Supporting Information

Lipase-catalysed direct Mannich reaction in water: utilization of biocatalytic promiscuity for C-C bond formation in a "one-pot" synthesis

Kun Li, Ting He, Chao Li, Xing-Wen Feng, Na Wang^{*} and Xiao-Qi Yu^{*}

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China. Fax: +86 28 85415886; E-mail: xqyu@tfol.com

Experimental Section

Materials and General Methods

Lipase from *Candida antarctica* (CAL-B), lipase from porcine pancreas (PPL), lipase from *Candida cylindracea* (CCL), lipase from *Candida rugosa* (CRL), lipase from *Mucor javanicus* (MJL) and lipase from *Rhizopus oryzae* (ROL) were purchased from Sigma. Lipase from *Mucor miehei* (MML) and lipase from *Penicillium camemberti* (PCL) were purchased from Fluka. Lipase from *Pseudomonas fluorescens* (PFL), Lipase from *Penicillium roqueforti* (PRL) and Lipase from *Burkholderia cepacia* (BCL) were a gift from Amano.

¹H NMR and ¹³C NMR spectra were recorded on a Bruker DMX 400. Chemical shifts are given in δ relative to tetramethylsilane (TMS). HPLC was carried out using a Shimadzu organizer consisting of a LC-2010A HT Integrator, a UV/VIS Detector. C18 column was used in the HPLC experiments with methanol/water = 70:30 (v/v), 0.8 ml/min and UV= 254 nm. Electrospray ionization (ESI) mass spectrometry experiments were performed on Bruker Daltonics Bio TOF mass spectrometer.

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2009

Time effect of the Mannich reaction catalyzed by MML

Fig. S1 Time course of the reaction catalysed by MML

Reaction conditions: a solution of 4-nitrobenzaldehyde (0.3 mmol), aniline (0.33 mmol), acetone (6 ml), 6 ml water and 30 mg MML was shaken at 200 rpm at 30 °C, and 40 μ l reaction solvent was taken out at different time and yield was calculated by HPLC.

100]

Catalyst recovery experiment

Fig. S2 The yield of Mannich Reaction by reused MML

Reaction conditions: a solution of 4-nitrobenzaldehyde (2, 0.1 mmol), aniline (1, 0.11 mmol), acetone (3, 1 ml), 2 ml solvent (the ratio of the mixture solvent is 1:1 in volme) and 10 mg MML was shaken at 200 rpm at 30 °C for 28 h. The catalyst can be easily recovered by washing with

water.

Subsrate expansion and characterization

NH ₂	$r_{2} + R \frac{r_{1}}{r_{1}}$	CHO O +	MML H ₂ O, 5	0 H 0% 4a-	
_	Entry	R	4	Yield (%)	
_	1	4-NO ₂	4a	83.5	
	2	3-NO ₂	4b	82.4	
	3	Н	4c	87.3	
	4	4-OMe	4d	89.1	
	5	4 - OH	4e	43.6	
	6	4-CN	4f	65.3	
	7	4-Cl	4g	83.1	

Reaction conditions: the reaction was initiated by adding 1 mmol aldehyde, 1.1 mmol amine and 50 mg MML to a mixture of 8 ml acetone and 8 ml water. The suspension was maintained at 30 °C and shaken at 200 rpm for 48 h. The residue was then filtered off and the solvent was evaporated. A single product was prepared by silica gel chromatography with an eluent consisting of petroleum/ethyl acetate (4 : 1, v/v).

4-Phenylamino-4-(4-nitrophenyl)butan-2-one (4a): ¹H NMR (CDCl₃, 400 MHz),

δ (ppm): 8.23-8.18 (m, 2H, Ph-H), 7.57-7.54 (m, 2H, Ph-H), 7.15-7.10 (m, 2H, Ph-H), 6.71-6.68 (m, 1H, Ph-H), 6.50-6.48 (m, 2H, Ph-H), 4.94 (t, 1H, J = 6.4 Hz, Ph-CH-), 4.48 (s, 1H, NH), 2.97 (d, 2H, J = 6.4 Hz, -CH₂-), 2.15 (s, 3H, -CH₃). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 205.9, 150.4, 147.2, 146.1, 128.8, 124.2, 124.1, 118.6, 113.8, 53.8, 50.6, 30.7. ESI-MS: 307.1 [M+Na]⁺.

4-Phenylamino-4-(3-nitrophenyl)butan-2-one (4b): ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8.26-8.22 (m, 1H, Ph-H), 8.09-8.07 (m, 1H, Ph-H), 7.76-7.74 (m, 1H, Ph-H), 7.50-7.46 (m, 1H, Ph-H), 7.10-7.08 (m, 2H, Ph-H), 6.71-6.68 (m, 1H, Ph-H), 6.53-6.51 (m, 2H, Ph-H), 4.95 (t, 1H, J = 6.4 Hz, Ph-CH-), 4.58 (s, 1H, NH), 2.98 (d, 2H, J = 6.4 Hz, -CH₂-), 2.15 (s, 3H, -CH₃). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 206.1, 148.7, 146.3, 145.3, 140.3, 136.4, 133.9, 133.0, 130.1, 129.8, 129.5, 124.7, 122.7, 121.5, 118.5, 115.2, 113.9, 53.6, 50.8, 30.7. ESI-MS: 307.1 [M+Na]⁺.

4-Phenylamino-4-phenyl-butan-2-one (**4c**): ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.31-7.24 (m, 4H, Ph-H), 7.11-7.09 (m, 2H, Ph-H), 6.68-6.65 (m, 1H, Ph-H),

6.55-6.54 (m, 2H, Ph-H), 4.86 (t, 1H, J = 6.4 Hz, Ph-CH-), 4.43 (s, 1H, NH), 2.93 (d, 2H, J = 6.4 Hz, -CH₂-), 2.10 (s, 3H, -CH₃). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 207.2, 146.8, 142.5, 129.1, 128.8, 127.4, 126.3, 117.9, 113.8, 54.4, 51.2, 30.7. ESI-MS: 262.1 [M+Na]⁺.

4-Phenylamino-4-(4-methoxy-phenyl)butan-2-one (4d): ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.28-7.25 (m, 2H, Ph-H), 7.11-7.07 (m, 2H, Ph-H), 6.86-6.83 (m, 2H, Ph-H), 6.68-6.64 (m, 1H, Ph-H), 6.55-6.53 (m, 2H, Ph-H), 4.80 (t, 1H, J = 6.4 Hz, Ph-CH-), 3.77 (s, 3H, -OCH₃), 2.89 (d, 2H, J = 6.4 Hz, -CH₂-), 2.09 (s, 3H, -CH₃). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 207.4, 158.8, 146.8, 134.5, 130.0, 129.1, 127.4, 117.8, 114.2, 113.8, 55.3, 53.8, 51.3, 30.8. ESI-MS: 292.1 [M+Na]⁺.

4-Phenylamino-4-(4-hydroxy-phenyl)butan-2-one (**4e**): ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.42-7.40 (m, 1H, Ph-H), 7.20-7.17 (m, 2H, Ph-H), 7.10-7.06 (m, 2H, Ph-H), 6.87-6.78 (m, 1H, Ph-H), 6.77-6.67 (m, 1H, Ph-H), 6.56-6.54 (m, 2H, Ph-H), 4.78 (t, 1H, *J* = 6.4 Hz, Ph-CH-), 2.89 (d, 2H, *J* = 6.4 Hz, -CH₂-), 2.08 (s, 3H, -CH₃).

¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 208.5, 159.3, 146.8, 144.8, 130.4, 129.2, 127.5, 116.1, 115.7, 113.8, 53.9, 51.3, 30.8. ESI-MS: 278.1 [M+Na]⁺.

4-Phenylamino-4-(4-Cyanophenyl)butan-2-one (**4f**): ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.31-7.26 (m, 4H, Ph-H), 7.11-7.07 (m, 2H, Ph-H), 6.70-6.66 (m, 1H, Ph-H), 6.52-6.50 (m, 2H, Ph-H), 4.81 (t, 1H, *J* = 6.4 Hz, Ph-CH-), 4.45 (s, 1H, NH), 2.89 (d, 2H, *J* = 6.4 Hz, -CH₂-), 2.10 (s, 3H, -CH₃). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 206.8, 146.6, 141.3, 133.1, 129.4, 129.1, 127.9, 118.3, 115.3, 113.9, 53.9, 51.1, 30.9. ESI-MS: 287.1 [M+Na]⁺.

4-Phenylamino-4-(4-chlorophenyl)butan-2-one (**4g**): ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.60-7.58 (m, 2H, Ph-H), 7.50-7.48 (m, 2H, Ph-H), 7.11-7.07 (m, 2H, Ph-H), 6.71-6.67 (m, 1H, Ph-H), 6.50-6.47 (m, 2H, Ph-H), 4.88 (t, 1H, J = 6.4 Hz, Ph-CH-), 4.56 (s, 1H, NH), 2.93 (d, 2H, J = 6.4 Hz, -CH₂-), 2.12 (s, 3H, -CH₃). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 206.1, 148.4, 146.3, 135.6, 129.3, 127.3, 118.8, 113.8, 111.2, 53.9, 50.7, 30.7. ESI-MS: 296.1 [M+Na]⁺.