁₁) for caramelised fructose in the negative ion mode

Figure S7 EIC at m/z 341.0 (C₁₂H₂₂O₁₁) for caramelised galactose in the negative ion mode

Figure S8 MS^2 spectra of fragment at m/z 341.0 (C₁₂H₂₂O₁₁) for five chromatographic peaks of caramelised fructose in the negative ion mode

Figure S9 MS^2 spectra of fragment at m/z 503.0 ($C_{18}H_{32}O_{16}$) for ten chromatographic peaks of caramelised fructose in the negative ion mode

Figure S10 MS² spectra of fragment at m/z 647.0 (C₂₄H₄₀O₂₀) for ten chromatographic peaks of caramelised fructose in the negative ion mode

Figure S11 MS² spectra of fragment at m/z 809.0 (C₃₀H₅₀O₂₅) for seven chromatographic peaks of caramelised fructose in the negative ion mode

Figure S12 MS² spectra of fragment at m/z 341.0 (C₁₂H₂₂O₁₁) for two chromatographic peaks of caramelised galactose in the negative ion mode

Figure S13 MS² spectra of fragment at m/z 503.0 (C₁₈H₃₂O₁₆) for four chromatographic peaks of caramelised galactose in the negative ion mode

Figure S14 MS^2 spectra of fragment at m/z 503.0 (C₁₈H₃₂O₁₆) for four chromatographic peaks of caramelised mannose in the negative ion mode

Figure S15 MS² spectra of fragment at m/z 647.0 (C₂₄H₄₀O₂₀) for ten chromatographic peaks of caramelised mannose in the negative ion mode

Figure S16 MS² spectra of fragment at m/z 809.0 (C₃₀H₅₀O₂₅) for seven chromatographic peaks of caramelised mannose in the negative ion mode

Dehydration products:

Figure S17 EIC at m/z 161.0 (C₆H₁₀O₅) for caramelised fructose in the negative ion mode

Figure S18 EIC at m/z 323.0 (C₁₂H₂₀O₁₀) for caramelised fructose in the negative ion mode

Figure S19 EIC at m/z 161.0 (C₆H₁₀O₅) for caramelised galactose in the negative ion mode

Figure S20 EIC at m/z 323.0 (C₁₂H₂₀O₁₀) for caramelised galactose in the negative ion mode

Figure S21 EIC at m/z 323.0 (C₁₂H₂₀O₁₀) for caramelised mannose in the negative ion mode

Hydration products:

Figure S22 EIC at m/z 359.0 (C₁₂H₂₄O₁₂) for caramelised fructose in the negative ion mode

Figure S23 EIC at m/z 359.0 (C₁₂H₂₄O₁₂) for caramelised galactose in the negative ion mode

Monomer and oligomers of pentose:

Figure S24 EIC at m/z 149.0 (C₅H₁₀O₅) for caramelised rybose in the negative ion mode

Figure S25 MS² spectra of fragment at m/z 149.0 (C₅H₁₀O₅) for three chromatographic peaks of caramelised rybose in the negative ion mode

Figure S26 EIC at m/z 149.0 (C₅H₁₀O₅) for caramelised arabinose in the negative ion mode

Figure S27 MS^2 spectra of fragment at m/z 149 (C₅H₈O₄) for three chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S28 EIC at m/z 281.0 (C₁₀H₁₈O₉) for caramelised rybose in the negative ion mode

Figure S29 MS^2 spectra of fragment at m/z 281.0 (C₁₀H₁₈O₉) for four chromatographic peaks of caramelised rybose in the negative ion mode

Figure S30 EIC at m/z 281.0 (C₁₀H₁₈O₉) for caramelised arabinose in the negative ion mode

Figure S31 MS² spectra of fragment at m/z 281.0 (C₁₀H₁₈O₉) for ten chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S32 EIC at m/z 413.0 (C₁₅H₂₆O₁₃) for caramelised rybose in the negative ion mode

Figure S33 MS² spectra of fragment at m/z 413.0 (C₁₅H₂₆O₁₃) for three chromatographic peaks of caramelised rybose in the negative ion mode

Figure S34 EIC at m/z 413.0 (C₁₅H₂₆O₁₃) for caramelised arabinose in the negative ion mode

Figure S35 MS² spectra of fragment at m/z 413.0 (C₁₅H₂₆O₁₃) for six chromatographic peaks of caramelised arabinose in the negative ion mode

Dehydrated pentoses:

Figure S36 EIC at m/z 113.0 (C₅H₆O₃) for caramelised rybose in the negative ion mode

Figure S37 EIC at m/z 113.0 (C₅H₆O₃) for caramelised arabinose in the negative ion mode

Figure S38 EIC at m/z 263.0 (C₁₀H₁₆O₈) for caramelised rybose in the negative ion mode

Figure S39 MS² spectra of fragment at m/z 263.0 (C₁₀H₁₆O₈) for seven chromatographic peaks of caramelised rybose in the negative ion mode

Figure S40 EIC at m/z 263.0 (C₁₀H₁₆O₈) for caramelised arabinose in the negative ion mode

Figure S41 MS² spectra of fragment at m/z 263 (C₁₀H₁₆O₈) for three chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S42 EIC at m/z 395.0 (C₁₅H₂₄O₁₂) for caramelised arabinose in the negative ion mode

Figure S43 MS² spectra of fragment at m/z 395.0 (C₁₅H₂₄O₁₂) for six chromatographic peaks of caramelised arabinose in the negative ion mode

Figure S44 EIC at m/z 527.0 (C₂₀H₃₂O₁₆) for caramelised rybose in the negative ion mode

Figure S45 MS² spectra of fragment at m/z 527.0 (C₂₀H₃₂O₁₆) for six chromatographic peaks of caramelised rybose in the negative ion mode

Figure S46 EIC at m/z 791.0 (C₃₀H₄₈O₂₄) for caramelised rybose in the negative ion mode

Figure S47 MS² spectra of fragment at m/z 791.0 (C₃₀H₄₈O₂₄) for six chromatographic peaks of caramelised rybose in the negative ion mode

Table S2 Negative ion mode ESI-MS/MS data for caramelised fructose

	MS ²	MS ³	MS ⁴
m/z	m/z (Intensity)	<i>m/z</i> (Intensity)	<i>m/z</i> (Intensity)
160.8	113.1 (100.0); 101.2 (77.7); 131.0 (31.8); 71.6 (16.0); 83.4 (13.5)		
178.9	89.3 (100.0); 160.9 (98.5); 143.0 (85.2); 119.1 (67.6); 113.1 (34.8); 131.1 (30.5); 101.2 (24.9); 71.6 (17.4); 148.9 (16.9); 107.1 (13.4); 87.3 (13.0); 59.8 (10.1); 125.0 (9.0); 178.9 (3.4); 99.2 (2.2)	142.9 : 125.0 (100.0); 87.3 (67.4); 115.1 (56.5) 89.2 : 71.6 (100.0); 59.8 (70.74) 119.0 : 101.2 (100.0); 89.3 (10.5) 131.0 : 113.1 (100.0); 101.2 (91.2)	112.0.05.2
		(32.8); 101.1 (14.3)	(100) 85.4 (47.25)
283.1	264.9 (100.0); 217.9 (26.2); 114.1 (20.7); 283.1 (19.7); 246.8 (15.2); 221.9 (10.3); 186.9 (9.8); 220.8 (9.0)	264.8 : 246.8 (100.0); 217.9 (57.01)	
322.9	160.9 (100.0); 232.9 (80.4); 113.1 (22.4); 322.9 (21.2); 143.0 (15.2); 178.8 (12.5); 202.9 (8.9); 274.9 (6.7); 101.2 (6.2); 304.9 (4.1); 131.0 (3.9); 250.9 (3.8); 220.9 (2.7); 119.1 (2.4); 292.9 (2.2); 125.1 (2.2)	232.9 : 160.9 (100.0); 113.1 (67.6); 142.9 (65.2)	
341.0	178.9 (100.0); 322.9 (90.6); 160.9 (34.5); 220.9 (18.1); 341.0 (14.9)	160.9 : 113.1 (100.0); 101.2 (50.4); 142.9 (47.7); 160.9 (25.3); 89.3 (22.1); 85.4 (16.5) 178.8 : 160.9 (100.0); 89.3 (88.6) 160.9 : 101.1 (100.0)	
367.0	276.9 (100.0); 186.9 (47.0); 348.9 (47.7); 204.9 (40.1); 367.0 (17.2); 168.9 (13.8); 330.9 (12.4); 127.0 (7.5); 156.9 (6.1); 306.9 (5.6); 192.9 (4.2); 190.9 (3.2); 336.9 (3.7); 178.9 (2.6); 172.9 (2.2); 113.1 (1.9); 125.1 (1.6); 258.8 (1.4); 312.9 (1.9); 216.8 (1.0)	276.8 : 186.9 (100.0); 204.9 (93.9); 168.9 (38.6); 156.9 (14.6); 216.9 (6.9) 186.9 : 127.0 (100.0) 348.9 : 330.9 (100.0); 186.9 (78.3); 204.9 (73.2); 276.9 (26.6); 258.9 (33.6); 168.9 (40) 204.8 : 186.9 (98.7); 168.9 (100); 156.9 (44.4)	186.9 : 115.1 (100.0) 204.9 : 168.9 (100.0)
413.2	344.9 (100.0); 252.9 (48.1); 322.9 (40.0)		
485.2	322.9 (100.0); 160.9 (19.3); 178.9 (9.2); 232.9 (7.9); 485.2 (7.2); 395.0 (5.6); 143.0 (3.9); 304.9 (3.7); 467.0 (2.7); 383.0 (2.6); 340.9 (1.4); 425.0 (1.1); 449.0 (1.1); 214.9 (1.0); 286.9 (0.9)	322.9 :160.9 (100.0); 232.9 (87.2); 113.1 (27.0); 143.0 (13.9); 178.9 (10.3)	
503.2	340.9 (100.0); 485.0 (58.3); 413.0 (53.7); 178.9 (50.0); 322.9 (50.0); 383.0 (43.8); 160.9 (13.8); 250.8 (7.5); 443.0 (6.8); 220.8 (6.4)	341 :178.9 (100.0)	
529.2	511.1 (100.0); 349.0 (60.1); 439.0 (33.6); 367.0 (20.2); 529.2 (17.0); 276.9 (16.6); 186.9 (12.8); 204.9 (11.4); 330.9 (4.9); 168.9 (3.7); 258.9 (3.3); 493.1 (3.2); 469.1 (2.2); 246.9	511.1 : 348.9 (100.0); 439.0 (42.5); 168.8 (28.4); 276.9 (22.1); 258.9 (21.4); 168.9 (17.5)	

	(2.0); 481.1 (2.0)	439.0 : 349.0(100.0) 349.0 : 186.8 (42.2); 258.9 (41.2)	
647.2	485.01 (100.0); 323.0 (34.4); 467.1 (3.6); 566.1 (2.4); 232.9 (1.7); 323.9 (1.4); 304.9 (1.3); 341.0 (1.1); 629.2 (0.9); 395.0 (0.8); 178.9 (0.6)	485.1 : 322.9 (100.0); 232.9 (9.0)	322.9 : 232.8 (67.3)
665.3	485.1 (100.0); 503.0 (87.0); 340.9 (70.9); 545.1 (52.3); 575.2 (49.2); 322.9 (38.9); 647.2 (36.3); 383.0 (34.5); 413.0 (26.9)		
683.2	647.2 (100.0); 485.1 (33.1); 503.0 (0.5)	647.2: 485.1 (100.0)	
691.2	511.1 (100.0); 673.2 (38.0); 348.9 (32.6); 439.0 (20.3); 529.1 (13.8); 601.2 (12.8); 691.2 (9.1); 367.0 (8.2)		
989.3	647.2 (100.0); 899.3 (55.6); 827.3 (47.8); 869.3 (42.3); 665.2 (42.2); 545.2 (38.7); 485.1 (29.0); 503.1 (21.0); 707.3 (20.2); 340.9 (18.6); 383.1 (17.4); 809.2 (16.6); 737.3 (16.1); 971.3 (16.0); 322.9 (11.2)		

Table S3 Negative ion mode ESI-MS/MS data for caramelised galactose

	MS^2	MS ³
m/z	m/z (Intensity)	<i>m/z</i> (Intensity)
160.9	113.1(100) 101.1 0(90.7) 131.0(47.8) 142.9(33.0) 89.2(13.9) 87.3(12.9)	
	160.9(100) 89.3(61.5) 142.9(43.9) 119.0(35.7) 113.1(25.2) 131.0(21.6) 101.2(21.6) 148.9(8.5) 87.3(7.6) 107.1(7.3)	
178.8	125.0(6.2) 59.8(5.7) 71.5(5.5	160.9: 113.1 (100) 131.0 (68.82) 142.9(31.59)
220.9	160.9(100)	
255.0	236.9(100) 224.9(63.9) 75.4(60.8) 178.9(59.5)	
323.0	160.9(100) 113.1(34.9) 220.9(27.0) 232.8(26.8) 304.9(17.6) 178.9(17.2) 262.9(16.6) 142.9(15.2) 244.8 (6.4) 250.8 (6.0)	161.0: 113.1(100)
	178.9(100) 322.9(69.3) 160.9(40.02) 250.9(30.2) 220.9(27.2) 142.9(22.4) 113.1(20.3) 119.0(14) 101.2 (13.3) 266.9	
341.0	(11.2) 280.9(11.1) 125.0(8.5) 131.0(8.2) 311.0(7.8)	179.0 : 89.3(100)
449.0	286.9(100) 431.0(65.8) 160.9(47.3) 322.9(33)	
	322.9(100) 160.9(15.6) 178.9(6.4) 304.9(4.6) 467.1(4.2) 220.9(4.1) 383.0(3.2) 425.0 (3.0) 340.9(2.9) 449.1(2.8)	
485.2	<u>395.0 (2.5) 142.9(2.2) 364.9(2.0) 232.9(1.8) 262.9(1.8)</u>	323.0 : 160.9(100) 113.1(40.5) 232.9 (32.8)
502.0	340.9(100) 322.9(45) 383.0(29.5) 485.1(28) 178.9(27.2) 443.0(14.5) 220.9(13.2) 250.9(11.9) 413.0(11.9) 160.9(9.0) 280.0(6.6) 204.0(6.6) 262.0(4.1)	240.0.78.0/100
503.0	280.9(6.6) 304.9 (6.0) 262.8(4.1)	340.9 : 78.9(100)
-		383.0 : 220.9(100)
519.0	483.1(100)	
611.2	449.0(100) 431.0(18) 593.1 (17.9) 322.9(17.2) 286.9(15.5) 485.0 (8.8) 220.9(5.6) 521.1(4.3) 178.9(4.0)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	527.1(1.8) $611.2(1.6)$ $557.2(1.6)$ $305.0(1.5)$ $587.2(1.4)$ $425.1(1.5)$ $545.2(1.3)$ $449.1(0.5)$ $202.9(0.5)$ $395.0(0.5)$ $250.0(1.1)$ $615.2(0.0)$ $244.0(0.8)$ $407.0(0.8)$ $232.0(0.7)$ $286.0(0.7)$ $303.0(0.7)$ $638.2(0.7)$ $362.0(0.6)$ $575.2(0.5)$	485 1 : 322 9(100) 160 9(7 4) 220 9 (7 0)
647.2	$\begin{array}{c} 250.9(1.1) & 015.2(0.9) & 244.9(0.8) & 407.0(0.8) & 252.9(0.7) & 280.9(0.7) & 595.0(0.7) & 058.2(0.7) & 502.9(0.0) & 575.2(0.5) \\ \begin{array}{c} 413 & 1(0 \ 5) \end{array}$	304 9 (5 1)
01712	503.1(100) $485.1(53.5)$ $647.2(44.5)$ $322.9(27.1)$ $383.0(26.7)$ $341.0(15.9)$ $545.2(15)$ $443.1(10.2)$ $220.9(7.0)$	
	413.1(5.9) 605.2(5.6) 575.2 (4.4) 262.9(3.8) 280.9(3.8) 395.0 (3.3) 467.1(2.9) 629.2(2.8) 178.9(2.7) 664.3(2.6)	503.1 : 340.9(100) 322.9(38.4) 383.0(29.0)
665.2	304.9(2.3) 160.9 (2) 425.1(1.8) 563.1(1.3)	178.9(18.8)
		485.1 : 341.0 (70.43) 322.9(100)
		383.0 : 220.9(100)
		545.2 : 383.0(100)
683.2	647.2(100) 485.1(11.4) 665.2(10.9)	647.2 : 485.1(100)
	507.1(100) 525.1(68.5) 344.9(60.1) 363.0(52.1) 405.0 (46.2) 655.2 (41.1) 669.2 (28.4) 242.9(27.8) 567.1(26.1)	
687.0	272.9(20)	525.1 : 344.9(100)
737.3	656.2(100) 575.2(83.0) 719.2(41.0) 596.2(22)	
773.3	611.2(100) 449.1(35.9) 593.2(25.6) 755.3(23.6) 323.0(11.6) 485.1(9.5) 431.0(8.3) 383.0(6.3) 491.1(6.0)	611.2 : 449.1(100)
791.3	629.3(100) 647.2(58.9) 773.3(4102) 467.1(30.7) 611.2 (26.8) 755.2(26.8) 322.9(25)	

	647.3(100) 485.1(33.6) 629.2(23.3) 467.1(9.4) 323.0(8.9) 791.3(3.8) 728.3 (3.7) 383.0(3.5) 503.2(2.7) 665.2(2.6)	
809.3	545.2(2.5) 527.2(2.5) 689.3(2.4) 304.9(1.7) 341.0(1.4) 707.2 (1.3)	647.3 : 485.1(100) 467.1(22.6) 323.0(23.6)
		485.1 : 322.9(100)
	665.2(100) 647.2(40.1) 485.1(39.9) 503.1(39.3) 809.3(32.3) 340.9 (16.3) 383.0(16.1) 545.1(15.6) 707.3(120.6)	
827.3	322.9(9.2) 767.2(5.9) 737.2(5.5) 443.1(4.3) 831.2(3.4) 262.8(3.3) 467.0(3.1)	
972.3	810.3(100) 648.2(25.82)	
989.3	827.3(100) 665.3(62.8) 809.3(47.5) 647.2(40.7) 503.1(21) 545.2(20.9) 971.3(18.5) 383.0(17.1) 485.0(16.8)	

Table S4 Negative ion mode ESI-MS/MS data for caramelised mannose

	MS ²	MS ³	MS ⁴
m/z	m/z (Intensity)	<i>m/z</i> (Intensity)	<i>m/z</i> (Intensity)
161.0	101.1(100) 113.1(86.9) 85.3(68.0)		
178.9	160.9(100) 135.0 (85.4 119.0 (79.1) 89.3(78.2) 150.9(71.8) 122.0(69.4)		
253.2	114.1(100) 191.9(78.2) 113.1 (61.8)		
255.0	113.1(100)		
	114.1(100) 113.1(58.6) 219.9(8.2) 221.9(5.7) 218.9(4.5) 262.9(3.7) 251.9(3.6) 178.8(3.3)		
279.9	165.9(2.5)		
283.1	114.1(100) 217.9(69.7) 264.9(66.9) 221.8(38.9) 255.9(20.9)		
322.9	160.9(100) 114.1(41.4) 220.9(38.3) 276.0(15.0) 113.1(12.2) 304.9(10.8) 232.9(9.1)		
	322.9(100) 114.1(96.9) 279.9(82.9) 276.0(75.3) 178.9(35.9) 264.9(13.3) 294.0(11.7) 341.0 (11.0)		
	280.9 (10.2) 160.9(9.0) 220.9 (5.9) 119.1(4.7) 217.9(4.6) 113.1 (3.9) 250.9 (3.1) 221.9(2.8)	323.0 : 275.9(85.05) 114.1 (100)	276.0:
341.0	282.9(2.6)	217.9(16.7)	133(100)
		275.9 : 232.9 217.9	
485.1	322.9(100) 178.9(9.7) 220.9 (9.3) 160.9(8.5) 341.0(7.4) 467.1(7.0) 425.0(4.8) 304.9(4.5)	323.0 : 160.9(100)	
	340.9(100) 443.1(73.6) 383.0(42.0) 485.1(40.1) 322.9(38.1) 178.9(36.9) 413.0(18.5) 220.9(12.3)		
503.1	160.9(9.3) 280.9(8.1) 425.0(7.5) 304.9(7.2) 262.9(5.2) 250.9(4.7)	341.0 : 178.9 (100)	
647.2	485.1(100) 322.9(21.0) 467.1 (15.7) 629.2 (10.0) 425.0(7.4)	485.1 : 322.9(100)	
	503.1(100) 647.2(45.5) 341.0(43.8) 485.1(41.8) 605.2(38.4) 545.1(35.1) 383.0(32.7) 443.1(23.9)		
665.2	323.0(19.1) 575.2(15.6) 587.2(10.0) 413.0(9.9) 467.1(4.3) 280.9(4.0) 220.9(3.8) 304.9(3.1)		
		673.2 : 511.1(100) 613.2(65.43)	
691.2	673.2(100) 511.1(7.32) 348.9(3.43)	655.2(32.4) 493.1(31.79)	

809.3	647.2(100) 629.2(27.7) 485.1(38.7) 791.3(13.4)	
	665.2(100) 503.1(61.1) 647.2(37.0) 545.1(29.2) 707.2(27.4) 485.1(25.6) 809.3(22.8) 605.2(18.6)	
827.3	383.0(15.2) 767.3(14.8) 341.0(12.2) 737.2(12.2) 443.1(11.4) 575.2(10)	
	673.2(100) 775.3(83.5) 817.3(57.8) 511.1(43.1) 715.3(43.1) 493.1 (37.8) 745.3(35) 665.2(34.8)	
835.4	451.1(21.3) 613.2(20.8) 553.1(16.2)	
	827.3(100) 665.2(65.0) 503.1(37.3) 809.2(35.6) 647.2(34.0) 929.2(25.8) 707.2(22.7) 869.3(22.3)	
989.4	485.0(20.4) 971.2 (20)	
1151.4	989.3(100) 827.3(62.21)	
1313.4	1151.3(100)	
	1159.3(100) 1261.4(54.96) 1303.4(59.80) 1201.3(33.08) 1141.4(42.75) 997.3(50.64) 835.3(38.93)	
1321.4	673.2(25.7)	