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Differential scanning calorimetry (DSC) measurements were performed using a DSC-Q100 

differential scanning calorimeter (TA Instruments Inc.). The samples were sealed in aluminum pans 

and scanned between 173K and 393K with a scanning rate of 10oC/min. The glass transition 

temperature (Tg) determined from the midpoint of the heat capacity change is at -74.0 oC.  

 

Figure S1. Differential scanning calorimetry (DSC) curves for the [NHC][BF4] 
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The thermal stability was measured dynamically under N2 with rate of 20 oC /min, using Perkin 

Elmer co. Pyrid Dimond TG. The thermo gravimetric (TG) curves of [NHC]BF4 showed weight loss 

processes with 10% weight loss at 239oC. It indicated that the IL has stability enough under reaction 

conditions.  

 
Figure S2. TG trace of the [NHC][BF4] 

 

Electrochemical stability was analyzed using a cyclic voltammetry (CHI660A Instruments 

Electrochemical Work Station) at room temperature. A glassy carbon working electrode of 3 mm 

diameter was used with a platinum wire as the counter electrode and a Ag/AgCl as the reference 

electrode. The electrochemical stability behavior of [NHC][BF4] was stable to potentials from -0.5V 

to +1.5v versus Ag/Ag+. The reduction current observed in the vicinity of -0.3v is resulted from the 

reduction of active H in [NHC][BF4]. 
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Figure S3. Cyclic voltammograms of [NHC][BF4] at 20 oC 

 

In 1H-NMR of [NHC][BF4] (Figure S6), there are two active H (A, δ=8.26ppm and 12.0ppm) 

which shift to low field in comparison with corresponding H (B, δ=6.9ppm) in caprolactam, 

indicating that such acidic H do not bond covalently to N but dissociate around caprolactam and BF4
-. 

When exchanged by D2O, two active H disappeared and DHO signals appeared (C, δ=5.94ppm).  

 

 

Figure S4. 1H-NMR (400MHz, d6-DMSO) spectra of active H in (A) [NHC][BF4], (B) ε-caprolactam, 

and (C) (A) was added D2O for exchanging active H 
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Figure S5. 1HNMR spectra of [NHC][BF4], Spectral data: 1H NMR (400 MHz, d6-DMSO) δ 

1.453 (2H, -CH2-), 1.485 (2H, -CH2-), 1.657 (2H, -CH2-), 2.378 (2H, NCH2-), 3.104 (2H, 

-COCH2-), 8.260 and 11.980 (2H, -NH- and HBF4).  
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Figure S6. 1HNMR spectra of [NHC][BF4], a few drops of D2O were added for exchanging 

active H. Spectral data: 1H NMR (400 MHz, d6-DMSO): δ 1.453 (2H, -CH2-), 1.485 (2H, 

-CH2-), 1.657 (2H, -CH2-), 2.378 (2H, NCH2-), 3.104 (2H, -COCH2-), 5.944 (2H, DHO).  
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Figure S7. 13CNMR spectra of [NHC][BF4], Spectral data: 13C NMR (100MHz, d6-DMSO): δ 

22.858, 29.146, 30.077, 35.418, 42.178, 179.249. 
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Figure S8. Electrospray ionization mass spectrum (ESI-MS) of [NHC][BF4] 

 

 

 

 


