Supporting Information

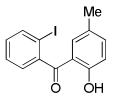
Recyclable Copper-Catalytic System For Performing Intramolecular *O*-Arylation Reactions In Aqueous Media. New Synthesis Of Xanthones.

Nekane Barbero, Raul SanMartin* and Esther Domínguez*

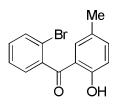
Kimika Organikoa II Saila, Zientzia eta Teknologia Facultatea, Euskal Herriko Unibertsitatea, PO BOX 644, 48080 Bilbao, Spain.

raul.sanmartin@ehu.es

Table of Contents	S1
General remarks	S2
General procedure for the Friedel-Crafts acylation	S2
Analytical data of 2-halobenzophenones	S 3
Friedel-Crafts acylation procedure for the synthesis of	S10
intermediate 2c and its analytical data	
¹ H-NMR and ¹³ C-NMR spectra for new xanthones	S11
¹ H-NMR and ¹³ C-NMR spectra for new benzophenones	S18

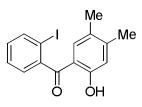

General Remarks

1. General procedures.

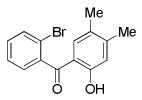

All reagents were purchased and used as received except when indicated. Chemical shifts (δ) are given in ppm downfield from Me₄Si and refer as internal standard to the residual solvent (unless indicated) CDCl₃: (δ = 7.26 for ¹H and 77.0 for ¹³C). Coupling constants, *J*, are reported in hertz (Hz). Melting points were determined in a capillary tube and are uncorrected. TLC was carried out on SiO₂, and the spots were located with UV light. Flash chromatography was carried out on SiO₂. Drying of organic extracts during work-up of reactions was performed over anhydrous Na₂SO₄. Evaporation of solvents was accomplished with a rotary evaporator.

General procedure for the Friedel-Crafts acylation:¹

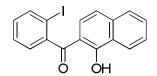
A screw-capped tube was charged with graphite (8.3 mmol) and the corresponding benzoic acid (1 mmol) and put at 120°C in a prewarmed oil bath. Then, MsOH (7.5 mL) and the phenol derivative (1 mmol) were added and the stirring was kept until the reaction was finished (3-4 hours). After cooling down, the mixture was poured into water, extracted with EtOAc and washed with an aqueous solution of NaHCO₃ (5%). The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to render a brown residue which was then purified by flash chromatography (20 mol% EtOAc/hexane).

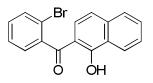


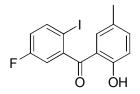
(2-Hydroxy-5-methylphenyl)(2-iodophenyl)methanone 2a: The general procedure was followed starting from 2-iodobenzoic acid (1.0 g, 4.03 mmol) and *p*-cresol (0.42 mL, 4.03 mmol) to afford the target 2-iodobenzophenone 2a (580.1 mg, 42%) as a yellowish solid. Mp: 82-84°C (from hexane); IR v_{max} (film)/cm⁻¹ 1625, 1479, 1332 and 1238; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.18 (s, 3H, CH₃), 6.94-6.98 (m, 2H, H_{arom}), 7.17-7.28 (m, 2H, H_{arom}), 7.32 (dd, *J* 8.5 and 2.2 Hz, 1H, H_{arom}), 7.44-7.49 (m, 1H, H_{arom}), 7.91-7.94 (m, 1H, H_{arom}) and 11.78 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 20.3 (CH₃), 91.8 (C_{arom}-I), 118.1 (C_{arom}-H), 118.2 (C_{arom}-C), 127.8, 127.9 (C_{arom}-H), 128.2 (C_{arom}-C), 131.1, 133.0, 138.3, 139.5 (C_{arom}-H), 143.3, 161.4 and 202.5 (C_{arom}-C); MS (CI) m/z: 339 (M+1, 100), 338 (M⁺, 31%), 231 (24) and 211 (14). HRMS (CI) [M+1]: calculated for C₁₄H₁₂IO₂, 338.9882; found, 338.9879.



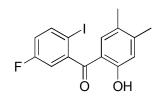
(2-Bromophenyl)(2-hydroxy-5-methylphenyl)methanone 2a': The general procedure was followed starting from 2-bromobenzoic acid (800.2 mg, 3.98 mmol) and *p*-cresol (0.41 mL, 3.98 mmol) to afford the target 2-bromobenzophenone 2a' (548.1 mg, 47%) as yellowish solid. Mp: 67-69°C (from hexane); IR $v_{max}(film)/cm^{-1}$ 1625, 1479, 1338 and 1238; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.18 (s, 3H, CH₃), 6.95-6.98 (m, 2H, H_{arom}), 7.29-7.46 (m, 4H, H_{arom}), 7.65-7.68 (m, 1H, H_{arom}) and 11.77 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 20.3 (CH₃), 118.1 (C_{arom}-


H), 118.7, 119.1 (C_{arom} -C), 127.2 (C_{arom} -H), 128.3 (C_{arom} -C), 128.4, 131.2, 132.9, 133.2, 138.3 (C_{arom} -H), 139.5, 161.3 and 201.1 (C_{arom} -C); MS (CI) m/z: 291 (M+1, 100), 290 (M⁺, 25%), 211 (22), 185 (18) and 183 (19). HRMS (CI) [M+1]: calculated for C₁₄H₁₂BrO₂, 291.0021; found, 291.0019. In a scale-up experiment, the general procedure was also followed (a round-bottom flask equipped with a condenser was employed) starting from 2-bromobenzoic acid (70.08 g, 0.35 mol) and *p*-cresol (35.91 mL, 0.35 mmol) to afford the target 2-bromobenzophenone **2a'** (48 g, 47%) as yellowish solid.

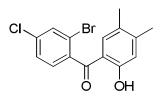

(2-Hydroxy-4,5-dimethylphenyl)(2-iodophenyl)methanone 2b: The general procedure was followed starting from 2-iodobenzoic acid (409.5 mg, 1.65 mmol) and 3,4-dimethylphenol (197.0 mg, 1.61 mmol) to afford the target 2-iodobenzophenone 2b (243.3 mg, 42%) as white solid. Mp: 54-56°C (from hexane); IR v_{max} (film)/cm⁻¹ 1625, 1455, 1338 and 1255; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.09 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 6.87 (s, 1H, H_{arom}), 6.88 (s, 1H, H_{arom}), 7.20 (ddd, *J* 7.9, 7.5 and 1.7 Hz, 1H, H_{arom}), 7.25-7.28 (m, 1H, H_{arom}), 7.47 (apparent dt, *J* 7.5 and 1.1 Hz, 1H, H_{arom}), 7.91-7.94 (m, 1H, H_{arom}) and 11.83 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 18.7, 20.6 (CH₃), 91.9 (C_{arom}-I), 116.5 (C_{arom}-C), 118.9 (C_{arom}-H), 127.5 (C_{arom}-C), 127.7, 127.8, 130.9, 133.3, 139.4 (C_{arom}-H), 143.4, 148.2, 161.8 and 201.9 (C_{arom}-C); MS (CI) m/z: 353 (M+1, 100), 352 (M⁺, 28%), 230 (15) and 225 (12). HRMS (CI) [M+1]: calculated for C₁₅H₁₄IO₂, 353.0039; found, 353.0022.


(2-Bromophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone 2b': The general procedure was followed starting from 2-bromobenzoic acid (402.6 mg, 2.00 mmol) and 3,4-dimethylphenol (243.1 mg, 1.99 mmol) to afford the target 2-bromobenzophenone 2b' (298.0 mg, 49%) as yellowish solid. Mp: 82-84°C (from hexane); IR v_{max} (film)/cm⁻¹ 1631, 1337 and 1255; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.07 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 6.85 (s, 1H, H_{arom}), 6.91 (s, 1H, H_{arom}), 7.27-7.44 (m, 3H, H_{arom}), 7.64 (dd, *J* 7.8 and 0.9 Hz, 1H, H_{arom}) and 11.84 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 18.6, 20.5 (CH₃), 116.9 (C_{arom}-C), 118.8 (C_{arom}-H), 118.9 (C_{arom}-C), 127.1 (C_{arom}-H), 127.4 (C_{arom}-C), 128.3, 131.0, 133.0, 133.2 (C_{arom}-H), 139.5, 148.1, 161.6 and 200.3 (C_{arom}-C); MS (CI) m/z: 305 (M+1, 100), 304 (M⁺, 29%), 225 (24), 185 (15), 182 (15) and 149 (10). HRMS (CI) [M+1]: calculated for C₁₅H₁₄BrO₂, 305.0177; found, 305.0176.

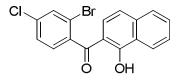
(1-Hydroxynaphthalen-2-yl)(2-iodophenyl)methanone 2d: The general procedure was followed starting from 2-iodobenzoic acid (601.6 mg, 2.42 mmol) and 1-naphthol (248.8 mg, 2.42 mmol) to afford the target 2-iodobenzophenone 2d (443.4 mg, 49%) as white solid.²



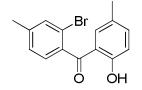
(2-Bromophenyl)(1-hydroxynaphthalen-2-yl)methanone 2d': The general procedure was followed starting from 2-bromobenzoic acid (611.7 mg, 3.04 mmol) and 1-naphthol (430.3 mg, 2.98 mmol) to afford the target 2-bromobenzophenone 2d' (416.2 mg, 42%) as white solid. Mp: 88-100°C (from hexane); IR v_{max} (film)/cm⁻¹ 1608, 1455, 1331 and 1279; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 7.11-7.19 (m, 2H, H_{arom}), 7.36-7.42 (m, 2H, H_{arom}), 7.44-7.49 (m, 1H, H_{arom}), 7.53-7.59 (m, 1H, H_{arom}), 7.63-7.76 (m, 3H, H_{arom}), 8.52-8.56 (m, 1H, H_{arom}) and 13.74 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 112.8 (C_{arom}-C), 118.5 (C_{arom}-H), 119.2 (C_{arom}-C), 124.5 (C_{arom}-H), 125.1 (C_{arom}-C), 126.0, 126.8, 127.3, 127.5, 128.4, 130.7, 131.1, 133.1 (C_{arom}-H), 137.6, 139.6, 163.9 and 200.8 (C_{arom}-C); MS (CI) m/z: 329 (M+3, 100), 328 (M+2, 70), 327 (M+1, 90), 326 (M⁺, 58%), 247 (58), 185 (20), 183 (18) and 171 (13). HRMS (CI) [M+1]: calculated for C₁₇H₁₂BrO₂, 327.0021; found, 327.0018.



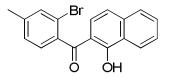
(5-Fluoro-2-iodophenyl)(2-hydroxy-5-methylphenyl)methanone 2e: The general procedure was followed starting from 5-fluoro-2-iodobenzoic acid (404.0 mg, 1.52 mmol) and *p*-cresol (0.16 mL, 1.50 mmol) to afford the target 2-iodobenzophenone 2e (168.8 mg, 31%) as white solid. Mp: 56-58°C (from hexane); IR v_{max} (film)/cm⁻¹ 1631, 1478, 1331 and 1255; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.21 (s, 3H, CH₃), 6.93-7.05 (m, 4H, H_{arom}), 7.34-7.37 (m, 1H, H_{arom}), 7.87 (dd, *J* 8.7 and 5.1 Hz, 1H, H_{arom}) and 11.60 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 20.4


(CH₃), 85.0 (d, *J* 3.6 Hz, C_{arom}-I), 115.6 (d, *J* 23.7 Hz, C_{arom}-H), 117.8 (C_{arom}-C), 118.4, 118.8 (d, *J* 21.6 Hz) (C_{arom}-H), 128.6 (C_{arom}-C), 132.8, 138.8, 141.2 (d, *J* 7.5 Hz) (C_{arom}-H), 144.9 (d, *J* 6.4 Hz), 161.6 (C_{arom}-C), 162.4 (d, *J* 251.0 Hz) (C_{arom}-F) and 201.0 (C_{arom}-C); MS (CI) m/z: 357 (M+1, 100), 356 (M⁺, 30%), 249 (23) and 229 (16). HRMS (CI) [M+1]: calculated for C₁₄H₁₁FIO₂, 356.9788; found, 356.9774.

(5-Fluoro-2-iodophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone 2f: The general procedure was followed starting from 5-fluoro-2-iodobenzoic acid (400.7 mg, 1.51 mmol) and 3,4-dimethylphenol (183.7 mg, 1.50 mmol) to afford the target 2-iodobenzophenone 2f (278.2 mg, 50%) as white solid. Mp: 124-126°C (from hexane); IR v_{max} (film)/cm⁻¹ 1633 and 1332; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.11, 2.28 (s, 3H, CH₃), 6.96 (s, 1H, H_{arom}), 6.87 (s, 1H, H_{arom}), 6.93-7.04 (m, 2H, H_{arom}), 7.87 (dd, *J* 8.6, 5.1 Hz, 1H, H_{arom}) and 11.65 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 18.7, 20.6 (CH₃), 85.0 (d, *J* 3.7 Hz) (C_{arom}-I), 115.5 (d, *J* 23.7 Hz) (C_{arom}-H), 116.0 (C_{arom}-C), 118.5 (d, *J* 21.7 Hz), 119.1, (C_{arom}-H), 127.7 (C_{arom}-C), 133.0, 141.1 (d, *J* 7.5 Hz) (C_{arom}-H), 145.1 (d, *J* 6.3 Hz), 148.6, 161.9 (C_{arom}-C), 162.4 (d, *J* 250.9 Hz) (C_{arom}-F) and 200.2 (d, *J* 1.4 Hz) (C_{arom}-C); MS (CI) m/z: 371 (M+1, 100), 370 (M⁺, 28%) and 249 (15). HRMS (CI) [M+1]: calculated for C₁₅H₁₃FIO₂, 370.9944; found, 370.9930.

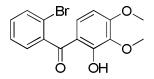


(2-Bromo-4-chlorophenyl)(2-hydroxy-4,5-dimethylphenyl)methanone 2g: The general procedure was followed starting from 4-chloro-2-bromobenzoic acid (508.0 mg, 2.15 mmol) and 3,4-dimethylphenol (259.4 mg, 2.12 mmol) to afford the target 2-bromobenzophenone 2g (339.0 mg, 46%) as white solid. Mp: 85-87°C (from hexane); IR $v_{max}(film)/cm^{-1}$ (v, cm⁻¹) 1631 and 1333; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.10 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 6.86 (s, 1H, H_{arom}), 6.88 (s, 1H, H_{arom}), 7.25 (d, *J* 8.1 Hz, H_{arom}), 7.42 (dd, *J* 8.2, 1.9 Hz, 1H, H_{arom}), 7.69 (d, *J* 1.9 Hz, 1H, H_{arom}) and 11.70 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 18.7, 20.6 (CH₃), 116.8 (C_{arom}-C), 119.0 (C_{arom}-H), 119.8 (C_{arom}-C), 127.5 (C_{arom}-H), 127.7 (C_{arom}-C), 129.3, 132.9, 133.0 (C_{arom}-H), 136.3, 138.1, 148.5, 161.7 and 199.3 (C_{arom}-C); MS (CI) m/z: 341 (M+3, 100), 340 (M+2, 53), 339 (M+1, 81), 338 (M⁺, 33%), 261 (10), 259 (31), 219 (16) and 149 (16). HRMS (CI) [M⁺]: calculated for C₁₅H₁₂BrClO₂, 337.9709; found, 337.9724.

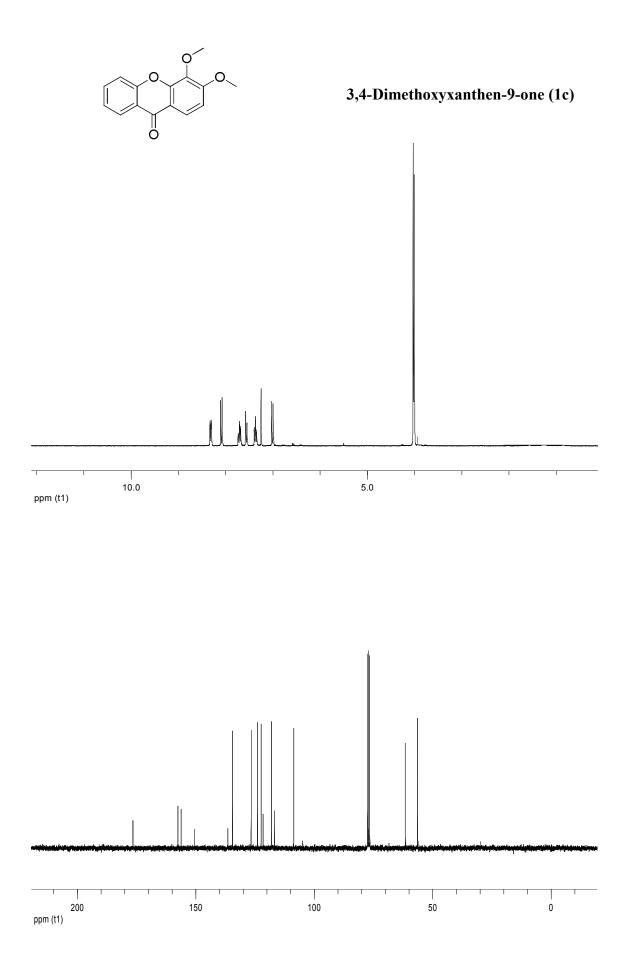


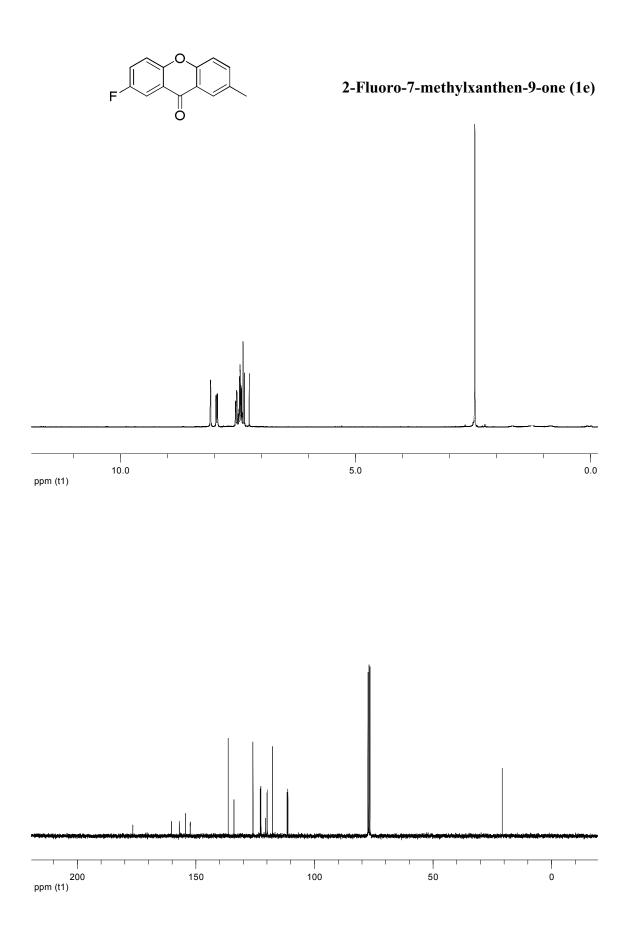
(2-Bromo-4-chlorophenyl)(1-hydroxynaphthalen-2-yl)methanone 2h: The general procedure was followed starting from 4-chloro-2-bromobenzoic acid (603.2 mg, 2.56 mmol) and 1-naphthol (367.3 mg, 2.55 mmol) to afford the target 2-bromobenzophenone 2h (434.0 mg, 47%) as white solid. Mp: 104-106°C (from hexane); IR v_{max} (film)/cm⁻¹ 1608, 1461, 1332 and 1273; ¹H NMR (300 MHz, CDCl₃, SiMe₄) ($\delta_{\rm H}$, ppm): 7.09 (d, *J* 8.8 Hz, 1H, H_{arom}), 7.18 (d, *J* 8.5 Hz, 1H, H_{arom}), 7.30 (d, *J* 8.2 Hz, 1H, H_{arom}), 7.44 (dd, *J* 8.2, 1.9 Hz, 1H, H_{arom}), 7.56 (ddd, *J* 8.2, 6.8, 1.4 Hz, 1H, H_{arom}), 7.63-7.68 (m, 1H, H_{arom}), 7.71 (d, *J* 1.9 Hz, 1H, H_{arom}), 7.72-7.75 (m, 1H, H_{arom}), 8.51-8.55 (m, 1H, H_{arom}) and 13.65 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄)

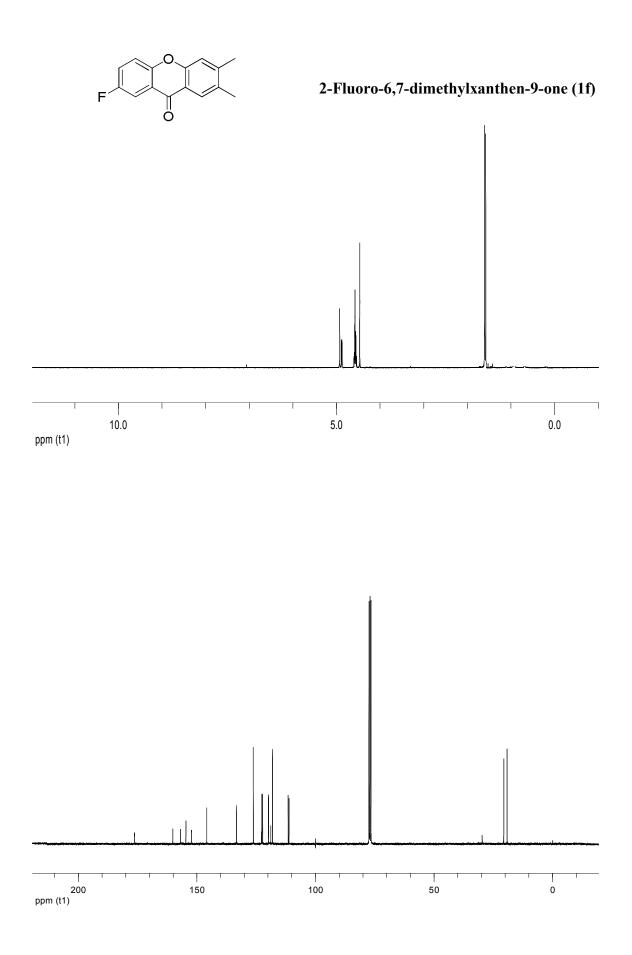
 (δ_{C}, ppm) : 112.6 (C_{arom}-C), 118.6 (C_{arom}-H), 119.9 (C_{arom}-C), 124.6 (C_{arom}-H), 125.0 (C_{arom}-C), 126.2, 126.4, 127.5, 127.7, 129.4, 130.8, 132.9 (C_{arom}-H), 136.5, 137.7, 138.0, 164.1 and 199.7 (C_{arom}-C); MS (CI) m/z: 363 (M+3, 94), 362 (M+2, 55), 361 (M+1, 100) and 360 (M⁺, 38%). HRMS (CI) [M+1]: calculated for C₁₇H₁₁BrClO₂, 360.9631; found, 360.9633.

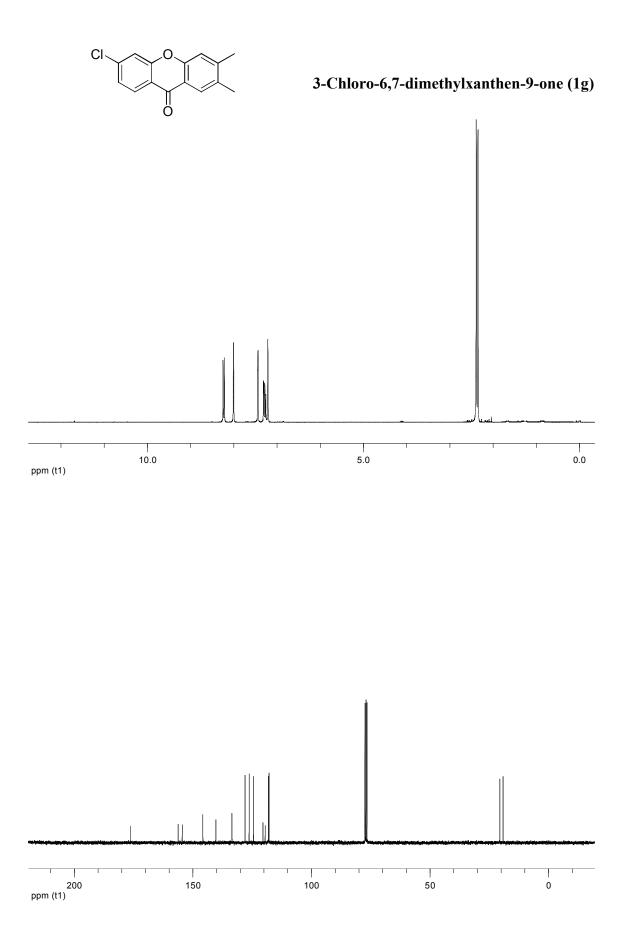


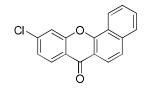
(2-Bromo-4-methylphenyl)(2-hydroxy-5-methylphenyl)methanone 2i: The general procedure was followed starting from 2-bromo-4-methylbenzoic acid (411.5 mg, 1.91 mmol) and *p*-cresol (0.19 mL, 1.86 mmol) to afford the target 2-bromobenzophenone 2i (239.1 mg, 30%) as white solid. Mp: 82-84°C (from hexane); IR $v_{max}(film)/cm^{-1}$ 1625, 1478, 1337 and 1238; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.18 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 6.95 (d, *J* 8.5 Hz, 1H, H_{arom}), 7.00-7.01 (m, 1H, H_{arom}), 7.17-7.24 (m, 2H, H_{arom}), 7.29-7.32 (m, 1H, H_{arom}), 7.48-7.49 (m, 1H, H_{arom}) and 11.82 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 20.3, 21.0 (CH₃), 118.0 (C_{arom}-H), 118.9, 119.0 (C_{arom}-C), 127.9 (C_{arom}-H), 128.1 (C_{arom}-C), 128.4, 133.0, 133.6, 138.1 (C_{arom}-H), 141.8, 161.2 and 201.3 (C_{arom}-C); MS (CI) m/z: 307 (M+3, 97), 305 (M+1, 100), 304 (M⁺, 27%), 225 (25), 199 (21), 197 (22) and 135 (12). HRMS (CI) [M+1]: calculated for C₁₅H₁₄BrO₂, 305.0177; found, 305.0187.

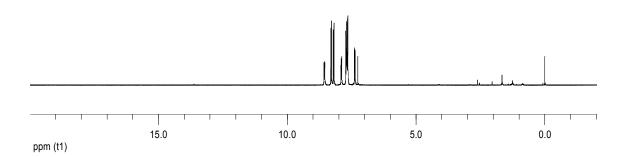


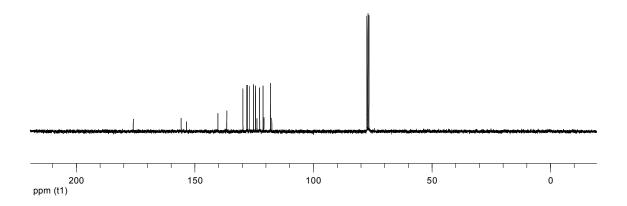

(2-Bromo-4-methylphenyl)(1-hydroxynaphthalen-2-yl)methanone 2j: The general procedure was followed starting from 2-bromo-4-methylbenzoic acid (526.9 mg, 2.45

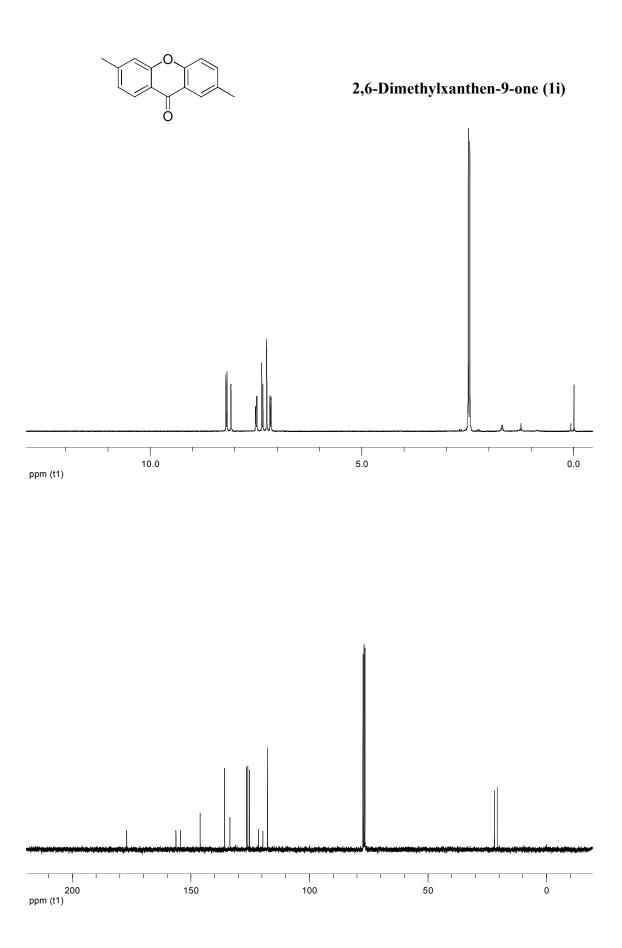

mmol) and 1-naphthol (402.3 mg, 2.80 mmol) to afford the target 2bromobenzophenone **2j** (398.1 mg, 48%) as white solid. Mp: 116-119°C (from hexane); IR $v_{max}(film)/cm^{-1}$ 1602, 1455, 1331 and 1279; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 2.42 (s, 3H, CH₃), 7.16-7.25 (m, 4H, H_{arom}), 7.51-7.54 (m, 4H, H_{arom}), 8.52 (d, *J* 8.1 Hz, 1H, H_{arom}) and 13.79 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 21.0 (CH₃), 112.9 (C_{arom}-C), 118.3 (C_{arom}-H), 119.0 (C_{arom}-C), 124.5 (C_{arom}-H), 125.1 (C_{arom}-C), 125.9, 126.9, 127.4, 128.0, 128.4, 130.5, 133.5 (C_{arom}-H), 136.7, 137.6, 141.8, 163.8 and 201.0 (C_{arom}-C); MS (CI) m/z: 343 (M+3, 92), 342 (M+2, 55), 341 (M+1, 100), 340 (M⁺, 26%), 261 (19) and 199 (18). HRMS (CI) [M⁺ + 1]: calculated for C₁₈H₁₄BrO₂, 341.0177; found, 341.0162.

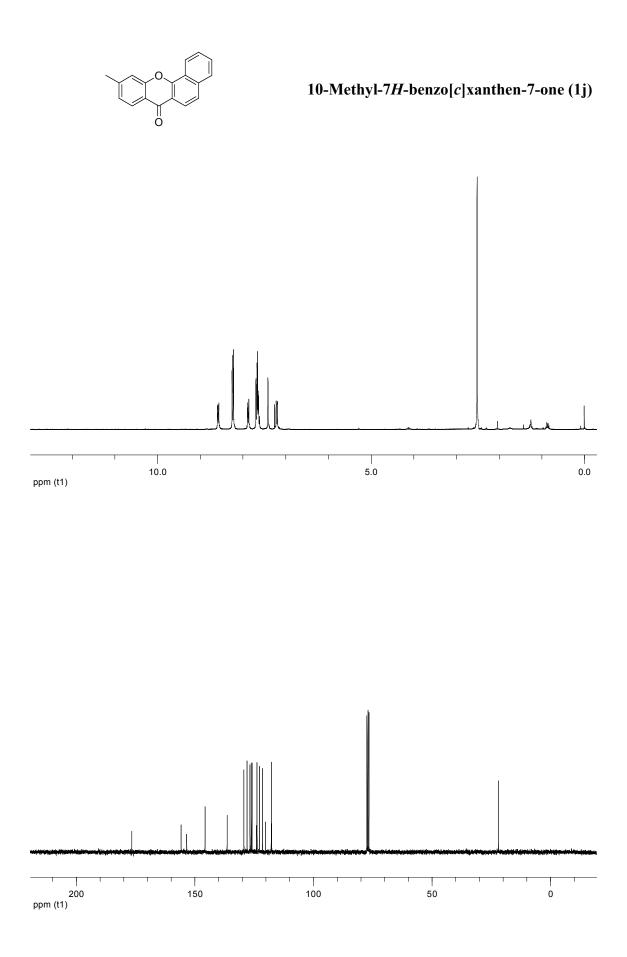


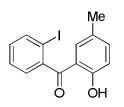

(2-Bromophenyl) (2-hydroxy-3,4-dimethoxyphenyl)methanone 2c:³ Freshly distilled SOCl₂ (1.1 mL, 14.8 mmol) was added dropwise to a stirred solution of 2bromobenzoic acid (900.0 g, 4.48 mmol) in anhydrous PhMe (14.4 mL) under argon. The reaction mixture was heated at 135°C for 3.5 h, and after cooling, the solvent was removed under reduced pressure. The resultant brown oil was dissolved in anhydrous CH₂Cl₂ (7.2 mL), cooled at 0°C, and a solution of 1,2,3-trimethoxybenzene (941.4 mg, 5.61 mmol) in the same solvent (2.0 mL) was added dropwise under argon. Anhydrous AlCl₃ (895.4 mg, 6.72 mmol) was added in small portions at this temperature, and stirring was continued for 15 min. The reaction mixture was heated to reflux for 4 h, and after cooling to ambient temperature, was poured onto a mixture of crushed ice and 12M HCl (6 mL). The phases were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃ (1 x 10 mL), dried over anhydrous Na₂SO₄, filtered off, and the solvent was evaporated under reduced pressure. The brown oil residue was then purified by flash chromatography (30 mol% EtOAc/hexane) to afford 2-bromobenzophenone **2c** (797.7 mg, 53%) as a white solid. Mp: 118-120°C (from hexane); IR v_{max} (film)/cm⁻¹ 1620, 1502, 1437, 1284 and 1102; ¹H NMR (300 MHz, CDCl₃, SiMe₄) (δ_{H} , ppm): 3.89 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 6.39 (d, *J* 9.1 Hz, 1H, H_{arom}), 6.95 (d, *J* 9.1 Hz, 1H, H_{arom}), 7.24-7.42 (m, 3H, H_{arom}), 7.62 (dd, *J* 7.8, 1.1 Hz, 1H, H_{arom}) and 12.17 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, SiMe₄) (δ_{C} , ppm): 56.1, 60.7 (OCH₃), 103.2 (C_{arom}-H), 114.6, 119.1 (C_{arom}-C), 127.1, 128.4, 130.1, 131.0, 133.0 (C_{arom}-H), 136.5, 139.4, 157.6, 159.2 and 199.7 (C_{arom} –C); MS (CI) m/z: 339 (M+3, 96), 338 (M+2, 54), 337 (M+1, 100), 336 (M⁺, 39%) and 183 (11). HRMS (CI) [M+1]: calculated for C₁₅H₁₄BrO₄, 337.0075; found, 337.0067.

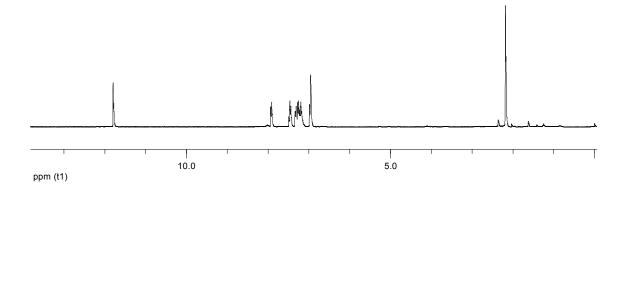


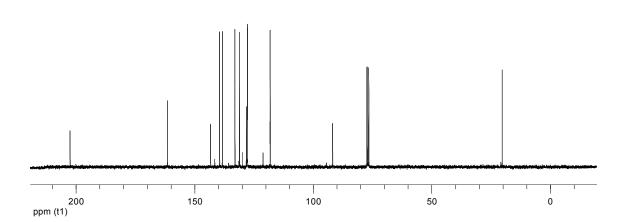


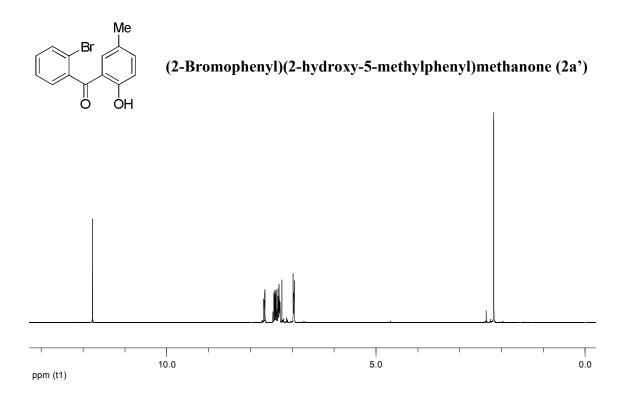


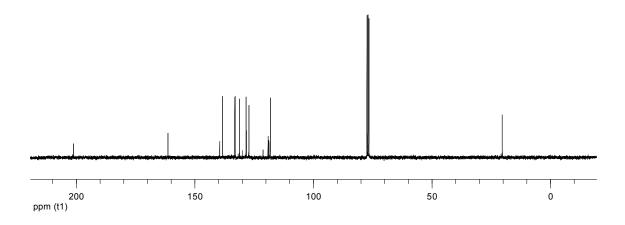



10-Chloro-7*H*-benzo[*c*]xanthen-7-one (1h)

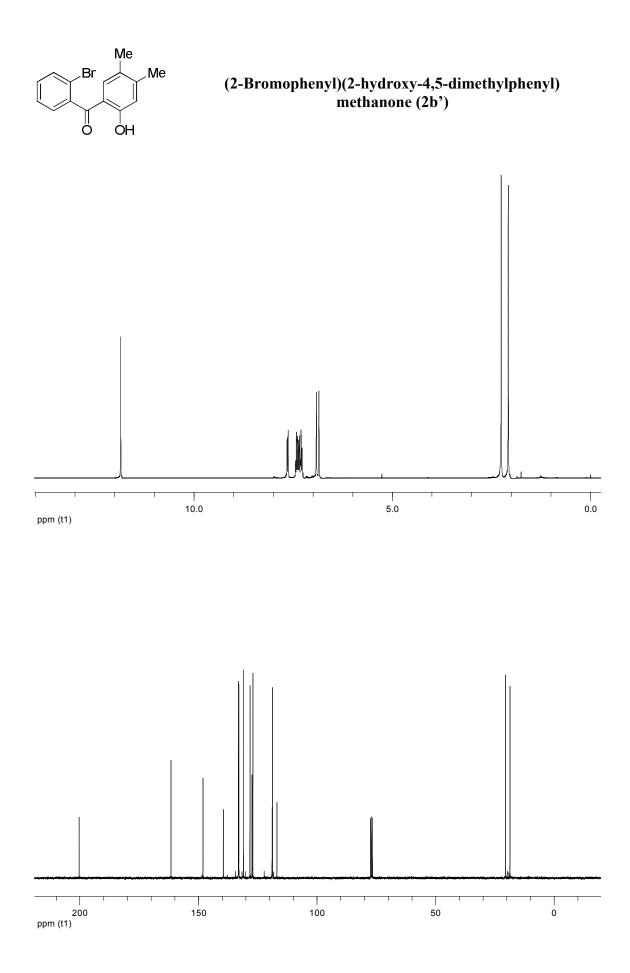


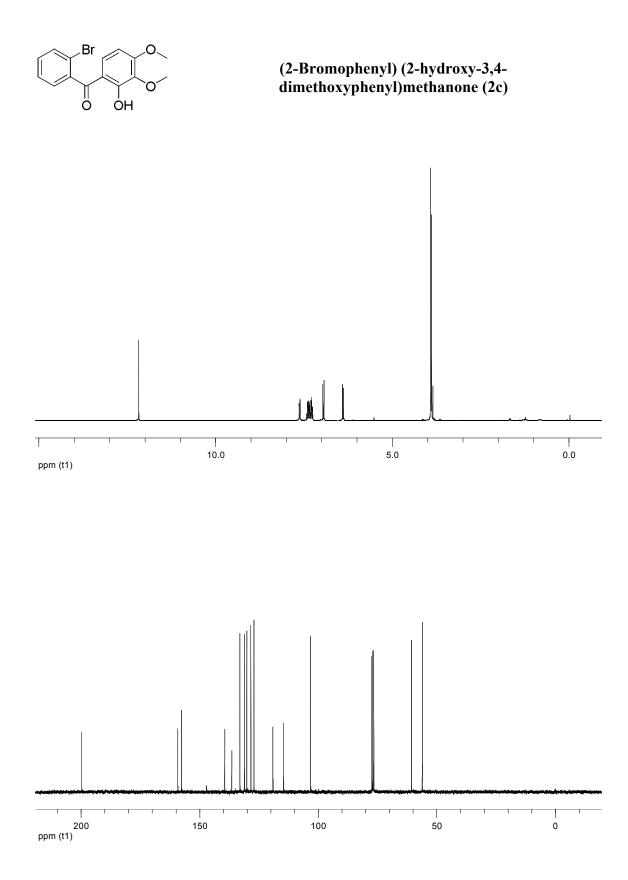


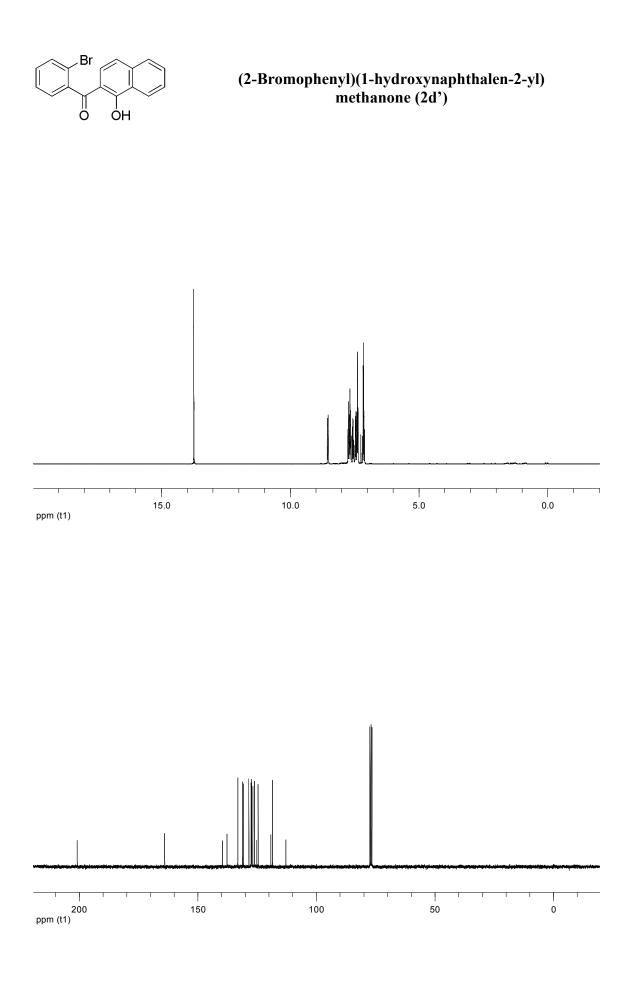


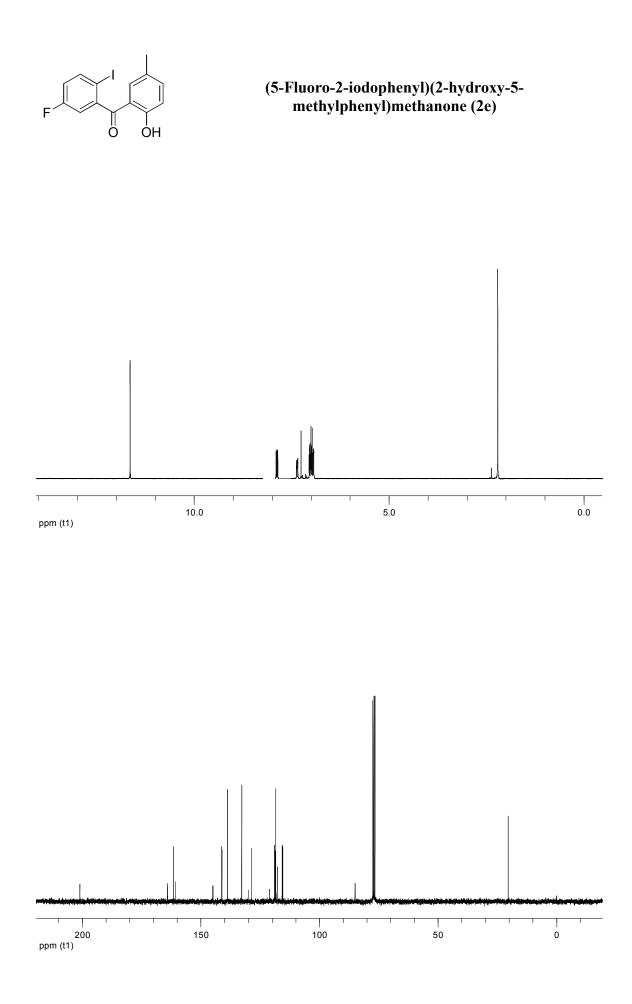


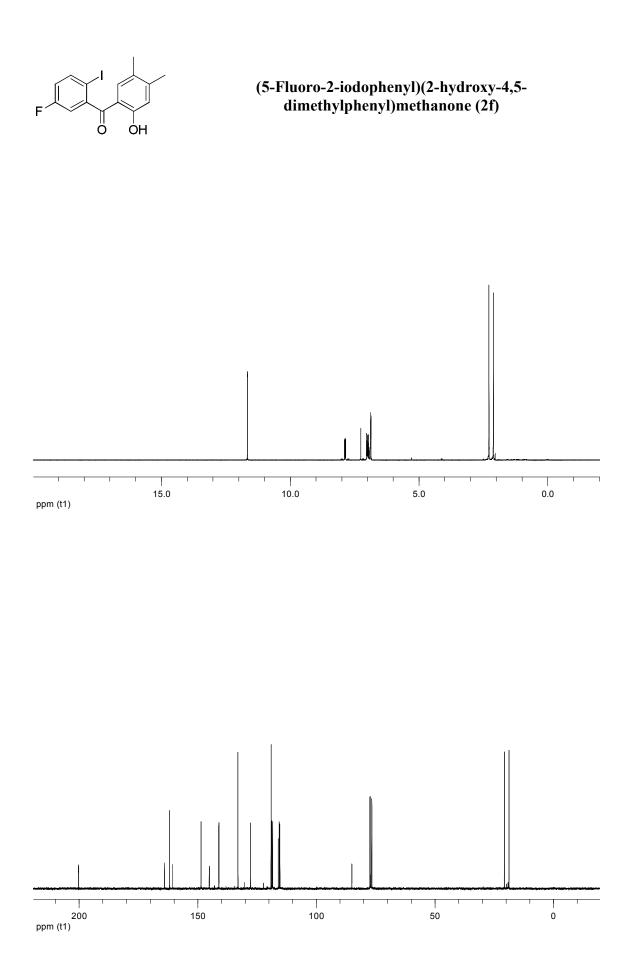
(2-Hydroxy-5-methylphenyl)(2-iodophenyl)methanone (2a)

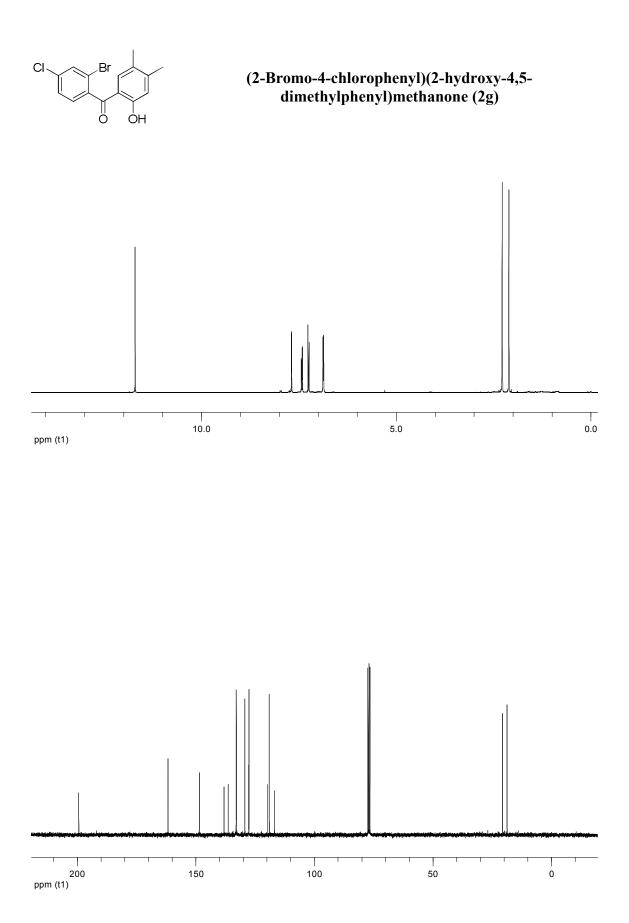


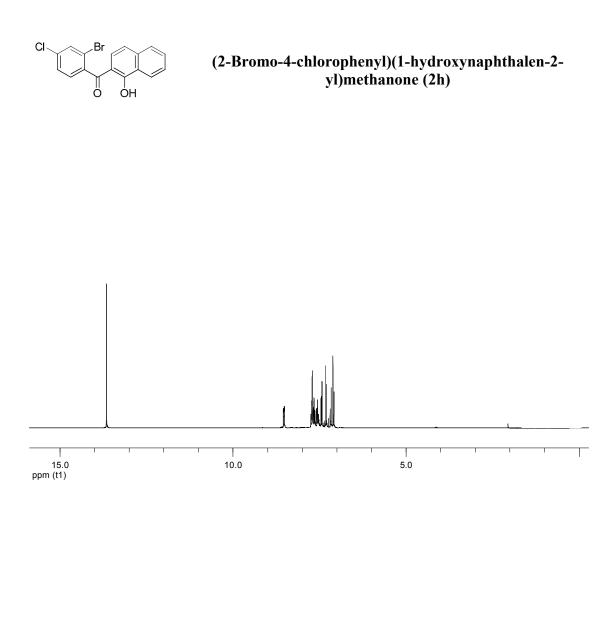


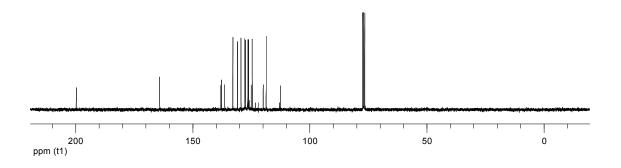


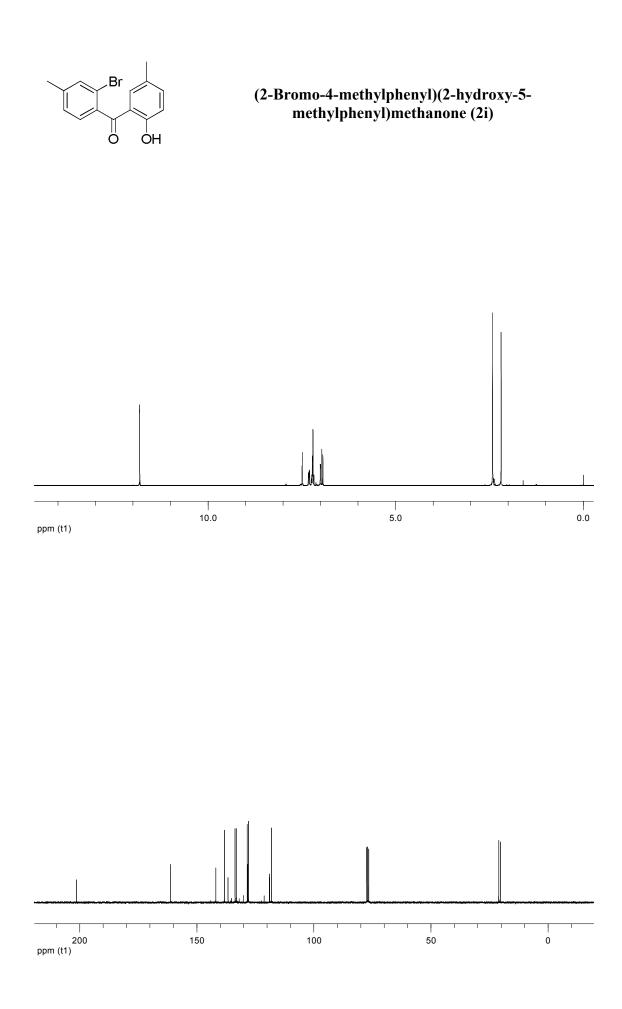


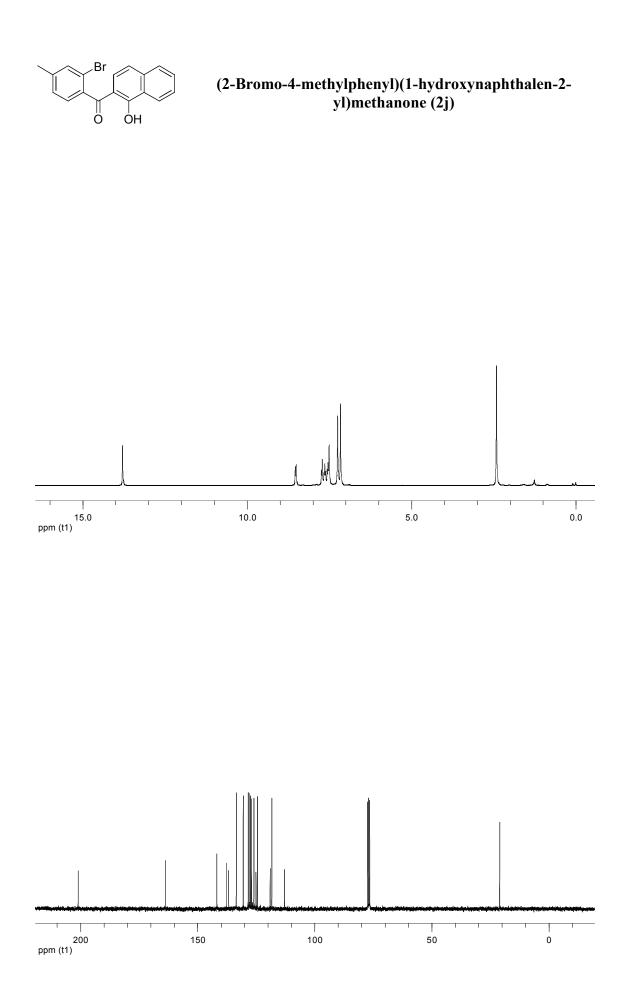












¹ H. Shargi, M. Hosseini-Sarvari and R. Eskandari, *Synthesis* 2006, 2047.
² G. Qabaja and G. B. Jones, *J. Org. Chem.* 2000, 65, 7187.
³ R. Olivera, R. SanMartin, F. Churruca and E. Domínguez, *J. Org. Chem.* 2002, 67, 7215.