Extended dissolution studies of cellulose in imidazolium based ionic liquids

Jürgen Vitz,^{*a,b*} Tina Erdmenger,^{*a,b*} Claudia Haensch,^{*a,b*} Stephanie Hornig[#] and Ulrich S. Schubert*^{*a,b,c*}

^aLaboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands, Tel.: +31 40 247 5303, Fax: +31 40 247 4186;
E-mail: u.s.schubert@tue.nl, www.schubert-group.com
^b Dutch Polymer Institute (DPI), P.O. Box 902, NL-5600 AX Eindhoven, The Netherlands, Tel.: +31 40 247 56 29, Fax: +31 40 247 2462;
^c Laboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, D-07743 Jena, Germany,
Tel.: +49(0) 3641 9482 00, Fax:+49(0) 3641 9482 02;
E-mail: ulrich.schubert@uni-jena.de
[#] Current address: Kompetenzzentrum Polysaccharidforschung, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany

Content

1 Analytical data	. 2
2 Tables	5
3 Figures	5
4 Schemes	. 6

1 Analytical data

¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury spectrometer (400 MHz) or on a Varian Gemini spectrometer (300 MHz). Chemical shifts are given in ppm downfield from TMS.

IR spectra were recorded on a Perkin Elmer 1600 FT-IR ATR spectrometer. Also a Bruker TENSOR 37[™] equipped with a HTS-XT (High Throughput Screening eXTension) compartment and a HYPERION[™] 3000 microscope was used.

¹H NMR: chemical shift (multiplicity, number of protons, assignment, coupling constant).

[C₂MIM]F 1-ethyl-3-methylimidazolium fluoride:

¹H NMR: $\delta_{\rm H}(300 \text{ MHz}, \text{DMSO})$ 1.37 (t, 3H, J = 7.2 Hz), 3.81 (s, 3H), 4.14 (q, 2H, J = 7.2 Hz), 7.65 (bs, 2H), 10.14 (bs, 1H).

[C₂MIM]Br 1-ethyl-3-methylimidazolium bromide:

¹H NMR: $\delta_{\rm H}(300 \text{ MHz}, \text{DMSO})$ 1.39 (t, 3H, *J* = 7.4 Hz), 3.83 (s, 3H), 4.18 (q, 2H, *J* = 7.4 Hz), 7.69 (s, 1H), 7.78 (s, 1H), 9.15 (s, 1H). FT-IR: *v*_{max}/cm⁻¹ 3420 (H₂O), 3144, 3071, 2983, 1628, 1570, 1452, 1336, 1167, 1089, 829, 753.

[C₃MIM]Br 1-methyl-3-propylimidazolium bromide:

¹H NMR: $\delta_{\rm H}(300 \text{ MHz}, \text{DMSO}) 0.84$ (t, 3H, *J* = 7.4 Hz), 1.79 (dd, 3H, *J* = 7.3, 14.4 Hz), 3.86 (s, 3H), 4.14 (t, 2H, *J* = 7.1 Hz), 7.74 (s, 1H), 7.81 (s, 1H), 9.23 (s, 1H). FT-IR: $v_{\rm max}/{\rm cm}^{-1}$ 3137, 3058, 2964, 2876, 1568, 1458, 1386, 1336, 1169, 1090, 753.

[C₄MIM]Br 1-butyl-3-methylimidazolium bromide: ¹H NMR: $\delta_{\rm H}(300$ MHz, DMSO) 0.89 (t, 3H, J = 7.3 Hz), 1.25 (m, 2H), 1.76 (m, 2H), 3.86 (d, 3H, J = 1.7 Hz), 4.18 (t, 2H, J = 7.2 Hz), 7.74 (s, 1H), 7.82 (s, 1H), 9.25 (s, 1H).

[C₅MIM]Br 1-methyl-3-pentylimidazolium bromide:

¹H NMR: $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 0.74$ (bs, 3H), 1.20 (s, 4H), 1.78 (d, 2H, *J* = 6.8 Hz), 4.00 (s, 3H), 4.20 (t, 2H, *J* = 7.3 Hz), 7.47 (s, 1H), 7.62 (s, 1H), 10.18 (s, 1H).

[C₆MIM]Br 1-hexyl-3-methylimidazolium bromide:

¹H NMR: $\delta_{\rm H}$ (300 MHz, DMSO) 0.85 (s, 3H), 1.25 (s, 6H), 1.76 (s, 2H), 3.85 (d, 3H, *J* = 4.0 Hz), 4.16 (s, 2H), 7.72 (s, 1H), 7.79 (s, 1H), 9.19 (s, 1H).

[C₇MIM]Br 1-heptyl-3-methylimidazolium bromide:

¹H NMR: δ_H(300 MHz, DMSO) 0.84 (bs, 3H), 1.24 (s, 8H), 1.77 (s, 2H), 3.85 (s, 3H), 4.16 (t, 2H, *J* = 7.2 Hz), 7.73 (s, 1H), 7.80 (s, 1H), 9.20 (s, 1H).

[C₈MIM]Br 1-methyl-3-octylimidazolium bromide: ¹H NMR: $\delta_{\rm H}(300$ MHz, DMSO) 0.84 (t, 3H, J = 6.7 Hz), 1.24 (s, 10H), 1.76 (s, 2H), 3.84 (s, 3H), 4.15 (t, 2H, J = 7.2 Hz), 7.72 (d, 1H, J = 1.7 Hz), 7.78 (d, 1H, J = 1.7 Hz), 9.17 (s, 1H).

[C₉MIM]Br 1-methyl-3-nonylimidazolium bromide:

¹H NMR: $\delta_{\rm H}(300 \text{ MHz}, \text{DMSO}) 0.84$ (t, 3H, J = 6.7 Hz), 1.23 (s, 12H), 1.76 (s, 2H), 3.84 (s, 3H), 4.15 (t, 2H, J = 7.2 Hz), 7.72 (d, 1H, J = 1.7 Hz), 7.79 (t, 1H, J = 1.8 Hz), 9.19 (s, 1H).

[C₁₀MIM]Br 1-decyl-3-methylimidazolium bromide:

¹H NMR: δ_H(300 MHz, DMSO) 0.83 (s, 3H), 1.23 (s, 14H), 1.76 (s, 2H), 3.85 (s, 2H), 4.15 (s, 3H), 7.72 (s, 1H), 7.79 (s, 1H), 9.20 (s, 1H).

[AllyIMIM]Br 1-allyl-3-methylimidazolium bromide:

¹H NMR δ_H(300 MHz, CDCl₃) 4.08 (s, 3H), 4.98 (d, 2H, J = 6.3 Hz), 5.43 (t, 2H, J = 13.0 Hz), 5.99 (d, 1H, J = 6.5 Hz), 7.48 (s, 1H), 7.67 (s, 1H), 10.19 (s, 1H). FT-IR: $v_{\text{max}}/\text{cm}^{-1}$ 3050, 2959, 2934, 2874, 1568, 1465, 1382, 1253, 1170, 742, 657.

[**DiMIM]I** 1,3-dimethylimidazolium iodide: ¹H NMR $\delta_{H}(400 \text{ MHz}, \text{DMSO})$ 3.84 (s, 6H), 7.66 (s, 2H), 9.02 (s, 1H).

[C₄MIM]I 1-butyl-3-methylimidazolium iodide:

¹H NMR: $\delta_{\rm H}(300 \text{ MHz, CDCl}_3) 0.91$ (t, 3H, J = 8.2 Hz), 1.43–1.27 (m, 2H), 1.83–1.93 (m, 2H), 4.05 (s, 3H), 4.30 (pt, 2H, J = 7.4), 7.51 (pt, 1H, J = 1.7 Hz), 7.59 (pt, 1H, J = 1.7 Hz), 9.92 (s, 1H). FT-IR: $v_{\rm max}/\rm{cm}^{-1}$ 3468 (H₂O), 3140, 3077, 2958, 2933, 2872, 1568, 1462, 1382, 1337, 1165, 820, 749.

[**DiMIM**]**Me₂PO₄** 1,3-dimethylimidazolium dimethyl-phosphate: ¹H NMR: $\delta_{\rm H}(400 \text{ MHz}, \text{CDCl}_3)$ 3.24 (s, 3H), 3.26 (s, 3H), 3.83 (s, 6H), 7.70 (d, 2H, *J* = 1.6 Hz), 9.31 (s, 1H). FT-IR: $v_{\rm max}/\text{cm}^{-1}$ 3153, 3068, 2945, 2838, 1575, 1462, 1241, 1179, 1091, 1036, 850, 770, 731.

[C₂MIM]Et₂PO₄ 1-ethyl-3-methylimidazolium diethyl-phosphate: ¹H NMR: $\delta_{\rm H}(400 \text{ MHz}, \text{DMSO})$ 1.04 (t, 6H, *J* = 7.1 Hz), 1.39 (t, 3H, *J* = 7.3 Hz), 3.59 (p, 4H, *J* = 7.0 Hz), 3.84 (s, 3H), 4.18 (q, 2H, *J* = 7.3 Hz), 7.71 (s, 1H), 7.80 (s, 1H), 9.38 (s, 1H). FT-IR:

*v*_{max}/cm⁻¹ 3375 (H₂O), 3073, 2974, 2934, 2893, 1572, 1232, 1173, 1107, 1082, 1043, 935, 779, 733.

[C₄MIM]Bu₂PO₄ 1-butyl-3-methylimidazolium dibutyl-phosphate: ¹H NMR: $\delta_{\rm H}(400$ MHz, DMSO) 0.85 (m, 9H), 1.18–1.50 (m, 10H), 1.69–1.82 (m, 2H), 3.54–3.67 (m, 4H), 3.84 (s, 3H), 4.15 (t, 2H, *J* = 7.2 Hz), 7.71 (s, 1H), 7.78 (s, 1H), 9.36 (s, 1H). FT-IR: $\nu_{\rm max}/{\rm cm}^{-1}$ 3387 (H₂O), 3078, 2959, 2936, 2874, 1570, 1464, 1236, 1173, 1067, 1026, 1005, 974, 889, 820, 797, 733.

[C₂MIM]OAc 1-ethyl-3-methylimidazolium acetate:

¹H NMR: $\delta_{\rm H}(400 \text{ MHz}, \text{DMSO})$ 1.39 (t, 5H, *J* = 7.3 Hz), 3.84 (s, 3H), 4.19 (q, 3H, *J* = 7.3 Hz), 7.72 (d, 1H, *J* = 1.6 Hz), 7.81 (s, 1H), 9.73–9.81 (m, 1H). FT-IR: *v*_{max}/cm⁻¹ 3362 (H₂O), 3073, 2981, 1562, 1451, 1427, 1384, 1331, 1172, 907, 759, 701, 667.

[C₄MIM]OAc 1-butyl-3-methylimidazolium acetate:

¹H NMR: $\delta_{\rm H}(400 \text{ MHz}, \text{DMSO}) 0.87 \text{ (t, 3H, } J = 8.4 \text{ Hz}\text{)}, 1.23 \text{ (dq, 2H, } J = 7.4, 14.7 \text{ Hz}\text{)},$ 1.56 (s, 3H), 1.74 (dt, 2H, J = 7.4, 14.8 Hz), 3.85 (s, 4H), 4.11–4.23 (m, 2H), 7.73 (s, 1H), 7.79 (s, 1H), 9.72 (s, 1H).

[C₄MIM]NO₃ 1-butyl-3-methylimidazolium nitrate: ¹H NMR: $\delta_{\rm H}(300 \text{ MHz}, \text{DMSO})$ 0.90 (t, 3H, *J* = 7.3 Hz), 1.26 (dq, 2H, *J* = 7.3, 14.6 Hz), 1.66–1.84 (m, 2H), 3.85 (s, 3H), 4.16 (t, 2H, *J* = 7.2 Hz), 7.71 (pt, 1H, *J* = 1.7 Hz), 7.78 (pt, 1H, *J* = 1.8 Hz), 9.13 (s, 1H).

[C₄MIM]NTf₂ 1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide: ¹H NMR: $\delta_{\rm H}(400 \text{ MHz}, \text{DMSO})$ 0.78–0.96 (m, 3H), 1.23 (m, 2H), 1.75 (m, 2H), 3.82 (s, 3H), 4.14 (q, 2H, *J* = 3.6 Hz), 7.68 (s, 1H), 7.75 (s, 1H), 9.08 (s, 1H). FT-IR: $v_{\rm max}/\rm{cm}^{-1}$ 3457 (H₂O), 3017, 2971, 2946, 1738, 1729, 1456, 1435, 1365, 1353, 1229, 1217, 1204, 1183, 1132, 1053, 741, 654.

2 Tables

Table 1 Synthesized imidazolium based ionic liquids with different side chain lengths.

Ionic liquid	Reaction time (min)	Conversion	T_{decomp}^{b}	$T_{\rm m}^{\ c}$ (°C)
[C ₂ MIM]Br	20	>99 ^a	279	65
[C ₃ MIM]Br	30	>99 ^a	277	d
[C ₄ MIM]Br	10	>99 ^a	269	_d
[C ₅ MIM]Br	20	99	273	_d
[C ₆ MIM]Br	10	>99 ^a	268	d
[C ₇ MIM]Br	10	>99 ^a	263	_d
[C ₈ MIM]Br	10	>99 ^a	262	2
[C ₉ MIM]Br	10	>99 ^a	259	1
[C ₁₀ MIM]Br	10	>99 ^a	271	10

 $N \rightarrow N + Br + H_nCH_3$ n = 1 - 9 $120 \degree C - N \rightarrow N + nCH_3$ $microwave - Br^-$

^{*a*} No starting material detectable (determined by ¹H NMR). ^{*b*} Temperature of thermal decomposition. ^{*c*} Melting point. ^{*d*} Melting point could not be determined by DSC.

Table 2 DP of cellulose samples after processing in $[C_4MIM]Cl$ under microwave heating.

IL	Temperature (°C)	Time (min)	DP
Avicel PH-101	-	_	398 ^{<i>a</i>}
[C ₄ MIM]Cl	100	30	172^{b}
	100	60	255^b
	100	90	300^b
	100	120	230^b

^{*a*} Before processing, ^{*b*} after regeneration.

3 Figures

Fig. 1 Parallel setup to study the dissolution of cellulose.

Fig. 2 Dissolution of cellulose in [C₂MIM]Cl under microwave irradiation: a) 6 wt-% of cellulose, 100 °C, power between 60 and 140 W, b) 2 – 10 wt-% of cellulose, 140 °C, 80 W, 30 min, c) 2 – 10 wt-% of cellulose, 160 °C, 80 W, 30 min.

Fig. 3 Heating and power profiles for the dissolution of cellulose in [C₂MIM]Cl at different concentrations under microwave irradiation.

4 Schemes

Scheme 1 Schematic representation of the anion exchange with "Amberlite IRA-400".

Scheme 2 Schematic representation of the reaction scheme and schematic process of the anion exchange with AgF.