Supporting Information for:

Highly Enantioselective *L*-Thiaproline catalyzed α-Aminoxylation of Aldehydes in Aqueous Media

Pei Juan Chua, Bin Tan and Guofu Zhong*

Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

Table of Contents

1.	General Information	S2
2.	General Experimental Procedure for the α -Aminoxylation in the presence of water	S 3
3.	Experimental data of Compounds 3a-3k	S4
4.	¹ H and ¹³ C NMR Spectra of Compounds 3a-3k	S10
5.	HPLC Spectra of Compounds 3a-3k	S21

General Information:

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on Bruker AMX 400 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of SiMe₄ (δ 0.0, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), dd (doublets of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.03, triplet).

Enantioselectivities were determined by High Performance Liquid Chromatography (HPLC) analysis employing a Daicel Chirapak AD-H (0.46cm x 25 cm), OD-H (0.46cm x 25 cm) or OJ-H (0.46cm x 25 cm) column.

Optical rotations were measured in $CHCl_3$ on a *Schmidt* + *Haensdch* polarimeter (Polartronic MH8) with a 1 cm cell (*c* given in g/100 mL). Absolute configuration of the products was determined by comparison with compounds previously published.

Aldehydes **1i** and **1j** were prepared according to literature procedures.^{1, 2} The enantiomers used to determine the ee values were synthesized with DL-proline as catalyst. All other reagents were available from commercial sources and used without further purification.

General experimental procedure for the α -aminoxylation of aldehydes to nitrosobenzene in the presence of water:

Water (0.10 mL) and tetrabutylammonium bromide (193.4 mg, 0.6 mmol) was added to a 5 mL drum vial containing nitrosobenzene **2** (32.1 mg, 0.3 mmol), corresponding aldehydes **1** (0.9 mmol) and a magnetic stirring bar. After stirring for 5 min at 0 °C, L-thiaproline (8 mg, 0.06 mmol) was then added. The reaction was first stirred at this temperature for about 10 min and then at room temperature until the green solution turned yellow which indicated complete consumption of the nitrosobenzene. As the α -aminoxy aldehyde product is rather labile, isolation and characterization was performed after conversion to the corresponding α -aminoxy alcohol **3** by treatment of the reaction mixture with NaBH₄. The excess NaBH₄ was quenched by the addition of water and then extracted with CH₂Cl₂ (3 x 30 ml). The combined organic extracts were dried with Na₂SO₄ and concentrated *in vacuo*. The crude oil was purified by flash column chromatography (Hexane:EtOAc = 9/1~7/3) yielding pure α -aminoxy alcohols **3**.

Relative and absolute configurations of the products were compared with the known ¹H NMR, chiral HPLC analysis, and optical rotation values. The compounds in Table 3 are known in the literature.

Experimental data of Compounds 3a-3k

(*R*)-2-(N-phenylaminoxy)propan-1-ol (**3a**)

 α -aminoxy alcohol **3a** was prepared according to the general procedure from propanal (0.07 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (42.3 mg, 84% yield) after flash column chromatography on silica gel (Hexane:EtOAc = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (2H, m), 7.04-6.96 (3H, m), 4.16-4.08 (1H, m), 3.80-3.70 (2H, m), 2.56 (1H, brs), 1.25 (3H, d, *J* = 6.4 Hz).

¹³C NMR (100 MHz, CDCl₃): 148.5, 129.0, 122.4, 114.7, 80.0, 66.5, 15.4.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 10.6 min, $t_{\rm R}$ (major) =12.1 min; 96% ee.

 $[\alpha]_{D}^{25} = +2.9 \ (c = 1.0, \text{ CHCl}_3).$

(*R*)-2-(N-phenylaminoxy)butan-1-ol (**3b**) 3

 α -aminoxy alcohol **3b** was prepared according to the general procedure from butanal (0.08 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (40.9 mg, 75% yield) after flash column chromatography on silica gel (hexane:EtOAc = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (2H, m), 7.07-6.96 (2H, m), 3.91-3.74 (3H, m), 2.67 (1H, brs), 1.78-1.53 (2H, m), 1.01 (3H, t, *J* = 7.5 Hz).

¹³C NMR (100 MHz, CDCl₃): 148.4, 129.0, 122.4, 114.8, 85.3, 64.9, 22.9, 10.1.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 10.2 min, $t_{\rm R}$ (major) =11.6 min; 98% ee.

 $[\alpha]_{D}^{23} = +36.0 \ (c = 1.0, \text{CHCl}_3).$

```
(R)-2-(N-phenylaminoxy)pentan-1-ol (3c)<sup>3</sup>
```


 α -aminoxy alcohol **3c** was prepared according to the general procedure from pentanal (0.10 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (46.0 mg, 79% yield) after flash column chromatography on silica gel (hexane:EtOAc = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.28-7.15 (3H, m), 6.98-6.94 (2H, m), 3.94-3.91 (1H, m), 3.85-3.82 (1H, m), 3.75-3.71 (1H, m), 2.93 (1H, brs), 1.67-1.61 (1H, m), 1.54-1.33 (3H, m), 0.97-0.89 (3H, m).

¹³C NMR (100 MHz, CDCl₃): 148.4, 129.0, 122.3, 114.7, 83.7, 65.1, 32.0, 19.0, 14.2.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 10.0 min, $t_{\rm R}$ (major) =11.4 min; 97% ee.

 $[\alpha]_{D}^{23} = +28.6 \ (c = 1.0, \text{ CHCl}_3).$

(*R*)-2-(N-phenylaminoxy)hexan-1-ol (**3d**)

 α -aminoxy alcohol **3d** was prepared according to the general procedure from hexanal (0.11 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (46.4 mg, 74% yield) after flash column chromatography on silica gel (hexane:EtOAc = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (2H, m), 7.06-6.96 (3H, m), 3.98-3.92 (1H, m), 3.87-3.84 (1H, m), 3.79-3.72 (1H, m), 2.68 (1H, brs), 1.69-1.50 (1H, m), 1.47-1.30 (4H, m), 0.92 (3H, t, *J* = 7.1 Hz).

¹³C NMR (100 MHz, CDCl₃): 148.4, 129.0, 122.5, 114.9, 84.0, 65.4, 29.6, 27.9, 22.0, 14.0.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 9.5 min, $t_{\rm R}$ (major) =11.4 min; 96% ee.

 $[\alpha]_D^{23} = +22.5 \ (c = 1.2, \text{CHCl}_3).$

(*R*)-3-methyl-2-(N-phenylaminoxy)butan-1-ol (3e)⁴

α-aminoxy alcohol **3e** was prepared according to the general procedure from 3-methybutanal (0.10 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (44.8 mg, 76% yield) after flash column chromatography on silica gel (hexane:EtOAc = $9/1 \sim 7/3$). ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (2H, m), 7.03-6.99 (3H, m), 3.88-3.87 (2H, m), 3.76-

3.74 (1H, m), 2.07-1.99 (1H, m), 1.05 (3H, d, *J* = 6.9 Hz), 1.01 (3H, d, *J* = 6.9 Hz).

¹³C NMR (100 MHz, CDCl₃): 148.3, 129.0, 122.5, 115.0, 88.6, 63.6, 28.7, 18.7, 18.6.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 9.0 min, $t_{\rm R}$ (major) =10.1 mins; 97% ee.

 $[\alpha]_{D}^{22} = +33.4 \ (c = 1.0, \text{ CHCl}_3).$

(*R*)-2-phenyl-2-(N-phenylaminoxy)ethanol $(3f)^3$

α-aminoxy alcohol **3f** was prepared according to the general procedure from 2phenylacetaldehyde (0.11 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (53.5 mg, 78% yield) after flash column chromatography on silica gel (hexane:ether = 9/1~7/3). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.31 (5H, m), 7.28-7.20 (2H, m), 6.99-6.94 (3H, m), 5.00 (1H, dd, *J* = 3.5, 8.1Hz), 3.99-3.92 (1H, m), 3.83-3.78 (1H, m), 2.58 (1H, brs). ¹³C NMR (100 MHz, CDCl₃): 147.9, 137.7, 129.0, 128.7, 128.5, 127.0, 122.5, 115.0, 86.4, 66.4. HPLC: Chiralpak OD-H (hexane/*i*-PrOH, 95/5, flow rate 1 mL/min, λ = 230 nm), *t*_R (major) = 25.8mins, *t*_R (minor) =30.2 min; 93% ee. [*α*]_D²⁴ = - 85.5 (*c* = 1.1, CHCl₃). (*R*)-3-phenyl-2-(N-phenylaminoxy)propan-1-ol $(3g)^3$

 α -aminoxy alcohol **3g** was prepared according to the general procedure from 3-phenylpropanal (0.12 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (55.9 mg, 77% yield) after flash column chromatography on silica gel (hexane:ether = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.18 (6H, m), 7.08 (1H, brs), 6.94 (1H, t, *J* = 7.3 Hz), 6.82 (2H, d, *J* = 8.0 Hz), 4.16-4.10 (1H, m), 3.85 (1H, d, *J* = 11.8 Hz), 3.04 (1H, dd, *J* = 6.8, 13.7 Hz), 2.84 (1H, dd, *J* = 7.0, 13.7 Hz), 2.62 (1H, brs).

¹³C NMR (100 MHz, CDCl₃): 148.3, 137.8, 129.4, 128.9, 128.5, 126.4, 122.3, 114.6, 85.0, 64.1, 36.4.

HPLC: Chiralpak OD-H (hexane/*i*-PrOH, 91/9, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (major) = 57.9 min, $t_{\rm R}$ (minor) =62.4 min; >99% ee.

 $[\alpha]_{D}^{22} = +55.2 \ (c = 1.3, \text{CHCl}_3).$

(*R*)-2-(N-phenylaminoxy)pent-4-en-1-ol (**3h**) 4

 α -aminoxy alcohol **3h** was prepared according to the general procedure from 4-pentenal (0.09 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (51.0 mg, 88% yield) after flash column chromatography on silica gel (hexane:EtOAc = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (2H, m), 7.06-6.96 (3H, m), 5.93-5.82 (1H, m), 5.18-5.11 (2H, m), 4.05-4.00 (1H, m), 3.87-3.75 (2H, m), 2.54-2.32 (3H, m), 1.66 (1H, brs).

¹³C NMR (100 MHz, CDCl₃): 148.3, 134.0, 129.0, 122.5, 117.8, 114.8, 83.3, 64.6, 34.6.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 10.5 min, $t_{\rm R}$ (major) =12.5 min; 96% ee.

 $[\alpha]_{D}^{23} = -22.9 \ (c = 1.0, \text{ CHCl}_3).$

(R)-4-(benzyloxy)-2-(N-phenylaminoxy)butan-1-ol (new compound) (3i)

α-aminoxy alcohol **3i** was prepared according to the general procedure from 4-(benzyloxy)butanal (0.16 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (73.8 mg, 86% yield) after flash column chromatography on silica gel (hexane:EtOAc = $9/1 \sim 7/3$). ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.23 (6H, m), 7.05 (1H, brs), 6.98-6.94 (3H, m), 4.54-4.52 (2H, m), 4.14-4.11 (1H, m), 3.93- 3.87 (1H, m), 3.81-3.77 (1H, m), 3.66 (2H, t, *J* = 5.7 Hz), 2.81 (1H, t, *J* = 5.9 Hz), 2.06-1.89 (2H, m).

¹³C NMR (100 MHz, CDCl₃): 148.3, 138.0, 129.0, 128.5, 127.8, 122.4, 116.1, 114.8, 81.5, 73.2, 66.7, 64.8, 30.3.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 91/9, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 18.8 min, $t_{\rm R}$ (major) =24.1 min; 97% ee.

 $[\alpha]_{\rm D}^{22} = +15.5 \ (c = 1.1, \text{CHCl}_3).$

HRMS (ESI) calcd for C₁₇H₂₁NO₃, m/z 288.1600, found 288.1599.

(R)-tert-butyl 3-hydroxy-2-(N-phenylaminoxy)propylcarbamate (new compound) (3j)

α-aminoxy alcohol **3j** was prepared according to the general procedure from tert-butyl-3oxopropylcarbamate (0.16 mL, 0.9 mmol) to provide the title compound as a pale yellow liquid (67.2 mg, 79% yield) after flash column chromatography on silica gel (hexane:EtOAc = $9/1 \sim 7/3$). ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.24 (3H, m), 6.98-6.94 (2H, m), 5.02 (1H, brs), 3.94-3.92 (1H, m), 3.80 (2H, s), 3.50-3.36 (2H, m), 1.45 (9H, s).

¹³C NMR (100 MHz, CDCl₃): 157.1, 148.3, 129.0, 122.4, 114.6, 82.4, 80.0, 61.3, 39.6, 28.3. HPLC: Chiralpak OJ-H (hexane/*i*-PrOH, 95/5, flow rate 1 mL/min, λ = 230 nm), $t_{\rm R}$ (minor) = 24.8 min, $t_{\rm R}$ (major) =26.6 min; 93% ee. $[\alpha]_{\rm D}^{22} = -8.2$ (c = 1.3, CHCl₃).

HRMS (ESI) calcd for C₁₄H₂₃N₂O₄, m/z 282.1658, found 282.1659.

(*R*)-2-(p-toluidinoxy)propan-1-ol (new compound) (3k)

 α -aminoxy alcohol **3k** was prepared according to the general procedure from propanal (0.07 mL, 0.9 mmol) and nitrosotoluene (36.3 mg, 0.3 mmol) to provide the title compound as a pale yellow liquid (45.0 mg, 83% yield) after flash column chromatography on silica gel (hexane:EtOAc = 9/1~7/3).

¹H NMR (400 MHz, CDCl₃): δ 7.07 (2H, d, J = 8.1 Hz), 6.99 (1H, brs), 6.88 (2H, d, J = 8.3Hz), 4.13-4.07 (1H, m), 3.78-3.68 (2H, m), 2.28 (3H, s), 1.22 (3H, d, J = 6.5 Hz).

¹³C NMR (100 MHz, CDCl₃): 145.8, 132.0, 129.5, 115.3 79.8, 66.6, 20.6, 15.4.

HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 90/10, flow rate 1 mL/min, λ = 230 nm),

 $t_{\rm R}$ (minor) = 10.9 min, $t_{\rm R}$ (major) =12.4 min; 97% ee.

 $[\alpha]_{D}^{25} = +5.5 \ (c = 1.5, \text{CHCl}_3).$

HRMS (ESI) calcd for C₁₀H₁₆NO₂, m/z 182.1181, found 182.1181.

References:

- 1. For the preparation of 1i: R. Iyengar, K. Schildknegt, M. Morton, J. Aube, J. of Org. Chem., 2005, 70, 10645.
- 2. For the preparation of 1j: J. D. More and N. S. Finney, Org. Lett., 2002, 4, 3001
- 3. Y. Hayashi, J. Yamaguchi, T. Sumiya, K. Hibino and M. Shoji, J. of Org. Chem., 2004, 69, 5966
- 4. A. Córdova, H. Sundén, A. Bøgevig,, M. Johansson and F. Himo, Chem. Eur. J. 2004, 10, 3673

¹H and ¹³C NMR Spectra of Compounds 3a-3n

400MHz PJ30006a

ppm

HPLC Spectra of Compounds 3a-3n

A Ch2 230r	Peak Table on 4mn	
Peak#	Ret. Time	Area %
1	10.577	50.695
2	12.107	49.305
Total	200003003	100.000

Peak#	Ret. Time	Area %
1	9.981	1.741
2	11.439	98.259
Total		100.000

DA Ch2 230r	Peak Table an 4ran	
Peak#	Ret. Time	Area %
1	9.947	49.922
2	11.411	50.078
Total		100.000

Peak#	Ret. Time	Area %
1	9.416	47.256
2	11.316	52.744
Total	100000000	100.000

Peak#	Ret. Time	Area %
1	8.971	1.541
2	10.144	98.459
Total	20.2762.266	100.000

A Ch2 2301	Peak Table un 4run	
Peak#	Ret. Time	Area %
1	8.573	52.949
2	9.669	47.051
Total	1000000	100.000

Peak#	Ret. Time	Area %
1	25.829	52.132
2	30.162	47.868
Total	561 × 20 × 60 × 50 × 1	100.000

Peak#	Ret. Time	Area %
1	57.879	99.789
2	62.487	0.211
Total		100.000

A Chl 230	Peak Table am 4mm	
Peak#	Ret. Time	Area %
1	57.358	49.364
2	62.071	50.636
Total		100.000

Peak#	Ret. Time	Area %
1	10.596	49.417
2	12.592	50.583
Total	0.00000000	100.000

Peak#	Ret. Time	Area %
1	18.768	1.736
2	24.138	98.264
Total		100.000

Peak Table DA Ch2 230mm 4mm			
Peak#	Ret. Time	Area %	
1	18.715	49.796	
2	24.049	50.204	
Total	10000000000000000000000000000000000000	100.000	

Peak Table A Chl 230mm 4mm			
Peak#	Ret. Time	Area %	
1	24.771	3.411	
2	26.629	96.589	
Total	i i	100.000	

PeakTable PDA Chl 230mm 4mm			
Peak#	Ret. Time	Area %	
1	24.896	49.829	
2	26.709	50.171	
Total		100.000	

Peak#	Ret. Time	Area %
1	10.799	46.717
2	12.256	53.283
Total	1	100.000