A Practical Improvement of Odorless Corey-Kim and Swern Oxidations

Kiyoharu Nishide,* Pranab K. Patra, Manabu Matoba,

Kandasamy Shanmugasundaram, and Manabu Node*

Department of Pharmaceutical Manufacturing Chemistry

Kyoto Pharmaceutical University

Misasagi, Yamashina, Kyoto 607-8414, Japan

nishide@mb.kyoto-phu.ac.jp node@mb.kyoto-phu.ac.jp

<Contents>

²H NMR spectra

Experimental procedure and data	Pages S2-S3
Tables	Page S4
¹ H and ¹³ C NMR spectra	Pages S5-S <mark>19</mark>

Page S20-S21

Procedure for the preparation of 6-morpholinohexan-1-ol (1a). A mixture of morpholine (5.04 g, 57.85 mmol) and 1-chloro-6-hexanol (7.90 g, 57.85 mmol) was heated at 120°C for 5 h. The solid cake was dissolved in warm methanol (10 mL), cooled and triturated with hexane (15 mL). The light pink crystals were filtered and washed with methanol and hexane (1:5) to yield HCl salt of $1a^{11}$ (12.60 g, 97%): mp 164-165°C (methanol/ether); IR (KBr): 3415, 3395, 2945, 2925, 2710, 1430, 1310 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz): δ 4.81 (br s, 1H, OH), 4.03 (br d, *J* = 12.1 Hz, 2H), 3.82 (br t, *J* = 12.1 Hz, 2H), 3.55 (t, *J* = 6.2 Hz, 2H), 3.49 (br d, *J* = 12.3 Hz, 2H), 3.17-3.10 (m, 4H), 1.83-1.75 (m, 2H), 1.58-1.52 (m, 2H), 1.46-1.40 (m, 4H); ¹³C NMR (CD₃OD, 100 MHz): δ 65.0, 62.6, 58.4, 53.1, 33.3, 27.4, 26.4, 24.6; MS (EI): m/z 187 (M⁺, 2.5), 157 (3.4), 100 (100), 88 (2.8); Anal. Calcd for C₁₀H₂₂NO₂Cl: C, 53.68; H, 9.91; N, 6.26. Found: C, 53.42; H, 9.96; N, 6.51.

Typical procedure for the preparation of 6-morpholinohexan-1-thiol (2a). To a solution of morpholino alcohol **1a** (10.5 g, 56.06 mmol), thiourea (4.69 g, 61.66 mmol) in water (20 mL) was added 48% HBr (27.22 g, 0.34 mol) slowly. The reaction mixture was refluxed with stirring at 120°C for 8 h under N₂ before being brought to rt. A solution of NaOH (20 g) in water (200 mL) was poured into the reaction mixture and kept refluxing under N₂ without stirring for another 2 h. Cooled and the pink colored solution was extracted with diethyl ether (5 × 75 mL). The ethereal layer was dried (MgSO₄) and the solvent was evaporated under reduced pressure to give crude material (9.72 g) as thiol **2a** (R_f = 0.4, 10% MeOH in hexane as eluents) along with little amount of the corresponding disulfide (R_f = 0.1, 10% MeOH in hexane as eluents). Silica gel column chromatography using hexane and ethyl acetate (1:1) or kuegelruhr distillation (130°C, 1.5 mmHg) afforded pure thiol **2a** as colorless oil (8.34 g, 73%). bp 130°C (1.5 mmHg); IR (CHCl₃): 3030, 2920, 2860, 2770, 2490, 1605, 1450, 1360 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.70-3.68 (m, 4H), 2.50 (q, J = 7.1 Hz, 2H), 2.40 (br s, 4H), 2.29 (t, J = 7.7 Hz, 2H), 1.59 (quint, J = 7.1 Hz, 2H), 1.50-1.20 (m, 7H); ¹³C NMR (CDCl₃, 100 MHz): δ 66.9, 59.0, 53.8, 33.9, 28.2, 26.9, 26.4, 24.5; MS (EI): m/z 203 (M⁺, 2.5), 170 (26.1), 100 (100), 87 (15.8); HRMS calcd for C₁₀H₂₁NOS: 203.1340, found 203.1344.

5-Morpholinopentan-1-thiol (entry 3 in Table 1): Colorless oil (130°C, 1.5 mmHg); IR (CHCl₃): 3015, 2940, 2860, 2815, 1460, 1450, 1225, 1115 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.71 (dd, *J* = 4.9, 4.6 Hz, 4H), 2.53 (q, *J* = 7.3 Hz, 2H), 2.43 (br dd, *J* = 4.2, 4.0 Hz, 4H), 2.33 (dd, *J* = 7.3, 5.8 Hz, 2H), 1.64 (q, *J* = 7.3 Hz, 2H), 1.54-1.37 (m, 4H), 1.35 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 66.9, 58.8, 53.7, 33.8, 26.1, 25.9, 24.5; MS (CI): *m*/*z* 190 (M⁺+H, 5.2), 156 (49), 100 (100), 87 (4.1); HRMS calcd for C₉H₂₀NOS (M⁺+H): 190.1266, found 190.1259.

4-Morpholinobutan-1-thiol (2b) was prepared similarly from **1b**¹⁾ (8.75 g, 54.95 mmol), thiourea (4.60 g, 60.45 mmol) and 48% HBr (26.67 g, 0.33 mol) in 74% yield (7.12 g). Colorless oil (130°C, 1.5 mmHg); IR (CHCl₃): 3005, 2940, 2860, 2815, 1600, 1460, 1360 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz): δ 3.72 (t, *J* = 4.6 Hz, 4H), 2.55 (q, *J* = 7.8 Hz, 2H), 2.43 (dd, *J* = 4.9, 4.6 Hz, 4H), 2.34 (t, *J* = 7.3 Hz, 2H), 1.72-1.50 (m, 4H), 1.36 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz): δ 66.9, 58.4, 53.7, 31.9, 25.3, 24.6; MS (EI): *m*/*z* 175 (M⁺, 25.9), 174 (75.1), 142 (13.7), 100 (100), 87 (62.9); HRMS calcd for C₈H₁₇NOS: 175.2943, found 175.2940.

3-Morpholinopropan-1-thiol (entry 1 in Table 1)²: Colorless oil (110°C, 1.5 mmHg); IR (CHCl₃): 3005, 2965, 2945, 1460, 1260, 1115 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.71 (dd, J = 4.9, 4.6 Hz, 4H), 2.59 (q, J = 7.1 Hz, 2H), 2.48-2.40 (m, 6H), 1.81 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 67.0, 57.2, 53.7, 30.6, 22.6; MS (EI): m/z 161 (M⁺, 73.9), 146 (3.6), 127 (12.5), 113 (9.4), 100 (100); HRMS calcd for C₇H₁₅NOS: 161.0874, found 161.0871.

References

1) Anderson, G. W.; Pollard, C. B. J. Am. Chem. Soc. 1939, 61, 3440.

2) Clinton, R. O.; Salvador, U. J.; Laskowski, S. C. J. Am. Chem. Soc. 1949, 71, 3366.

Entry	Thiols	Carbon Length	Odor A	Scale ^{a)} B	Bp (°C)	
1	CH ₃ CH ₂ SH	2	5	5	35	
2	CH ₃ (CH ₂) ₂ SH	3	5	5	67	
3	CH ₃ (CH ₂) ₃ SH	4	5	4	98	
4	CH ₃ (CH ₂) ₄ SH	5	4	3	126	_
5	CH ₃ (CH ₂) ₅ SH	6	3	3	150	ç
6	CH ₃ (CH ₂) ₆ SH	7	4	3	173	2
7	CH ₃ (CH ₂) ₇ SH	8	2	1	197	č
8	CH ₃ (CH ₂) ₈ SH	9	2	1	220	-
9	CH ₃ (CH ₂) ₉ SH	10	1	1	114/ 13mmH	Ig
10	CH ₃ (CH ₂) ₁₀ SH	11	1	0	103/ 3mmH	g
11	CH ₃ (CH ₂) ₁₁ SH	12	0	0	266	
12	CH ₃ (CH ₂) ₁₃ SH	14	0	1	298	
13	CH ₃ (CH ₂) ₁₅ SH	16	0	1	184/ 7mmH	g
a) Od	or Scale: stench	n 5 🖛		— 0 0	odorless	

 Table 1. The Odor Scale for Alkanethiols

 Table 2. The Odor Scale for Alkyl Methyl Sulfides

Entry	Sulfides	Carbon length	Odor Scale			
			А	В	С	
1	CH ₃ SCH ₃	1	5	5	5	
2	CH ₃ CH ₂ SCH ₃	2	5	5	5	
3	CH ₃ (CH ₂) ₂ SCH ₃	3	4	4	4	
4	CH ₃ (CH ₂) ₃ SCH ₃	4	4	4	4	
5	CH ₃ (CH ₂) ₄ SCH ₃	5	4	3	4	
6	CH ₃ (CH ₂) ₆ SCH ₃	7	2	2	3	
7	CH ₃ (CH ₂) ₇ SCH ₃	8	2	2	2	
8	CH ₃ (CH ₂) ₉ SCH ₃	10	1	1	2	
9	CH ₃ (CH ₂) ₁₀ SCH ₃	11	1	1	0	
10	CH ₃ (CH ₂) ₁₁ SCH ₃	12	0	0	0	
11	CH ₃ (CH ₂) ₁₃ SCH ₃	14	0	0	0	
12	CH ₃ (CH ₂) ₁₅ SCH ₃	16	0	0	0	
13	C ₆ H ₁₃ SC ₆ H ₁₃	6+6	1	1	1	

odor scale : stench 5 🔶 0 odorless

- S5-

- S6-

- S7-

- S10-

- S11-

- S12-

NEP-150 enp6 süput

- S13-

- S14-

- S16-

- S18-

- S19-

- S20-

- S21-