Supporting Information

Metal- and Solvent-free Conditions for Acylation Reaction Catalyzed by Carbon Tetrabromide (CBr₄)

Liang Zhang, Yong Luo, Renhua Fan,* and Jie Wu*

General Procedure for CBr₄ catalyzed acylation reaction:

A mixture of substrate 1 (0.5 mmol), acid anhydride 2 (0.55 mmol, 1.1 equiv.), and CBr₄ (5 mol%) under solvent-free condition was stirred at 60 °C under air atmosphere. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with H₂O (2 mL) and extracted with Et₂O (2 × 3 mL). The organic phase was washed successively with 2% aqueous NaOH (3 mL) and saturated brine (3 mL). After dried with Na₂SO₄ and concentrated under reduced pressure, the crude product was separated and purified by flash chromatography column (silica gel) to afford the corresponding product (in some cases, the crude product was of sufficient purity and could be used for spectra analysis directly without further purification.). (All the products are known compounds. The characterizations of these compounds are identical with the literature reports.)

naphthalen-1-yl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.44 (s, 3H), 7.27-7.52 (m, 4H), 7.72-7.87 (m, 3H).

OOCCH₂CH₃

naphthalen-1-yl propionate

3aa

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.32 (t, J = 7.58 Hz, 3H), 2.71-2.75 (m, 2H), 7.24-7.49 (m, 4H), 7.69-7.84 (m, 3H).

naphthalen-2-yl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.36 (s, 3H), 7.25-7.48 (m, 3H), 7.56 (s, 1H), 7.84-7.87 (m, 3H).

OOCCH₂CH₃

3bb

naphthalen-2-yl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.27 (t, J = 7.58 Hz, 3H), 2.60-2.64 (m, 2H), 7.22-7.45 (m, 3H), 7.55-7.84 (m, 4H).

phenyl acetate 1 H NMR (400M Hz, CDCl₃): δ (ppm) 2.29 (s, 3H), 7.07-7.37 (m, 5H).

4-methoxyphenyl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.28 (s, 3H), 3.79 (s, 3H), 6.87 (d, *J* = 8.80 Hz, 2H), 6.99 (d, *J* = 8.80 Hz, 2H).

$$\mathsf{MeO} - \underbrace{\hspace{1.5cm}} \mathsf{OOCCH_2CH_3} \\ \textbf{3db}$$

4-methoxyphenyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.23 (t, J = 7.56 Hz, 3H), 2.54-2.57 (m, 2H), 3.80 (s, 3H), 6.87 (d, J = 8.80 Hz, 2H), 6.98 (d, J = 8.80 Hz, 2H).

ethyl 4-acetoxybenzoate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.36 (t, *J*= 7.32 Hz, 3H), 2.31 (s, 3H), 4.34-4.38 (m, 2H), 7.15 (d, *J* = 8.80 Hz, 2H), 8.06 (d, *J* = 8.80 Hz, 2H).

OAc 3fa

3-morpholinophenyl acetate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.23 (s, 3H), 3.09 (t, *J* = 4.80 Hz, 4H), 3.78 (t, *J* = 4.58 Hz, 4H), 6.55 (d, *J* = 6.88 Hz, 2H), 6.71 (d, *J* = 7.36 Hz, 1H), 7.19 (t, *J* = 8.24 Hz, 1H).

3-morpholinophenyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.20 (t, J = 7.56 Hz, 3H), 2.51-2.56 (m, 2H), 3.08-3.10 (m, 4H), 3.78-3.79 (m, 4H), 6.56 (d, J = 8.28 Hz, 2H), 6.70 (d, J = 7.76 Hz, 1H), 7.19 (d, J = 8.02 Hz, 1H).

4-chlorophenyl acetate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.27 (s, 3H), 7.01 (d, J = 8.72 Hz, 2H), 7.32 (d, J = 8.72 Hz, 2H).

4-chlorophenyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.21 (t, J = 7.56 Hz, 3H), 2.53-2.56 (m, 2H), 6.87 (d, J = 8.72 Hz, 2H), 7.30 (d, J = 8.24 Hz, 2H).

2-chlorophenyl acetate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.33 (s, 3H), 7.12-7.18 (m, 2H), 7.24 (d, J = 7.80 Hz, 1H), 7.42 (d, J = 7.80 Hz, 1H).

2-chlorophenyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.28 (t, J = 7.56 Hz, 3H), 2.62-2.66 (m, 2H), 7.12-7.27 (m, 3H), 7.42 (d, J = 7.80 Hz, 1H).

4-acetylphenyl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.18 (s, 3H), 2.45 (s, 3H), 7.05 (d, *J* = 8.68 Hz, 2H), 6.99 (d, *J* = 8.68 Hz, 2H).

4-acetylphenyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.15 (t, J = 7.56 Hz, 3H), 2.45-2.50 (m, 5H), 7.06 (d, J = 9.16 Hz, 2H), 7.84 (d, J = 8.72 Hz, 2H).

benzyl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.09 (s, 3H), 5.10 (s, 2H), 7.33-7.36 (m, 5H).

benzyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.14 (t, J = 7.58 Hz, 3H), 2.36-2.38 (m, 2H), 5.11 (s, 2H), 7.34-7.36 (m, 5H).

4-methoxybenzyl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.06 (s, 3H), 3.79 (s, 3H), 5.03 (s, 2H), 6.87 (d, *J* = 8.80 Hz, 2H), 7.28 (d, *J* = 8.76 Hz, 2H).

4-methoxybenzyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.12 (t, J = 7.62 Hz, 3H), 2.32-2.36 (m, 2H), 3.80 (s, 3H), 5.05 (s, 2H), 6.87 (d, J = 8.60 Hz, 2H), 7.28 (d, J = 8.60 Hz, 2H).

cinnamyl acetate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.10 (s, 3H), 4.72 (d, J = 6.32 Hz, 2H), 6.26-6.32 (m, 1H), 6.63 (d, J = 15.64 Hz, 1H), 7.30-7.40 (m, 5H).

Cinnamyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.15 (t, J = 7.85 Hz, 3H), 2.34-2.38 (m, 2H), 4.73 (d, J = 6.36 Hz, 2H), 6.26-6.30 (m, 1H), 6.62 (d, J = 15.64 Hz, 1H), 7.27-7.39 (m, 5H).

AcO(CH₂)₉OAc 3ma

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.18 (s, 10H), 1.44-1.49 (m, 4H), 1.90 (s, 6H), 3.89 (t, *J* = 6.88 Hz, 4H).

CH₃CH₂COO(CH₂)₉OOCCH₂CH₃ 3mb

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.01 (t, J = 7.56 Hz, 6H), 1.21 (s, 10H), 1.48-1.53 (m, 4H), 2.18-2.24 (m, 4H), 3.94 (t, J = 6.88 Hz, 4H).

AcO(CH₂)₆OAc 3na

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.38-1.41 (m, 4H), 1.62-1.66 (m, 4H), 2.05 (s, 6H), 4.04 (t, J = 6.84 Hz, 4H).

CH₃CH₂COO(CH₂)₆OOCCH₂CH₃ 3nb

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.12 (t, J = 7.58 Hz, 6H), 1.39-1.40 (m, 4H), 1.64-1.65 (m, 4H), 2.32-2.35 (m, 4H), 4.06 (t, J = 6.60 Hz, 4H).

CH₃(CH₂)₆OAc 30a

Heptyl acetate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 0.87 (t, J = 6.64 Hz, 3H), 1.29-1.36 (m, 8H), 1.59-1.64 (m, 2H), 2.04 (s, 3H), 4.04 (t, J = 6.88 Hz, 2H).

CH₃(CH₂)₆OOCCH₂CH₃ 30b

Heptyl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 0.82 (t, *J* = 6.64 Hz, 3H), 1.08 (t, *J* = 7.56 Hz, 3H), 1.24-1.28 (m, 8H), 1.54-1.59 (m, 2H), 2.25-2.30 (m, 2H), 4.00 (t, *J* = 6.64 Hz, 2H).

benzhydryl acetate $^{1}{\rm H}$ NMR (400M Hz, CDCl_3): δ (ppm) 2.20 (s, 3H), 6.98 (s, 1H), 7.33-7.44 (m, 10H).

OOCCH₂CH₃ Ph Ph **3pb**

Benzhydryl propionate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.13 (t, J = 7.56 Hz, 3H), 2.39-2.45 (m, 2H), 6.90 (s, 1H), 7.23-7.35 (m, 10H).

(*1R*,*2S*,*5R*)-2-isopropyl-5-methylcyclohexyl acetate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 0.66 (d, *J*= 7.32 Hz, 3H), 0.75-1.01 (m, 9H), 1.23-1.29 (m, 1H), 1.36-1.40 (m, 1H), 1.55-1.59 (m, 2H), 1.75-1.79 (m, 1H), 1.88-1.94 (m, 4H), 4.56-4.58 (m, 1H).

(*1R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl propionate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 0.71 (d, *J* = 6.88 Hz, 3H), 0.78-0.94 (m, 8H), 0.99-1.12 (m, 4H), 1.27-1.45 (m, 2H), 1.58-1.63 (m, 2H), 1.78-1.82 (m, 1H), 1.90-1.94 (m, 1H), 2.21-2.26 (m, 2H), 4.59-4.65 (m, 1H).

S-phenyl ethanethioate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.39 (s, 3H), 7.38-7.39 (m, 5H).

S-phenyl propanethioate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.20 (t, *J* = 7.62 Hz, 3H), 2.64-2.68 (m, 2H), 7.39-7.40 (m, 5H).

S-4-chlorophenyl ethanethioate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 2.41 (s, 3H), 7.31-7.36 (m, 4H).

S-4-chlorophenyl propanethioate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.20 (t, *J* = 7.56 Hz, 3H), 2.65-2.69 (m, 2H), 7.32-7.36 (m, 4H).

S-ethyl ethanethioate

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.18 (t, J = 7.10 Hz, 3H), 1.98 (s, 3H), 4.03-3.09 (m, 2H).

S-ethyl propanethioate ¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.11 (t, *J* = 7.56 Hz, 3H), 1.18 (t, *J* = 7.34 Hz, 3H), 1.98 (s, 3H), 2.49-2.55 (m, 2H), 2.80-2.86 (m, 2H).

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.11 (t, J = 7.34 Hz, 3H), 1.82-1.91 (m, 2H), 2.62 (t, J = 7.32 Hz, 2H), 7.25 (d, J = 8.68 Hz, 1H), 7.45-7.53 (m, 2H), 7.59 (s, 1H), 7.81-7.88 (m, 3H).

¹H NMR (400M Hz, CDCl₃): δ (ppm) 1.38 (d, *J* = 6.88 Hz, 6H), 2.85-2.92 (m, 1H), 7.22 (d, *J* = 8.72 Hz, 1H), 7.45-7.52 (m, 2H), 7.57 (s, 1H), 7.80-7.87 (m, 3H).

¹H NMR (400M Hz, CDCl₃): δ (ppm) 7.36 (dd, *J* = 8.72, 2.28 Hz, 1H), 7.48-7.56 (m, 4H), 7.64-7.71 (m, 2H), 7.83-7.92 (m, 3H), 8.26-8.28 (m, 2H).