Supporting Information for

Transfer Hydrogenation of Aldehydes on Amphiphilic Catalyst Assembled at the Interface of Emulsion Droplets

Jun Li, Yanmei Zhang, Difei Han, Guoqing Jia, Jinbo Gao, Lin Zhong and Can Li ${ }^{*}$

[*] State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

Fax: (+86) 411-8469-4447

Email: canli@dicp.ac.cn;
Homepage: http://www.canli.dicp.ac.cn

Contents

General experimental details S2-3
Results of recycling of PTsEN S3
Photographs of catalyst Ir-PTsEN under reaction conditions S4
Fluorescence Measurements S4
${ }^{1}$ H NMR of ligand PTsEN S5

General experimental details: ${ }^{1} \mathrm{H}$ NMR spectrum was recorded on a Bruker AV500 (500 MHz) instrument using $\mathrm{D}_{2} \mathrm{O}$ as the solvent at $85^{\circ} \mathrm{C}$. Chemical shifts (δ) are reported in ppm relative to residual solvent signals ($\mathrm{H}_{2} \mathrm{O}, 4.18 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR $) .{ }^{1}$ Fluorescence spectra were recorded at room temperature on an Edinburgh FLS920 fluorescence spectrometer. The emission spectra were recorded by excitation at 340 nm .

Monomer 2 (4-vinylbenyl)-trimethyl ammonium chloride and $\left[\left(\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right)_{2}\right]\left(\mathrm{Cp}^{*}=\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ was obtained from Aldrich Chemical Co. DMF was dried and distilled before use following standard procedures. Benzaldehyde and furfural were freshly distilled before use. All other reagents were used without purification as commercially available.

General procedure for the preparation of PTsEN

Monomer $\mathbf{1}(150 \mathrm{mg}, 0.66 \mathrm{mmol})$ and monomer $2(168 \mathrm{mg}, 0.84 \mathrm{mmol})$ were added to a solution of anhydrous DMF (5 mL) with AIBN ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$). The mixture was degassed for three times of freeze-thaw under liquid nitrogen. Polymerization was carried out at $60{ }^{\circ} \mathrm{C}$ for 24 h under argon. After filtration, the residue was washed by DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in turn, and dried in vacuo to give PTsEN (299 $\mathrm{mg}, 94 \%$ yield).as white solid. $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 85{ }^{\circ} \mathrm{C}\right) 1.66 \mathrm{ppm}\left(\mathrm{br}, \mathrm{CH}, \mathrm{CH}_{2}\right.$, the backbone of polymer), 2.88 (br, $\mathrm{CH}_{2} \mathrm{~N}$), 3.11 (br, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 4.46 (br, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.49-7.10,7.10-7.48,7.50-7.91$ (br, Ar -H). The molar ratio of the monomers was determined by ${ }^{1} \mathrm{H}$ NMR analysis (monomer $\mathbf{1}$: monomer $\mathbf{2}=$ 0.43 : 0.57).

Typical procedure for transfer hydrogenation of aldehydes

The reduction of benzaldehyde at $\mathrm{S} / \mathrm{Ir}=10000: 1$ was carried out as following: PTsEN (9 mg , containing 0.018 mmol monomer $\mathbf{1})$ and $\left[\left(\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right)_{2}\right](1.6 \mathrm{mg}, 0.002 \mathrm{mmol})$ were suspended in degassed
distilled water (15 mL) under argon. After stirred at $80^{\circ} \mathrm{C}$ for 1 h , Benzaldehyde ($4.2 \mathrm{~g}, 40 \mathrm{mmol}$) and HCOONa ($5.4 \mathrm{~g}, 80 \mathrm{mmol}$) were quickly added to the resulting solution. The conversion was monitored by GC (equipped with HP 19091G-B213 column). The reaction mixture was cooled to room temperature after completion, and the product was extracted with ethyl ether ($3 \times 10 \mathrm{~mL}$). The ethereal phase was removed with syringe. A new reaction could be conducted by adding benzaldehyde (40 mmol) and a equiv formic acid in turn.

Table S1 Catalystic activities of transfer hydrogenation of benzaldehyde using Ir-PTsEN in three consecutive cycles. ${ }^{a}$

Cycles	Conv (\%)
1	99
2	67
3	39
${ }^{a}$ Product is extracted with diethyl ether. Reaction conditions: $80^{\circ} \mathrm{C}$, HCOONa (2.0 equiv), water (15 mL),	
S/Ir $1 \times 10^{4}: 1$, reaction time 6 min.	

Fig. S1. Photographs of catalyst Ir-PTsEN under the reaction conditions. a) Ir-PTsEN in water (15 mL). b) Ir-PTsEN in the emulsion system consisting of benzaldehyde (40 mmol), water (15 mL) and HCOONa (2 equiv). c) After reaction completion, ethyl ether is added to the mixture of reaction.

Fig. S2. Fluorescence spectra a) Ir-PTsEN in water (15 mL). b) Ir-PTsEN in the emulsion system consisting of benzalyede (40 mmol) and water (15 mL).

References:

[1] H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 1997, 62, 7512-7515.

