Supporting Information

The Triple Way: Combining Pot, Atom and Step Economy (PASE) for Greener Organic Synthesis. Synthesis of Tetrahydropyran-4-ones

Paul A. Clarke, Soraia Santos and William H. C. Martin

General Method for the PASE Synthesis of THPs 4/5a-i: Method A

To a stirred solution of diketene (0.1 ml, 1.30 mmol) and aldehyde (0.72 mmol) in CH₂Cl₂ (2 ml) at -78 °C, was added TiCl₄ (80 μ l, 0.72 mmol). After 5 min dry methanol (117 μ l, 2.88 mmol) was added to the dark red mixture. The reaction was stirred for 30 min at -30 to -20 °C before it was again cooled to -78 °C, when the second aldehyde (0.87 mmol) was added. The reaction mixture was warmed back to -20 °C and stirred at this temperature for 16 hrs. After dilution with ether, the mixture was washed with a 20 % (w/v) aqueous solution of citric acid (3x 30 ml), brine (2x 40 ml), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (Petrol - EtOAc - Pyridine: 200:1:2 to 100:4:2) gave the products.

General Method for the PASE Synthesis of THPs 4/5a-i: Method B

To a solution of diketene (0.1 ml, 1.30 mmol) and the aldehyde (0.72 mmol) in CH₂Cl₂ (2 ml), at -78 °C, was added TiCl₄ (80 μ l, 0.72 mmol). After 5 min dry methanol (117 μ l, 2.88 mmol) was added to the dark red mixture. The reaction was stirred for 30 min at -30 to -20 °C before it was again cooled to -78 °C, when pyridine (59 μ l, 0.72 mmol) was added followed by the second aldehyde (0.87 mmol). The reaction mixture allowed to warm to room temperature and stirred until TLC analysis indicated that it was complete. After dilution with ether, the mixture was extracted with a 20 % (w/v) aqueous solution of citric acid (3x 30 ml), a 5 % (w/v) aqueous solution of CuSO₄ (3x 30 ml) and with brine (2x 40 ml), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (Petrol – EtOAc - Pyridine: 200:1:2 to 100:4:2) gave the products.

4a. White solid; m.p. = 106-107 °C (lit¹m.p. = 99-101 °C); IR v_{max} (solution; CHCl₃): 3020.0, 2360.4, 1745.3, 1714.4, 1438.6, 1361.5, 1332.6, 1261.2, 1132.0; ¹H NMR (500 MHz, CDCl₃) δ : 7.30-7.41 (5H, m, Ph), 4.73 (1H, dd, J = 11.5, 2.5 Hz, C<u>H</u>Ph), 4.00 (1H, dd, J = 11.0, 2.5 Hz, C<u>H</u>ⁱPr), 3.79 (3H, s, OMe), 3.53 (1H, dd, J = 11.0, 1.0 Hz, C<u>H</u>CO₂Me), 2.75 (1H, dd, J = 4.5, 2.5 Hz, CH<u>H</u>), 2.52 (1H, ddd, J = 14.5, 11.5, 1.0 Hz, CH<u>H</u>), 1.83 (1H, d sept, J = 7.0, 2.5 Hz, C<u>H</u>Me₂), 1.09 (3H, d, J = 7.0 Hz, CH<u>Me</u>Me), 1.05 (3H, d, J = 7.0 Hz, CHMe<u>Me</u>); ¹³C NMR (100 MHz, CDCl₃) δ : 202.5, 168.7, 140.6, 128.6, 128.0, 125.3, 82.4, 78.0, 60.6, 52.2, 48.9, 31.6, 19.7, 15.4.

5a. Isomerises to 4a in solution.

4b. Colourless oil; IR v_{max} (solution; CHCl₃): 3027.7, 2964.1, 2875.3, 1743.3 (C=O), 1712.5 (C=O), 1656.6, 1465.6, 1483.6, 1344.1, 1272.8, 1135.9, 1122.4, 1037.5; ¹H NMR (400 MHz, CDCl₃) δ : 3.82 (1H, ddd, J = 10.4, 8.8, 2.4 Hz, CHCHCO₂Me), 3.75 (3H, s, OMe), 3.32 (1H, ddd, J = 11.6, 6.4, 2.0 Hz, CHⁱPr), 3.21 (1H, d, J = 10.4 Hz, CHCO₂Me), 2.48 (1H, dd, J = 14.4, 2.0 Hz, CHHCHⁱPr), 2.24 (1H, dd, J = 14.4, 11.6 Hz, CHHCHⁱPr), 1.77 (1H, d sept, J = 6.8, 6.4 Hz, CHMe₂), 1.35-1.67 (4H, m, CHCH₂CH₂CH₃), 0.98 (3H, d, J = 6.8 Hz, CHMeMe), 0.91 (3H, t, J = 8.0 Hz, CH₂CH₂CH₃), 0.90 (3H, d, J = 6.8 Hz, CHMeMe); ¹³C NMR (100 MHz, CDCl₃) δ : 203.1, 168.8, 81.8, 78.1, 63.3, 52.04, 44.6, 37.2, 33.4, 18.6, 18.2, 17.9, 13.7.

¹ Martin, W. H. C. PhD Thesis; "Rapid Construction of Highly Functionalised Pyran Rings"; The University of Nottingham; 2005

5b. Colourless oil; IR v_{max} (solution; CHCl₃): 2960.2, 2873.4, 1660.4 (C=O), 1621.8, 1444.4, 1365.4, 1272.8, 1228.4, 1064.5; ¹H NMR (500 MHz, CDCl₃) δ : 12.03 (1H, s, OH), 4.46 (1H, dd, J = 10.5, 2.0 Hz, CHCCO₂Me), 3.76 (3H, s, OMe), 3.47 (1H, ddd, J = 10.0, 7.5, 5.0 Hz, CH^{*i*}Pr), 2.24 (1H, dd, J = 18.0, 10.0 Hz, CHHCH^{*i*}Pr), 2.19 (1H, dd, J = 18.0, 5.0 Hz, CHHCH^{*i*}Pr), 1.33-1.72 (5H, m, CHMe₂ + CH₂CH₂CH₃), 0.99 (3H, d, J = 6.5 Hz, CHMe(Me), 0.94 (3H, t, J = 7.0 Hz, CH₂CH₂CH₃), 0.92 (3H, d, J = 6.5 Hz, CHMe(Me); ¹³C NMR (100 MHz, CDCl₃) δ : 171.1, 169.9, 101.4, 70.9, 51.4, 35.1, 33.2, 32.1, 19.2, 18.7, 18.2, 13.7. 20 % of the sample was the ketone tautomer: ¹H NMR (500 MHz, CDCl₃) δ : 4.40-4.44 (1H, m, CHPr), 3.76 (3H, s, OMe), 3.62 (1H, ddd, J = 8.0, 8.0, 4.5 Hz, CHMe₂), 1.319 (1H, dd, J = 5.0, 1.0 Hz, CHCO₂Me), 2.63 (1H, dd, J = 14.5, 8.0 Hz, CHHCH^{*i*}Pr), 2.49 (1H, ddd, J = 14.5, 4.5, 1.0 Hz, CHHCH^{*i*}Pr), 1.76-1.84 (1H, d sept, J = 8.0, 6.5 Hz, CHMe₂), 1.32-1.62 (4H, m, CH₂CH₂CH₃), 0.97 (3H, d, J = 6.5 Hz, CHMe(Me); ¹³C NMR (100 MHz, CDCl₃) δ : 203.4, 168.8, 74.4, 61.7, 52.4, 43.6, 35.1, 31.6, 18.6, 18.4, 13.6.

4c. White solid; m.p. = 81-82 °C (lit¹ m.p. = 59-61 °C); IR v_{max} (solution; CHCl₃): 2964.1, 1745.3 (C=O), 1714.4 (C=O), 1438.6, 1344.1, 1303.6, 1130.1, 1066.4, 1033.6; ¹H NMR (400 MHz, CDCl₃) δ : 7.28-7.41 (5H, m, Ph), 4.91 (1H, d, J = 10.8 Hz, C<u>H</u>Ph), 3.62 (1H, ddd, J = 11.6, 6.0, 2.4 Hz, C<u>H</u>CH₂), 3.61 (3H, s, OMe), 3.57 (1H, dd, J = 10.8, 0.8, Hz, C<u>H</u>CO₂Me), 2.57 (1H, dd, J = 14.0, 2.4 Hz, CH<u>H</u>), 2.44 (1H, ddd, J = 14.0, 11.6, 0.8 Hz, CH<u>H</u>), 1.92 (1H, d sept, J = 6.8, 6.0 Hz, C<u>H</u>Me₂), 0.98 (6H, t, J = 6.8 Hz, CH<u>Me₂</u>); ¹³C NMR (100 MHz, CDCl₃) δ : 202.4, 168.0, 139.1, 128.5, 126.5, 81.9, 80.5, 64.7, 52.0, 43.9, 33.1, 18.0, 17.7.

5c. White solid; m.p. = 64-66 °C (lit¹ m.p. = 57-58 °C); IR v_{max} (solution; CHCl₃): 3016.1, 2962.1, 1660.4 (C=O), 1623.8, 1444.4, 1367.3, 1272.8, 1226.5, 1211.1, 1060.6; ¹H NMR (500 MHz, CDCl₃) δ : 12.29 (1H, s, OH), 7.27-7.37 (5H, m, Ph), 5.62 (1H, br s, C<u>H</u>Ph), 3.63 (3H, s, OMe), 3.11 (1H, ddd, J = 11.0, 7.0, 4.0 Hz, C<u>H</u>CH₂), 2.36 (1H, ddd, J = 18.0, 11.0, 1.0 Hz, C<u>H</u>H), 2.23 (1H, dd, J = 18.0, 4.0 Hz, CH<u>H</u>), 1.60 (1H, d sept , J = 7.0, 6.5 Hz, C<u>H</u>^{*i*}Pr), 0.80 (3H, d, J = 6.5 Hz, CH<u>Me₂</u>), 0.78 (3H, d, J = 6.5 Hz, CH<u>Me₂</u>); ¹³C NMR (100 MHz, CDCl₃) δ : 171.8, 171.1, 140.9, 128.5, 127.9, 127.6, 98.5, 72.5, 71.5, 51.5, 32.7, 32.2 , 18.3, 17.8.

4d. White solid; m.p. = 93-94 °C (lit¹ m.p. = 92-94 °C); IR v_{max} (solution; CHCl₃): 3825.8, 2929.3, 2856.1, 1743.3 (C=O), 1450.2, 1340.3, 1274.7, 1218.8, 1137.8, 1066.4, 1029.8; ¹H NMR (500 MHz, CDCl₃) δ : 7.28-7.41 (5H, m, Ph), 4.89 (1H, d, J = 10.5 Hz, C<u>H</u>Ph), 3.63 (1H, ddd, J = 11.5, 6.0, 2.5 Hz, H₆), 3.61 (3H, s, OMe), 3.57 (1H, dd, J = 10.5, 1.0 Hz, C<u>H</u>CO₂Me), 2.57 (1H, dd, J = 14.0, 2.5 Hz, C<u>H</u>HCO), 2.46 (1H, ddd, = 14.0, 11.5, 1.0 Hz, CH<u>H</u>CO), 1.87-1.93 (1H, m, H_{9'eq} or H_{9eq}), 1.70-1.81 (3H, m, H₈ + H_{8'} +H₁₀), 1.56-1.64 (1H, m, H₇), 0.95-1.32 (5H, m, H_{9'ax} + H_{9ax} + H₈ + H_{8'} + H₁₀); ¹³C NMR (100 MHz, CDCl₃) δ : 202.5, 168.0, 139.1, 128.5, 126.6, 81.3, 80.6, 64.8, 51.9, 44.2, 42.8, 28.4, 28.1, 26.3, 25.9, 25.8.

5d. White solid; m.p. = 100-101 °C (lit¹m.p. = 89-91 °C); IR v_{max} (solution; CHCl₃): 3018.1, 2929.3, 2854.1, 1660.4 (C=O), 1623.8, 1444.4, 1297.8, 1278.6, 1243.9, 1209.1, 1064.5, 1049.1; ¹H NMR (500 MHz, CDCl₃) δ : 12.29 (1H, s, O<u>H</u>), 7.27-7.36 (5H, m, Ph), 5.61 (1H, s, C<u>H</u>Ph), 3.63 (3H, s, OMe), 3.15 (1H, ddd, J = 11.0, 7.5, 3.5 Hz, H₆), 2.36 (1H, ddd, J = 18.0, 11.0, 0.5 Hz, C<u>H</u>HCOH), 2.22 (1H, dd, J = 18.0, 3.5 Hz, CH<u>H</u>COH), 1.83-1.91 (1H, m, H_{9'eq} or H_{9eq}), 1.56-1.70 (3H, m, H_{9ax} + H_{9'ax} +H₁₀), 1.48-1.54 (1H, m, H_{9'eq} or H_{9eq}), 1.28-1.36 (1H, m, H₇), 0.99-1.23 (3H, m, H_{8eq} + H_{8'eq} + H₁₀), 0.86 (1H, ddd, J = 24.5, 12.5, 3.5 Hz, H_{8ax} or H_{8'ax}), 0.66 (1H, m, ddd, J = 24.5, 12.5, 3.5 Hz, H_{8ax} or H_{8'ax}); ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 171.1, 140.9, 127.9, 127.6, 127.6, 98.5, 72.5, 70.6, 51.5, 42.3, 32.3, 28.6, 28.0, 26.3, 25.9, 25.6.

4e. White solid; m.p. = 140-142 °C (lit¹ m.p. = 133-135 °C); IR v_{max} (solution; CHCl₃): 3016.1, 1745.3 (C=O), 1718.3 (C=O), 1496.5, 1446.0, 1438.6, 1348.0, 1130.1, 1066.4, 1027.9; ¹H NMR (400 MHz, CDCl₃) δ : 7.30-7.51 (10H, m, Ph), 5.13 (1H, d, J = 10.5 Hz, PhC<u>H</u>CHCO₂Me), 4.94 (1H, dd, J = 11.5, 2.5 Hz, PhC<u>H</u>CH₂), 3.76 (1H, d, J = 10.5 Hz, PhCHC<u>H</u>CO₂Me), 3.65 (3H, s, OMe), 2.85 (1H, dd, J = 14.5, 2.5, Hz, C<u>H</u>H), 2.77 (1H, dd, J = 14.5, 11.5 Hz, CH<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ : 201.0, 167.7, 140.0, 138.6, 128.2, 126.8, 125.6, 80.9, 78.8, 64.5, 52.1, 48.8.

5e. White solid; m.p. = 123-125 °C (lit¹ m.p. = 118-120 °C); IR v_{max} (solution; CHCl₃): 2956.3, 1662 (C=O), 1623.8, 1444.4, 1365.4, 1270, 1187.9, 1062.6, 1024.0; ¹H NMR (400 MHz, CDCl₃) δ : 12.34 (1H, s, O<u>H</u>), 7.20-7.39 (10H, m, Ph), 5.76 (1H, s, C<u>H</u>CCO₂Me), 4.54 (1H, dd, J = 10.5, 4.0 Hz, C<u>H</u>CH₂), 3.60 (3H, s, OMe), 2.70 (1H, dd, J =, 18.0, 10.5 Hz,

C<u>H</u>H), 2.56 (1H, dd, J = 18.0, 4.0 Hz, CH<u>H</u>); ¹³C NMR (125 MHz, CDCl₃) δ : 171.0, 170.9, 140.8, 140.6, 128.4, 128.4, 128.4, 128.1, 127.9, 127.7, 125.8, 98.5, 73.1, 68.2, 51.5, 35.4.

4f. White solid; m.p. = 127-128 °C; IR v_{max} (solution; CHCl₃): 3029.6, 1745.3 (C=O), 1718.3 (C=O), 1614.1, 1517.8, 1348.0, 1305.6, 1251.6, 1211.1, 1176.4, 1130.1, 1072.2, 1035.6; ¹H NMR (500 MHz, CDCl₃) δ : 7.29-7.42 (7H, m, Ph + CHCHCOMe), 6.87-6.91 (2H, m, CHCHCOMe), 5.06 (1H, d, *J* = 10.5 Hz, CHCHCO₂Me), 4.91 (1H, dd, *J* = 11.5, 3.0 Hz, CHCH₂), 3.80 (3H, s, OMe), 3.74 (1H, d, *J* = 10.5 Hz, CHCHCO₂Me), 3.64 (3H, s, CO₂Me), 2.83 (1H, dd, J = 14.5, 3.0 Hz, CHH), 2.74 (1H, dd, J = 14.5, 11.5, Hz, CHH); ¹³C NMR (125 MHz, CDCl₃) δ : 201.2, 167.9, 159.8, 140.1, 130.8, 128.7, 128.3, 128.2, 125.6, 114.0, 80.7, 78.8, 64.6, 55.2, 52.1, 48.9.

5f. White solid; m.p. = 112-114 °C ; IR v_{max} (solution; CHCl₃): 2931.3, 1660.4 (C=O), 1623.8, 1510.0, 1444.4, 1270.8, 1249.6, 12211.6, 1174.4, 1062.6, 1031.7; ¹H NMR (500 MHz, CDCl₃) δ : 12.32 (1H, s, OH), 7.22-7.32 (7H, m, Ph + CHCHCOMe), 6.85-6.89 (2H, m, CHCHCOMe), 5.73 (1H, s, CHCCO₂Me), 4.56 (1H, dd, *J* = 11.0, 4.0 Hz, CHCH₂), 3.80 (3H, s, OMe), 3.64 (3H, s, CO₂Me), 2.70 (1H, dd, *J* = 18.0, 11.0 Hz, CHH), 2.57 (1H, dd, J = 18.0, 4.0 Hz, CHH); ¹³C NMR (100 MHz, CDCl₃) δ : 171.0, 159.2, 140.9, 132.8, 129.7, 128.4, 127.8, 125.9, 113.5, 98.8, 72.7, 67.9, 55.2, 51.6, 35.4.

4g. Colourless oil; IR v_{max} (NaCl, film): 3021.1, 2927.0, 2855.3, 1745.2 (C=O), 1716.6 (C=O), 1658.7, 1618.4, 1438.3, 1343.3, 1273.8, 1216.0, 1123.4, 1062.6; ¹H NMR (400 MHz, CDCl₃) δ : 7.28-7.41 (5H, m, Ph), 4.91 (1H, d, J = 10.4 Hz, C<u>H</u>Ph), 3.85 (1H, dddd, J = 11.2, 6.8, 5.2, 2.4 Hz, C<u>H</u>C₈H₁₇), 3.61 (3H, s, OMe), 2.78 (1H, dd, J = 14.4, 2.4 Hz, C<u>H</u>HC=O), 2.43 (1H, ddd, J = 14.4, 11.2, 0.8 Hz, CH<u>H</u>C=O), 1.68-1.79 (1H, m, CHC<u>H</u>H(CH₂)₆CH₃), 1.52-1.68 (1H, m, CHCH<u>H</u>(CH₂)₆CH₃), 1.51-1.20 (12H, m, CHCHH(C<u>H₂)₆CH₃), 0.88 (3H, t, J = 7.0 Hz, CHCHH(CH₂)₆C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃) δ : 202.1, 168.1, 139.1, 128.7, 128.2, 126.8, 77.5, 73.4, 64.7, 52.1, 36.3, 31.9, 31.9, 29.6, 29.3, 29.3, 25.1, 22.7, 14.2.</u>

39 % of the sample was the enol tautomer: ¹H NMR (400 MHz, CDCl₃) δ : 12.04 (1H, s, OH), 7.28-7.41 (5H, m, Ph), 5.36 (1H, dd, J = 2.4, 1.6 Hz, C<u>H</u>Ph), 3.64-3.70 (1H, m, C<u>H</u>C₈H₁₇), 3.46 (3H, s, OMe), 2.45 (1H, ddd, J = 17.2, 10.4, 2.4 Hz, C<u>H</u>HCOH), 2.32 (1H, ddd, J = 17.2, 2.8, 1.6 Hz, CH<u>H</u>OH), 1.52-1.68 (2H, m, CHC<u>H</u>₂(CH₂)₆CH₃), 1.51-1.20 (12H, m, CHCH₂(C<u>H</u>₂)₆CH₃), 0.88 (3H, t, J = 6.4 Hz, CHCH₂(C<u>H</u>₂)₆C<u>H</u>₃).

5g. White solid; m.p. = 62.5-62.9 °C; IR v_{max} (NaCl, film): 3027.6, 2926.6, 2855.1, 1661.1 (C=O), 1622.7, 1443.4, 1269.0, 1218.2, 1039.4, 846.6; ¹H NMR (270 MHz, CDCl₃) δ : 12.30 (1H, s, OH), 7.27-7.37 (5H, m, Ph), 5.61 (1H, s, C<u>H</u>Ph), 3.63 (3H, s, OMe), 3.44 (1H, ddd, J = 12.7, 10.0, 4.9 Hz, C<u>H</u>CH₂COH), 2.32 (1H, dd, J = 18.1, 10.0 Hz, C<u>H</u>HCOH), 2.23 (1H, dd, J = 18.1, 14.9 Hz, CH<u>H</u>COH), 1.01-1.56 (17H, m, CH(CH₂)₇CH₃), 0.86 (3H, t, J = 6.8 Hz, CH(CH₂)₇C<u>H₃</u>); ¹³C NMR (68 MHz, CDCl₃) δ : 171.7, 171.2, 141.1, 128.5, 128.0, 127.8, 98.6, 72.7, 66.4, 51.6, 35.6, 34.9, 31.9, 29.5, 29.3, 25.0, 22.7, 14.2.

4h. Colourless oil; IR v_{max} (NaCl, film): 3027.1, 2957.7, 2032.8, 2871.8, 1744.4 (C=O), 1715.4 (C=O), 1453.3, 1350.3, 1263.0, 1215.8, 1126.4, 1028.8, 752.5; ¹H NMR (270 MHz, CDCl₃) δ : 7.27-7.37 (5H, m, Ph), 4.65 (1H, d, J = 12.4 Hz, CHHPh), 4.50 (1H, d, J = 12.4 Hz, CHHPh), 4.11 (1H, ddd, J = 10.5, 4.1, 3.2 Hz, CHCH₂OBn), 3.62-3.72 (3H, m, CHHOBn + CHCO₂Me + CHPr), 3.66 (3H, s, OMe), 3.58 (1H, dd, J = 10.2, 3.8 Hz, CHHOBn), 2.48 (1H, dd, J = 14.3, 2.7 Hz, CHHC=O), 2.30 (1H, ddd, J = 14.3, 11.3, 0.8 Hz, CHHC=O), 1.32-1.58 (4H, m, CHCH₂CH₂CH₃), 0.93 (3H, t, J = 7.2 Hz, CHCH₂CH₂CH₂); ¹³C NMR (68 MHz, CDCl₃) δ : 202.6, 168.4, 137.7, 128.3, 127.8, 127.7, 77.7, 77.1, 73.5, 70.6, 59.1, 52.1, 47.0, 38.1, 18.4, 13.8.

5h. Colourless oil; IR v_{max} (NaCl, film): 2955.7, 2870.2, 1661.3 (C=O), 1622.1, 1442.7, 1360.6, 1289.9, 1217.5, 1073.4, 836.1; ¹H NMR (400 MHz, CDCl₃) δ : 12.15 (1H, s, OH), 7.26-7.34 (5H, m, Ph), 4.73 (1H, dd, J = 8.0, 2.0 Hz, CHCH₂OBn), 4.62 (1H, d, J = 12.4 Hz, CHHPh), 4.55 (1H, d, J = 12.4 Hz, , CHHPh), 3.86-3.93 (1H, m, CHPr), 3.69 (3H, s, OMe), 3.63 (1H, dd, J = 10.8, 8.0 Hz, CHHOBn), 3.53 (1H, dd, J = 10.8, 2.0 Hz, CHHOBn), 2.18-2.22 (2H, m, CH₂CHPr), 1.20-1.62 (4H, m, CHCH₂CH₂CH₃), 0.93 (3H, t, J = 7.2 Hz, CHCH₂CH₂CH₂OH₃); ¹³C NMR (68 MHz, CDCl₃) δ : 171.5, 170.7, 138.4, 128.3, 127.7, 127.6, 96.9, 72.9, 71.0, 69.7, 66.8, 51.4, 37.8, 34.2, 18.5, 14.0.

4i. Colourless oil; IR υ_{max} (NaCl, film): 2960.0, 1746.9 (C=O), 1716.7 (C=O), 1641.4, 1437.5, 1343.3, 1268.4, 1129.8, 757.9; ¹H NMR (400 MHz, CDCl₃) δ: 5.34-5.89 (1H, m, H₂C=C<u>H</u>), 4.97-5.07 (2H, m, <u>H</u>₂C=CH), 3.85 (1H, ddd, *J* = 10.4, 9.2, 2.6 Hz, C<u>H</u>CH₂CH₂CH=CH₂), 3.77

(3H, s, OMe), 3.33 (1H, ddd, J = 11.8, 6.8, 2.4 Hz, C<u>H</u>ⁱPr), 3.24 (1H, d, J = 10.4 Hz, C<u>H</u>CO₂Me), 2.51 (1H, dd, J = 14.0, 2.4 Hz, C<u>H</u>HCH^{*i*}Pr), 2.26 (1H, dd, J = 14.0, 11.8 Hz, C<u>H</u>HCH^{*i*}Pr), 2.12-2.28 (2H, m, H₂C=CHC<u>H₂CH₂CH</u>, 1.79 (1H, oct, J = 6.8 Hz, C<u>H</u>Me₂), 1.73 (2H, m, H₂C=CHCH₂C<u>H</u>, 1.01 (3H, d, J = 6.8 Hz, CH<u>Me</u>Me), 0.92 (3H, d, J = 6.8 Hz, CHMe<u>Me</u>); ¹³C NMR (68 MHz, CDCl₃) δ : 202.7, 168.5, 137.5, 115.1, 81.7, 77.4, 63.1, 52.0, 44.5, 34.1, 33.3, 29.4, 18.1, 18.0.

30 % of the sample was the enol tautomer: ¹H NMR (400 MHz, CDCl₃) δ : 12.06 (1H, s, OH), 5.34-5.89 (1H, m, H₂C=C<u>H</u>), 4.92-5.04 (2H, m, <u>H</u>₂C=CH), 4.37 (1H, dq, *J* = 7.6, 2.0 Hz, CHCH₂CH₂CH=CH₂), 3.77 (3H, s, OMe), 3.13 (1H ddd, *J* = 9.6, 6.8, 4.0 Hz, C<u>H</u>^{*i*}Pr), 2.45-2.29 (2H, m, C<u>H</u>₂CH^{*i*}Pr), 2.12-2.28 (1H, m, H₂C=CHC<u>H</u>HCH₂CH), 1.98 (1H, dddd, *J* = 14.0, 9.6, 6.8, 2.4 Hz, H₂C=CHCH<u>H</u>CH₂CH), 1.54-1.77 (3H, m, H₂C=CHCHHC<u>H</u>₂CH + C<u>H</u>Me₂), 0.98 (3H, d, *J* = 6.8 Hz, CH<u>Me</u>Me), 0.91 (3H, d, *J* = 6.8 Hz, CHMe<u>Me</u>); ¹³C NMR (68 MHz, CDCl₃) δ : 171.2, 171.1, 138.9, 114.1, 100.4, 76.9, 72.1, 51.2, 34.2, 32.6, 32.5, 29.1, 18.4, 17.9.

5i. Colourless oil; IR v_{max} (NaCl, film): 2956.3, 1661.7 (C=O), 1623.1, 1443.2, 1364.2, 1270.2, 1220.6, 1066.5, 913.7, 819.4; ¹H NMR (270 MHz, CDCl₃) δ : 12.07 (1H, s, OH), 5.87 (1H, qt, J = 17.0, 10.4, 6.6 Hz, H₂C=C<u>H</u>), 4.95-5.10 (2H, m, <u>H</u>₂C=CH), 4.48 (1H, dd, J = 7.0, 6.5 Hz, C<u>H</u>CCO₂Me), 3.77 (3H, s, OMe), 3.43-3.51 (1H, m, CHⁱPr), 2.09-2.34 (5H, m, H₂C=CHC<u>H</u>₂C<u>H</u>₂CH + C<u>H</u>Me₂), 1.73 (1H, dd, J = 8.4, 6.8 Hz, C<u>H</u>HCHⁱPr), 1.68 (1H, dd, J = 6.8, 4.6 Hz, CH<u>H</u>CHⁱPr), 1.02 (3H, d, J = 6.8 Hz, CH<u>Me</u>Me), 0.93 (3H, d, J = 6.8 Hz, CHMe<u>Me</u>); ¹³C NMR (68 MHz, CDCl₃) δ : 170.1, 168.2, 138.3, 114.6, 70.9, 70.5, 51.5, 33.2, 32.3, 31.8, 30.2, 18.8, 18.2.

General Procedure for the Asymmetric Preparation of Tetrahydropyrans 4j-m and 5j-m

Titanium tetra-*iso* propoxide (432 μ l, 1.45 mmol) was added to a stirred solution of the Schiff base **6** (631 mg, 1.59 mmol) in CH₂Cl₂ (3 ml) at room temperature. The resulting solution was stirred for 1h then cooled to -20 °C. Freshly distilled aldehyde (1.45 mmol), diketene (0.2 ml, 2.61 mmol) and dry *iso* propyl alcohol (333 μ l, 4.35 mmol) were added to the reaction and the

resulting mixture kept at -20 °C for 5 days. (A sample of the reaction was taken and submitted to the same work up described below in order to determinated % e.e. values by ¹H NMR of the aldol intermediate **7**). The reaction was cooled to -78 °C and the second aldehyde (1.74 mmol) was added followed by a 3M solution of TiCl₄ in CH₂Cl₂ (1.59 mmol, 0.53 ml). The resulting dark mixture was stirred at the same temperature for 30 minutes and then at -20 °C for 16 hr. The reaction mixture was poured into a 20 ml EtOAc/10 ml H₂0 and stirred vigorously for 2 h. This mixture was dried with Na₂SO₄, filtered and concentrated *in vacuo* to yield an orange oil. Purification by flash chromatography (Petrol – EtOAc - Pyridine: 200:1:2 to 100:4:2) gave tetrahydropyrans **4j** and **5j**.

40 % ; white solid; m.p. = 127-129 °C; IR (NaCl, film) v_{max} 3031.4, 2982.2, 1738.0, 1715.4, 1456.4, 1363.6, 1322.8, 1216.4, 1132.1, 1104.3, 1066.6, 981.3, 755.9 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 7.49 (2H, br d, J = 7.5 Hz, Ar), 7.42 (2H, br d, J = 7.5 Hz, Ar), 7.30-7.40 (6H, m, Ar), 5.10 (1H, d, J = 10.5 Hz, H₂), 5.00 (1H, sept, J = 6.0 Hz, H₁₃), 4.95 (1H, dd, J = 3.0, 11.5 Hz, H₆), 3.70 (1H, d, J = 1.0, 10.5 Hz, H₃), 2.83 (1H, dd, J = 3.0, 14.5 Hz, H_{5eq}), 2.76 (1H, ddd, J = 1.0, 11.5, 14.5 Hz, H_{5ax}), 1.19 (3H, d, J = 6.0 Hz, H₁₄), 1.04 (3H, d, J = 6.0 Hz, H₁₄) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 201.2 (C₄), 166.8 (C₁₁), 140.0 (C₇), 138.5 (C₁₅), 128.7 (CH, Ar), 128.6 (CH, Ar), 128.5 (CH, Ar), 128.2 (CH, Ar), 127.0 (CH, Ar), 125.6 (CH, Ar), 81.1 (C₂), 78.9 (C₆), 68.8 (C₁₃), 64.6 (C₃), 48.9 (C₅), 21.5 (C₁₄), 21.5 (C₁₄); m/z (CI+) 233 (100 % M⁺), 356.1862; Anal. Calc. for C₂₁H₂₂O₄: C, 74.54; H 6.55 %. Found C, 74.29; H, 6.52 %. [α]_D²⁵ = -29.45 ° (c 0.51, CHCl₃); e.e. = 92 % as determined by ¹H NMR chiral shift experiments with tris [3-(heptafluoropropylhydroxy-methylene)-*d*-camphorato] europium (III) 17 mol %, 7.0 mg, C₆D₆).

3 %, white solid; m.p. = 102-103 °C; IR (NaCl, film) v_{max} 3090.1, 2981.9, 1656.5, 1396.7, 1268.1, 1218.2, 1104.6, 1057.5, 1024.9, 755.2 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 12.41 (1H, s, OH), 7.38 (2H, br d, J = 7.5 Hz, Ph), 7.25-7.34 (8H, m, Ph), 5.72 (1H, s, H₂), 5.02 (1H, sept, J = 6.5 Hz, H₁₃), 4.62 (1H, dd, J = 4.0, 11.0 Hz, H₆), 2.71 (1H, dd, J = 1.8, 11.0 Hz, H_{5a}), 2.58 (1H, dd, J = 4.0, 18.0 Hz, H_{5eq}), 1.15 (3H, d, J = 6.5 Hz, H₁₄), 0.89 (3H, d, J = 6.5 Hz, H₁₄) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 170.5 (C₄), 170.1 (C₁₁), 140.9 (C₁₅), 140.8 (C₇), 128.4 (CH, Ar), 128.4 (CH, Ar), 128.0 (CH, Ar), 127.7 (CH, Ar), 127.7 (CH, Ar), 125.9 (CH, Ar), 99.0 (C₃), 73.3 (C₂), 68.3 (C₆), 68.1 (C₁₃), 35.4 (C₅), 21.7 (C₁₄), 21.2 (C₁₄); m/z (CI+) 321 (100 % M⁺ - OH), 356 (40 %, M⁺ + NH4⁺); HRMS: found (M⁺ + NH4⁺), 356.1857 C₂₁H₂₆NO₄ requires (M⁺ + NH4⁺) 356.1862; Anal. Calc. for C₂₁H₂₂O₄: C, 74.54; H 6.55 %. Found C, 74.63; H, 6.66 %. [α] $_{\Omega}$ D²⁵ = -63.57 ° (c 0.07, CHCl₃); e.e. = >95 % as determined by HPLC: CHIRACEL OD-H, Hexane/Isopropanol 99:1, flow rate = 0.1 ml/min, T = 10 °C, t₁(minor) = 53.8 min., t_r(major) = 50.0 min.

Asymmetric Hayashi aldol Adducts 7j, k, m

7j. oil; $[\alpha]_D^{25} = -38.32 \circ (c \ 1.15, CHCl_3)$ literature²: $[\alpha]^{24}_D -40.8^\circ (c \ 1.0, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ :7.39-7.28 (5H, m, Ar), 5.21 (1H, dt, J = 9.2, 3.3 Hz, CHOH), 5.07 (1H, sept, J = 6.4 Hz, CHMe_2), 3.46 (2H, br s, CH_2CO_2^{i}Pr), 3.04 (1H, d, J = 3.2 Hz, OH), 3.01 (1H, dd, J = 8.8, 17.4 Hz, CH_2CHOH), 2.93 (1H, dd, J = 3.4, 17.4 Hz, CH_2CHOH), 1.27 (6H, d, J = 6.4 Hz, ⁱPr). The e.e. of the product was 82 % and was determinated by ¹H NMR (500 MHz, C₆H₆, 11 mg of compound) shift reagent experiments with Tris [3-(heptafluoropropylhydroxy-methylene)-d-camphorato] europium (III) (26 mol %).

² Hayashi M.; Inoue T.; Miyamoto Y; Oguni N., Tetrahedron, 1994, 50, 4385-98.

7k. oil; $[\alpha]_D^{25} = -37.62 \circ (c \ 0.67, CHCl_3)$, $(lit.^2 [\alpha]^{24}_D - 18.4^{\circ} (c \ 1.1, CHCl_3)$; ¹H NMR (400 MHz; CDCl_3) δ : 5.08 (1H, sept, J = 6.0 Hz, C<u>H</u>Me₂), 4.08 (1H, m, C<u>H</u>OH), 3.40-3.48 (2H, t, J = 16.0 Hz, C<u>H</u>₂CO₂ⁱPr), 4.17 (1H, dd, J = 17.6, 3.2 Hz, C<u>H</u>HCHOH), 2.64 (1H, dd, J = 17.6, 9.2 Hz, CH<u>H</u>CHOH), 1.58-1.31 (4H, m, C<u>H</u>₂C<u>H</u>₂CH₃), 1.27 (6H, d, J = 6.0 Hz, OCH<u>Me</u>₂), 0.92 (3H, t, J = 8.8. Hz, CH₂CH₂CH₂CH₃) ppm; The e.e. of the product - 62 %, was determinated by ¹H NMR (500 MHz, C₆D₆, 24 mg of compound) shift reagent experiments with Tris [3-(heptafluoropropylhydroxy-methylene)-d-camphorato] europium (III) (12 mol %).

7m. oil; $[\alpha]_D^{24} = -29.21 \circ (c \ 0.67, CHCl_3)$; IR (CHCl₃) $v_{max} 2964, 2934, 2877, 1733$ (O-C=O), 1709 (C=O), 1388, 1374, 1315, 1104 cm⁻¹; ¹H NMR (400 MHz; CDCl₃) δ : 5.07 (1H, sept, J =6.4 Hz, OCHMe₂), 3.86 (1H, m, CHOH), 3.50-3.43 (2H, m, CH₂CO₂ⁱPr), 2.73 (1H, dd, J =17.6, 2.8 Hz, CHHCHOH), 2.69 (1H, d, J = 3.6 Hz, OH), 2.64 (1H, dd, J = 17.2, 9.2 Hz, CHHCHOH), 1.70 (1H, oct, J = 6.0 Hz, HOHCCHMe₂), 1,27 (6H, d, J = 6.4 Hz, HOHCCHMe₂), 0.96 (3H, d, *J* = 6.0 Hz, OCHMe₂), 0.92 (3H, d, *J* = 6.0 Hz, OCHMe₂) ppm; ¹³C NMR (100 MHz; CDCl₃) δ : 204.2 (C=O), 166.5 (O-C=O), 72.2, 69.2, 50.4 (CH₂), 46.6 (CH₂), 33.1, 21.7, 18.3, 17.7 ppm; m/z (ES+) 280 (25 % M⁺ + Na + CH₃CN), 239 (100 % M⁺ + Na), 199 (10 % M^+ - OH); HRMS: found (M^+ + Na), 239.1241 $C_{11}H_{20}O_4$ requires (M^+ + Na) 239.1259; the e.e. of the product - 59 % and was determinated by ¹H NMR (500 MHz, C₆D₆. 13 mg of compound) shift reagent experiments with Tris [3-(heptafluoropropylhydroxy-methylene)-d-camphorato] europium (III) (14 mol %).

General Procedure for the Preparation of Tetrahydropyran enol *para*-nitrobenzoates 8k-m and 9k-m

The crude mixtures of the tetrahydropyrans **4k-m/5k-m** were dissolved dry CH_2Cl_2 (15 ml) and 4-nitrobenzoyl chloride (1.08 g, 5.80 mmol), triethylamine (1.21 ml, 8.70 mmol) and DMAP (1 crystal) were added at room temperature. The resulting mixture was stirred for 16 hr and then extracted with aqueous NH₄Cl (2x 20 ml), aqueous NaHCO₃ (4x 20 ml), brine (2x

30 ml), dried (MgSO₄) and concentrated *in vacuo*. The resulting dark solids were submitted to flash column chromatography (Benzene – CH_2Cl_2 95:5 to 85:5) to give the tetrahydropyran enol *para*-nitrobenzoates **8k-m** and **9k-m**.

8k. 31 %; oil; IR (NaCl, film) v_{max} 3010.5; 2961.8, 2873.1, 1743.2, 1711.9, 1530.7, 1350.0, 1271.0, 1216.0, 1106.4, 1058.8, 841.4, 714.8 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 8.34 (2H, br d, J = 9.0 Hz, Ar), 8.26 (2H, br d, J = 9.0 Hz, Ar), 5.00 (1H, sept, J = 6.0 Hz, H₁₈), 4.58 (1H, m, H₂), 3.64 (1H, ddd, J = 10.0, 7.5, 4.5, 2.5 Hz, H₆), 3.46 (1H, ddd, J = 17.0, 10.5, 4.0 Hz, H_{5ax}), 2.16 (1H, dt, J = 17.0, 2.5 Hz, H_{5eq}), 1.57-1.72 (3H, m, H₇, H₂₀), 1.54-1.25 (5H, m, H₇, H₂₀, H₂₁, H₈), 1.12 (3H, d, J = 6.0 Hz, H₁₉), 1.03 (3H, d, J = 6.0 Hz, H₁₉), 0.94 (3H, t, J = 7.5 Hz, H₂₂ or H₉), 0.92 (3H, t, J = 7.5 Hz, H₂₂ or H₉); ¹³C NMR (125 MHz, CDCl₃) δ : 164.0 (C₁₆), 162.1 (C₁₁), 150.8 (C₁₅), 150.5 (C₄), 134.7 (C₁₂), 131.2 (Ar, CH), 123.6 (Ar, CH), 122.6 (C₃), 74.2 (C₂), 72.7 (C₆), 68.1 (C₁₈), 37.3 (CH₂), 35.8 (CH₂), 34.6 (C₅), 21.7, 21.6 (C₁₉, C₂₂, C₉), 18.5 (CH₂), 18.1 (CH₂), 13.9 (C₁₉);); m/z (CI+) 288 (100 %), 437 (30 % M⁺+NH₄⁺); HRMS: found (M⁺ + NH₄⁺), 437.2281 C₂₂H₃₃N₂O₇ requires (M⁺ + NH₄⁺) 437.2282. [α]_D²⁶ = - 40.20 ° (c 0.85, CHCl₃)

9k. 10 %; oil; IR (NaCl, film) υ_{max} 3013.2; 2960.6, 1743.9, 1709.0, 1530.5, 1349.0, 1270.7, 1216.1, 1106.5, 1060.8, 714.4 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 8.33 (2H, br d, J = 9.0 Hz, Ar), 8.27 (2H, br d, J = 9.0 Hz, Ar), 4.98 (1H, sept, J = 6.5 Hz, H₁₈), 4.71 (1H, br d, J = 10.5 Hz, H₂), 3.93 (1H, tdd, J = 12.0, 7.5, 4.5 Hz, H₆), 2.43 (1H, ddd, J = 18.5, 7.5, 1.5 Hz, H_{5ax}), 2.27 (1H, dd, J = 18.5, 4.5 Hz, H_{5eq}), 1.77 (1H, dddd, J = 20.0, 10.5, 9.5, 3.5 Hz, H₂₀), 1.64-1.34 (7H, m, H₇, H₂₀, H₂₁, H₈), 1.07 (3H, d, J = 6.5 Hz, H₁₉), 1.03 (3H, d, J = 6.5 Hz, H₁₉), 0.97 (3H, t, J = 7.0 Hz, H₂₂ or H₉), 0.95 (3H, t, J = 7.0 Hz, H₂₂ or H₉); ¹³C NMR (125 MHz,

CDCl₃) δ : 163.0 (C₁₆), 162.2 (C₁₁), 152.1 (C₄), 150.1 (C₁₅), 134.8 (C₁₂), 131.2 (Ar, CH), 123.7 (Ar, CH), 122.4 (C₃), 72.3 (C₂), 68.1 (C₁₈), 66.4 (C₆), 37.6 (CH₂), 34.7 (C₅), 34.3 (C₂₀), 21.7, 21.6 (C₁₉), 19.2 (CH₂), 18.7 (CH₂), 14.0 (C₂₂ or C₁₉), 13.7 (C₂₂ or C₁₉); m/z (CI+) 437 (50 % M⁺+NH₄⁺), 288 (50 %); HRMS: found (M⁺ + NH₄⁺), 437.2280 C₂₂H₃₃N₂O₇ requires (M⁺ + NH₄⁺) 437.2282. [α]_D²⁵ = -14.80 ° (c 1.03, CHCl₃); e.e. = 59 % as determined by HPLC: CHIRACEL OD-H, Hexane/Isopropanol 98:2, flow rate = 0.2 ml/min, T = 20 °C, t_r(minor) = 38.5 min., t_r (major) = 46.2 min.

81. 30 %; white solid; m.p. = 133-134 °C; IR (NaCl, film) υ_{max} 2928.5, 2852.8, 1744.1, 1715.2, 1530.2, 1348.6, 1264.3, 1107.1, 1062.6, 757.0, 714.7 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 8.31 (2H, br d, J = 9.0 Hz, Ar), 8.25 (2H, br d, J = 9.0 Hz, Ar), 5.00 (1H, sept, J = 6.5 Hz, H₁₉), 4.43 (1H, br s, H₂), 3.32 (1H, ddd, J = 10.5, 7.0, 2.5 Hz, H₆), 2.46 (1H, ddd, J = 17.0, 10.5, 4.0 Hz, H_{5ax}), 2.10 (1H, dt, J = 7.0, 2.5 Hz, H_{5eq}), 1.97 (1H, br d, H₂₂ or H₂₃ or H₂₄), 1.44-1.76 (12H, m, Cy), 1.26-0.98 (11H, m, Cy), 1.12 (3H, d, J = 6.5 Hz, H₂₀), 1.00 (3H, d, J = 6.5 Hz, H₂₀); ¹³C NMR (100 MHz, CDCl₃) δ : 164.3 (C17), 162.1 (C₁₂), 150.8 (C₁₆), 150.5 (C₄), 134.8 (C₁₃), 131.2 (Ar, CH), 123.6 (Ar, CH), 122.1 (C₃), 78.1 (C₂), 76.9 (C₆), 68.0 (C₁₉), 42.3 (C₇), 41.2 (C₂₁), 31.9 (C₅), 29.9 (CH₂), 28.7 (CH₂), 28.4 (CH₂), 26.8 (CH₂), 26.5 (CH₂), 26.4 (CH₂), 26.3 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 25.4 (CH₂), 21.6 (C₂₀), 21.5 (C₂₀); m/z (CI+) 517 (85 % M⁺+NH₄⁺) 517.2910; Anal. Calc. for C₂₈H₃₇NO₇: C, 67.31; H 7.46; N, 2.80 %. Found C, 67.42; H, 7.30; N, 2.95 %. [α]_D²⁶ = -25.40 ° (c 0.80, CHCl₃).

91. 5 %; white solid; m.p. = 153-155 °C; IR (NaCl, film) v_{max} 3020.6; 2929.1, 2854.2, 1742.3, 1713.4, 1530.8, 1450.2, 1350.1, 1263.0, 1216.3, 1105.6, 757.2, 716.1 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 8.32 (2H, br d, J = 9.0 Hz, Ar), 8.26 (2H, br d, J = 9.0 Hz, Ar), 4.96 (1H, sept, J = 6.0 Hz, H₁₉), 4.50 (1H, br d, J = 7.5 Hz, H₂), 3.74 (1H, ddd, J = 9.0, 8.0, 4.5 Hz, H₆), 2.39 (1H, dd, J = 18.0, 4.5 Hz, H_{5eq}), 2.28 (1H, dd, J = 18.0, 9.0 Hz, H_{5ax}), 2.00 (1H, d, J = 12.5 Hz, Cy), 1.82-1.60 (8H, m, Cy), 1.51 (1H, d, J = 12.0, Cy), 1.46-1.43 (1H, m, Cy), 0.97-1.29 (10H, m, Cy), 1.11 (3H, d, J = 6.0 Hz, H₂₀), 0.99 (3H, d, J = 6.0 Hz, H₂₀); ¹³C NMR (125 MHz, CDCl₃) δ : 164.1 (C17), 162.4 (C₁₂), 150.9 (C₁₆), 150.6 (C₄), 134.8 (C₁₃), 131.2 (Ar, CH), 123.7 (Ar, CH), 122.5 (C₃), 76.6 (C₂), 72.1 (C₆), 68.3 (C₁₉), 42.6 (C₇), 42.0 (C₂₁), 31.8 (CH₂), 29.8 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 28.5 (CH₂), 26.5 (2×CH₂), 26.3 (CH₂), 26.2 (CH₂), 26.0 (CH₂), 25.8 (CH₂), 21.6 (2×C₂₀); m/z (CI+) 517 (40 % M⁺+NH₄⁺), 94 (100 %); HRMS: found (M⁺ + NH₄⁺), 517.2905 C₂₈H₄₁N₂O₇ requires (M⁺ + NH₄⁺) 517.2908. [α]_D²⁶ = -14.67 ° (c 0.70, CHCl₃); e.e. = 47 % as determined by HPLC: CHIRACEL OD-H, Hexane/Isopropanol 99:1, flow rate = 0.08 ml/min, T = 10 °C, t_r(minor) = 116.4 min., t_r (major) = 124.9 min.

8m. 37 %; white solid; m.p. = 94-95 °C; IR (NaCl, film) v_{max} 2964.2, 1744.4, 1714.6, 1530.3, 1349.0, 1270.4, 1106.4, 1056.2, 1014.4, 910.4, 841.6, 733.5, 714.8 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 8.32 (2H, br d, J = 9.0 Hz, Ar), 8.26 (2H, br d, J = 9.0Hz, Ar), 4.98 (1H, sept, J = 6.0 Hz, H₁₇), 4.48 (1H, ddd, J = 4.0, 2.5, 2.0 Hz, H₂), 3.31 (1H, ddd, J = 10.0, 7.0, 2.5 Hz, H₆), 2.47 (1H, ddd, J = 16.5, 10.0, 4.0 Hz, H_{5a}), 2.12 (1H, ddd, J = 16.5, 2.5, 2.0 Hz, H_{5e}), 2.01 (1H, d sept, J = 7.0, 2.5 Hz, H₁₉), 1.78 (1H, oct, J = 7.0 Hz, H₇), 1.11 (3H, d, J = 6.0 Hz, H₁₈), 1.09 (3H, d, J = 7.0 Hz, H₂₀), 1.01 (3H, d, J = 6.0 Hz, H₁₈), 0.99 (3H, d, J = 7.0 Hz, H₈), 0.86 (3H, d, J = 7.0 Hz, H₂₀); ¹³C NMR (100 MHz, CDCl₃) δ : 164.2 (C₁₅), 162.1 (C₁₀), 150.8 (C₄ or C₁₄), 150.8 (C₄ or C₁₄), 134.8 (C₁₁), 131.2 (Ar, CH), 123.6 (Ar, CH), 122.3 (C₃), 78.1 (C₂), 77.4 (C₆), 68.1 (C₁₇), 32.6 (C₇), 31.8 (C₅), 31.0 (C₁₉), 21.6 (C₁₈), 21.6 (C₁₈), 19.6 (C₂₀), 18.2 (C₈), 18.0 (C₈), 15.0 (C₂₀); m/z (CI+) 437 (100 % M⁺+NH₄⁺), 360 (30 %, M⁺ - OⁱPr); HRMS: found (M⁺ + NH₄⁺), 437.2277 C₂₂H₃₃N₂O₇

requires $(M^+ + NH_4^+)$ 437.2288; Anal. Calc. for C₂₂H₂₉NO₇: C, 62.99; H 6.97; N, 3.34 %. Found C, 62.98; H, 7.09; N, 3.44 %. $[\alpha]_D^{26} = -45.25 \circ (c \ 0.80, CHCl_3)$

9m. 8 %; white solid; m.p. = 101-103 °C; IR (NaCl, film) v_{max} 2964.2, 1743.2, 1710.1, 1530.1, 1349.4, 1272.6, 1143.5, 1105.8, 1052.0, 1015.0 cm⁻¹; ¹H NMR (500 MHz; CDCl₃) δ : 8.32 (2H, br d, J = 9.0 Hz, Ar), 8.27 (2H, br d, J = 9.0Hz, Ar), 4.96 (1H, sept, J = 6.5 Hz, H₁7), 4.46 (1H, d, J = 7.5 Hz, H₂), 3.70 (1H, ddd, J = 9.0, 7.0, 4.5 Hz, H₆), 2.42 (1H, ddd, J = 18.0, 4.5, 1.0 Hz, H_{5eq}), 2.27 (1H, ddd, J = 18.0, 9.0, 2.0 Hz, H_{5ax}), 2.09 (1H, oct, J = 7.0 Hz, H₁9), 1.76 (1H, oct, J = 7.0 Hz, H₇), 1.10 (3H, d, J = 6.5 Hz, H₁₈), 1.05 (3H, d, J = 7.0 Hz, H₂₀), 1.04 (3H, d, J = 7.0 Hz, H₈), 0.99 (3H, d, J = 6.5 Hz, H₁₈), 0.95 (3H, d, J = 7.0 Hz, H₂₀), 0.93 (3H, d, J = 7.0 Hz, H₈); ¹³C NMR (100 MHz, CDCl₃) δ : 164.1 (C₁₅), 162.4 (C₁₀), 150.8 (C₄ or C₁₄), 150.6 (C₄ or C₁₄), 134.7 (C₁₁), 131.2 (Ar, CH), 123.7 (Ar, CH), 122.6 (C₃), 77.2 (C₂), 73.1 (C₆), 68.4 (C₁₇), 32.8 (C₇), 32.2 (C₁₉), 31.7 (C₅), 21.6 (C₁₈), 21.6 (C₁₈), 19.4 (C₂₀), 19.2 (C₂₀), 18.8 (C₈), 18.3 (C₈); m/z (CI+) 437 (100 % M⁺+NH₄⁺); HRMS: found (M⁺ + NH₄⁺), 437.2277 C₂₂H₃₃N₂O₇ requires (M⁺ + NH₄⁺) 437.2282. [α]_D²⁶ = -11.48 ° (c 0.99, CHCl₃); e.e. = 59 % as determined by ¹H NMR chiral shift experiments on the aldol intermediate

Detail ^{*I*}H NMR (500MHz, C₆D₆), racemate + chiral shiff reagent, tris [3-(heptafluoropropylhydroxy-methylene)-*d*-camphorato] europium (III)

¹H NMR (500MHz, C_6D_6), racemate

Detail ¹H NMR (500MHz, C_6D_6) of enantiomerically enriched **7m** (13.0 mg) + chiral shiff reagent, tris [3-(heptafluoropropylhydroxy-methylene)-*d*-camphorato] europium (III) 14 mol %.

^{1}H NMR (500MHz, C₆D₆), racemate

¹H NMR (500MHz, C_6D_6), racemate

Detail ¹H NMR (500MHz, C_6D_6), racemate + chiral shiff reagent, tris [3-(heptafluoropropylhydroxy-methylene)-*d*-camphorato] europium (III)

Detail ¹H NMR (500MHz, C_6D_6) of enantiomerically enriched **7j** (24.0 mg) + chiral shiff reagent, tris [3-(heptafluoropropylhydroxy-methylene)-*d*-camphorato] europium (III) 12 mol %.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % ----|-----|-----|-------|-------| 1 56.221 BB 1.5502 4.78318e4 472.82602 48.5613 2 60.725 BB 1.6238 5.06660e4 478.33328 51.4387 Totals : 9.84978e4 951.15930

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Enantiomerically enriched 5j

DAD1 A, Sig=254,4 Ref=360,100 (SS\SOS-2-244FDOPED R1.D) <u>50:012</u> Norm. -200-100-53.769 min Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width						Area	Hei	ght /	Area		
#	[min]		[miı	[ו	[mAU	*s]	[m/	4U]	%		
			_ 	- -			·				
1	113.1	73 E	ЗB	2.	9718 1	00	539e5	5 473	.39105	50.1383	3
2	122.9	74 E	ЗB	3.	3146 9	.998	340e4	440	75446	49.8617	7
Tot	als :			2	.00523	e5	914.	14551			

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Enantiomerically enriched 91

Peak RetTime Type Width Area Height Area							
#	[min]	[min] [mA	(U*s] [mA	U] %			
1	3.223 BB	0.2262	35.38881	2.04229	0.1019		
2	17.538 BI	3 0.4237	59.33599	2.01398	0.1709		
3	22.500 BE	3 0.4302	129.93774	4.56395	0.3742		
4	23.727 BI	3 0.4974	190.95885	5.72161	0.5499		
5	27.386 BV	√ 0.4880	240.57144	7.34786	0.6928		
6	28.123 VI	3 0.5549	280.68863	7.52936	0.8084		
7	32.227 B	√ 0.5398	138.00352	3.64463	0.3974		
8	33.468 VI	3 0.7795	226.88466	3.95390	0.6534		
9	38.515 BE	3 0.8671	1.67457e4	297.30847	7 48.2260		
10	48.666 B	B 1.1526	31.66759e4	218.9328	0 48.0250		
Tota	als :	3.472	33e4 553.0	5886			

Racemate

Peak RetTime Type Width Area Height Area						
# [min]	[min] [mAU*s	5] [mAU]	%			
1 16.869 B	/ 0.4035 636	65.55273 2	36.87651	2.0864		
2 17.583 VE	3 0.4702 1.2	3025e4 38	81.56369	4.0323		
3 25.434 B	/ 0.7026 28	6.28516	5.13361	0.0938		
4 27.489 VV	/ 0.5969 191	9.25720	46.75898	0.6291		
5 28.211 VE	B 0.5655 173	32.41736 4	45.77631	0.5678		
6 30.224 B	3 0.5918 13	6.41519 🗧	3.02666	0.0447		
7 32.410 B	3 0.6419 166	67.07544 4	40.69660	0.5464		
8 38.495 BE	B 0.8786 5.5	8618e4 9	57.59467	18.3094		
9 42.680 B	/ 1.1575 857	9.64648 1	14.59092	2.8121		
10 46.250 V	B 1.2810 2.1	5210e5 23	344.32251	70.5377		
11 54.607 B	B 1.1047 10	37.96143	13.53510	0.3402		
Totals :	3.05099e	5 4189.87	555			

