Facile protocol for Palladium catalyzed Suzuki-Miyaura coupling in air and water at ambient temperature

Alexander N. Marziale, Stefan H. Faul, Thomas Reiner, Sven Schneider and

Jörg Eppinger*

* Forschungsgruppe Molekulare Katalyse, Technische Universität München, Lichtenbergstraße 4, 85747 Garching

Supplementary Information

INDEX

1.	Material and Methods	pg. 2
2.	Analytical Methods	pg. 2
3.	Procedures	pg. 2
	Synthesis of $4^{\text{ligand}} (2\text{-}Phenylphenol Diisopropylphosphinite})$ Synthesis of 4, [{Pd(μ -Cl){ κ^2 -P, C-P(ⁱ Pr)_2(OC_6H_3-2-Ph)}}]_2] Synthesis of 7, Pd ₂ Br ₄ (μ -Br) ₂ (n -Bu ₄ N) ₂	pg. 2 pg. 3 pg. 3

4. Analytical data of cross-coupling products pg. 4

1. Materials and Methods. All experiments were carried out under an atmosphere of argon using Schlenk and glove-box techniques. Toluene was dried over Na/benzophenone, distilled under argon and deoxygenated prior to use. Ethanol was dried over Na/Diethylphtalate, distilled under argon and deoxygenated prior to use. Pentane was dried and deoxygenized by passing through columns packed with activated alumina and Q5, respectively. Deuterated solvents were dried by distillation from CaH₂ (CD₂Cl₂ and CDCl₃) and deoxygenated by three *freeze-pump-thaw* cycles. NEt₃ was purchased from Merck and dried over CaH₂, distilled under argon and deoxygenated prior to use. PdCl₂ (ABCR), Pd(OAc)₂ and AgSO₄ (ABCR) were used as purchased. Compounds 1, 2, 3, 4, 5 and 6 were prepared as reported inliterature.^[1,2] P(OH)^{*i*}Pr₂ was received from hydrolysis of chlorodiisopropyl phoshine in aqueous 1 M carbonate buffer (pH = 11)

2. Analytical Methods. Elemental analyses were obtained from the Microanalytical Laboratory of Technische Universität München. The IR spectra were recorded on a Jasco FT/IR-460 PLUS spectrometer as nujol mulls between KBr plates. NMR spectra were recorded on Jeol Lambda 400 spectrometer at room temperature and were calibrated to the residual proton resonance and the natural abundance ¹³C resonance of the solvent (CD₂Cl₂, $\delta_{\rm H} = 5.32$ and $\delta_{\rm C} = 53.8$ ppm; CDCl₃, $\delta_{\rm H} = 7.25$ and $\delta_{\rm C} = 77.0$ ppm). ³¹P NMR chemical shifts are reported relative to external phosphoric acid ($\delta_{\rm P} = 0.0$ ppm). Signal multiplicities are abbreviated as: s (singlet), d (dublet), t (triplet), vt (virtual triplet), sp (septet), m (multiplet), br (broad).

3. Procedures

Synthesis of 4^{ligand} (2-Phenylphenol Diisopropylphosphinite)

In a Schlenk tube 2-Phenylphenol (1.70 g, 10.0 mmol, 1.0 eq.) was dissolved in toluene and Triethylamine (1.51 g, 14.9 mmol, 1.5 eq.) was added. After stirring the solution for 15 min at r.t. chlorodiisopropylphosphine (1.51 g, 9.9 mmol, 0.95 eq.) was added. The reaction mixture was refluxed overnight. After cooling to room temperature pentane was (50 mL) added. A precipitated white solid was removed by filtration through a pad of Celite and washed with pentane (3×10 mL). The combined organic fractions were then evaporated to dryness *in vacuo* yielding the phosphinite ligand which was used without further purification.

Yield: 5.21 g (18.2 mmol, 92%).

Anal. calcd. for C₁₈H₂₃OP (286.35): C, 75.50; H, 8.10. Found: 75.08; H, 8.70.

NMR $\delta_{\rm H}$ (399.8 MHz, CDCl₃, r.t., [ppm]): 7.59 (2H, m, CH_{aromat}), 7.51-7.43 (3H, m, CH_{aromat}), 7.39-7.32 (3H, m, CH_{aromat}), 7.10 (1H, t, ${}^{3}J_{(\rm H,\rm H)}$ = 7.5 Hz, CH_{aromat}), 1.86 (2H, dvt, ${}^{2}J_{(\rm P,\rm H)}$ = 2.9 Hz, ${}^{3}J_{(\rm H,\rm H)}$ = 9.1 Hz, PCH), 1.06 (6H, dd, ${}^{3}J_{(\rm P,\rm H)}$ = 11.4 Hz, ${}^{3}J_{(\rm H,\rm H)}$ = 7.0 Hz, PCH(CH₃)₂), 1.05 (6H, dd, ${}^{3}J_{(\rm P,\rm H)}$ = 15.4 Hz, ${}^{3}J_{(\rm H,\rm H)}$ = 7.1 Hz, PCH(CH₃)₂).

 $\delta_{\rm C}$ (100.6 MHz, CDCl₃, r.t., [ppm]): 156.2 (d, ${}^{2}J_{(\rm P,C)}$ = 8.5 Hz, $C_{\rm aromat.}$), 138.9 (s, $C_{\rm aromat.}$), 132.6 (s, $C_{\rm aromat.}$), 130.8 (s, $C_{\rm aromat.}$), 130.0 (s, $C_{\rm aromat.}$), 128.6 (s, $C_{\rm aromat.}$), 127.8 (s, $C_{\rm aromat.}$), 126.9 (s, $C_{\rm aromat.}$), 121.7 (s, $C_{\rm aromat.}$), 118.2 (s, $C_{\rm aromat.}$), 28.3 (d, ${}^{2}J_{(\rm P,C)}$ = 17.7 Hz, PCH(CH₃)₂), 17.7 (d, ${}^{2}J_{(\rm P,C)}$ = 19.2 Hz, PCH(CH₃)₂), 17.1 (d, ${}^{2}J_{(\rm P,C)}$ = 8.5 Hz, PCH).

δ_P (161.8 MHz, CDCl₃, r.t., [ppm]): 151.4 (s, *P*^{*i*}Pr₂).

CI-MS: $m/z = 286.7 [M^+, 100\%]$.

Synthesis of **4**, $[{Pd(\mu-Cl)}{\kappa^2-P,C-P({}^{i}Pr)_2(OC_6H_3-2-Ph)}]_2]$

In a Schlenk tube phosphinite ligand 4^{ligand} (401 mg, 1.40 mmol, 1.0 eq.) and palladium dichloride (250 mg, 1.40 mmol, 1.0 eq.) were placed in toluene (30 mL). The reaction mixture was refluxed overnight. After cooling to r.t. the solvent was removed *in vacuo*. The residue was extracted with dichloromethane (30 mL) and filtered through a pad of Celite. The product was precipitated from the organic solution by addition of ethanol, collected by filtration and recrystallised from CH₂Cl₂/EtOH.

Two isomers were obtained in a ratio of 1/1.49. Only the major isomer is interpreted. Yield: 0.51 g (0.60 mmol, 43%).

Anal. calcd. for C₃₆H₄₄Cl₂O₂P₂Pd₂ (854.43): C, 50.61; H, 5.19. Found: 50.20; H, 5.76.

NMR $\delta_{\rm H}$ (399.8 MHz, CD₂Cl₂, r.t., [ppm]): 7.63 (1H, t, ${}^{3}J_{\rm (H,H)} = 6.0$ Hz , CH_{aromat}), 7.56-7.48 (5H, m, CH_{aromat}), 7.42-7.36 (4H, m, CH_{aromat}), 7.31-7.29 (2H, m, CH_{aromat}), 7.10-7.06 (2H, t, ${}^{3}J_{\rm (H,H)} = 6.9$ Hz, CH_{aromat}), 6.93-6.83 (2H, m, CH_{aromat}), 2.45 (4H, m, ${}^{2}J_{\rm (P,H)} = 13.3$ Hz, ${}^{3}J_{\rm (H,H)} = 7.0$ Hz, PCH(CH₃)₂), 1.28 (12H, dd, ${}^{3}J_{\rm (P,H)} = 16.2$ Hz, ${}^{3}J_{\rm (H,H)} = 7.0$ Hz, PCH(CH₃)₂).

 $δ_{C}$ (100.6 MHz, CD₂Cl₂, r.t., [ppm]): 161.8 (d, ${}^{2}J_{(P,C)} = 6.2$ Hz, C_{aromat}), 139.0 (s, C_{aromat}), 136.3 (s, C_{aromat}), 135.9 (s, C_{aromat}), 135.8 (s, C_{aromat}), 129.0 (s, C_{aromat}), 128.1 (s, C_{aromat}), 126.9 (s, C_{aromat}), 125.6 (d, ${}^{3}J_{(P,C)} = 16.1$ Hz, C_{aromat}), 122.5 (d, ${}^{3}J_{(P,C)} = 10.8$ Hz, C_{aromat}), 29.7 (d, ${}^{2}J_{(P,C)} = 29.2$ Hz, PCH(CH₃)₂), 17.4 (d, PCH(CH₃)₂), 16.4 (d, PCH(CH₃)₂).

δ_P (161.8 MHz, CD₂Cl₂, r.t., [ppm]): 202.8 (s, *P*CH(*C*H₃)₂, 100%), 201.71 (67%).

CI-MS: $m/z = 391.04 [M^+/2-Cl^-, 52\%]$; 426.01 $[M^+/2, 24\%]$; 817.1 $[M^+-Cl^-, 20\%]$; 851.9 $[M^+, 15\%]$.

Synthesis of 7, $Pd_2Br_4(\mu-Br)_2(n-Bu_4N)_2$

To a stirred suspension of $PdBr_2$ (53.3 mg, 0.20 mmol) in 2 mL of dichloromethane a solution of nBu_4NBr (64.5 mg, 0.20 mmol) in 2 mL of dichloromethane was added. The reaction was stirred over night at r.t.. The solvent was removed *in vacuo* to give a red oil. A brown solid was precipitated by addition of diethylether. The solid was filtered off, washed twice with diethylether and dried in vacuo to give a brown solid. Yield: 0.23 g (0.196 mmol, 98%).

Anal. calcd. for C₃₂H₇₂N₂Br₆Pd₂ (1177.19): C, 32.65; H, 6.16; N, 2.38; Br, 40.73; Pd, 18.08. Found: C, 31.98; H 6.10, N, 2.34; Br, 40.48; Pd, 18.90.

4. Cross-Coupling products were analysed for purity by GC-MS, ¹H-NMR and elemental analysis. Analytical data correspond to the reported literature values. For respective literature, see table S1.

Table S1	Suzuki cross-coupling products	
	B(OH) ₂ Br	1. water (pH=11), 30 °C 0.02 mol-% [4] 2. filtration R' R
Entry	Product ^{a)}	Reference for analytical data
1	Средског	G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, J. Am. Chem. Soc. 2009, 131, 8262–8270.
2	$\sim - \sim - \sim$	J. K. Cho, R. Najman, T. W. Dean, O. Ichihara, C. Müller, M. Bradley, J. Am. Chem. Soc. 2006, 128, 6276–6277.
3	СНО	G. A. Morris and S.B. T. Nguyen, Tetrahedron Letters 2001, 42, 2093-2096.
4	F-CHO F-OH	W. L. Fitch, P. W. Berry, Y. Tu, A. Tabatabaei, L. Lowrie, F. Lopez-Tapia, Y. Liu, D. Nitzan, M. R. Masjedizadeh, A. Varadarajan, <i>Drug Metabolism and Disposition</i> , 2004 , <i>32</i> , 1482-1490.
5	СІСООН	T. Kylmälä, N. Kuuloja, Y. Xu, K. Rissanen, R. Franzén, <i>Eur. J. Org. Chem.</i> 2008 , <i>23</i> , 4019-4024.
6	CI-	T. Kylmälä, N. Kuuloja, Y. Xu, K. Rissanen, R. Franzén, <i>Eur. J. Org. Chem.</i> 2008 , <i>23</i> , 4019-4024.
7	СІОН	M. Braun, A. Hahn, M. Engelmann, R. Fleischer, W. Frank, C. Kryschi, S. Haremza, K. Kürschner, R. Parker, <i>Chem. Eur. J.</i> 2005 , <i>11</i> , 3405-3412.
8	о- Соон	G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, J. Am. Chem. Soc. 2009, 131, 8262–8270
9	`o-{O	NMR ^{b)} $\delta_{\rm H}$ (399.8 MHz, CDCl ₃ , r.t., [ppm]): 8.00 (2H, d, ${}^{3}J_{\rm (H,H)}$ = 8.5 Hz), 7.65 (2H, d, ${}^{3}J_{\rm (H,H)}$ = 8.5 Hz), 7.58 (2H, d, ${}^{3}J_{\rm (H,H)}$ = 9.0 Hz), 7.00 (2H, d, ${}^{3}J_{\rm (H,H)}$ = 8.5 Hz), 3.86 (3H, s), 2.61 (s, 3H).
10	О-ОН	G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, J. Am. Chem. Soc. 2009, 131, 8262–8270
11	О-СООН	NMR ^{b)} $\delta_{\rm H}$ (399.8 MHz, CDCl ₃ , r.t., [ppm]): 12.99 (1H, s(br)), 7.96 (2H, d, ${}^{3}J_{\rm (H,H)}$ = 8.3 Hz), 7.73 (2H, ${}^{3}J_{\rm (H,H)}$ = 8.3 Hz), 7.33 (1H, s), 7.23 (1H, d, ${}^{3}J_{\rm (H,H)}$ = 7.9 Hz), 7.03 (1H, d, ${}^{3}J_{\rm (H,H)}$ = 8.3 Hz), 6.11 (2H, s).
12	O O O O O O O O O O O O O O O O O O O	NMR ^{b)} $\delta_{\rm H}$ (399.8 MHz, CDCl ₃ , r.t., [ppm]): 9.50 (1H, s(br)), 7.39 (2H, d, ${}^{3}J_{\rm (H,H)} = 8.7$ Hz), 7.13 (1H, s), 7.02 (1H, d, ${}^{3}J_{\rm (H,H)} = 7.9$ Hz), 6.92 (1H, d, ${}^{3}J_{\rm (H,H)} = 8.3$ Hz), 6.81 (2H, d, ${}^{3}J_{\rm (H,H)} = 8.7$ Hz), 6.02 (2H, s).
13		J. K. Cho, R. Najman, T. W. Dean, O. Ichihara, C. Müller, M. Bradley, J. Am. Chem. Soc. 2006, 128, 6276–6277.
14		Haga, N.; Takayanagi, H. J. Org. Chem. 1996, 61, 735.
15	ноос-	NMR ^{b)} $\delta_{\rm H}$ (399.8 MHz, CDCl ₃ , r.t., [ppm]): 13.03 (2H, s(br)), 8.05 (4H, d, ${}^{3}J_{\rm (H,H)}$ = 8.7 Hz), 7.86 (4H, ${}^{3}J_{\rm (H,H)}$ = 8.3 Hz).
16	HOOC	M. E. Sigman, T. Autrey, G. B. Schuster J. Am. Chem. Soc. 1988, 110, 4297-4305.
17	С ОН	M. P. Capparelli, R. E. DeSchepper, J. S. Swenton J. Org. Chem. 1987, 52, 4953-4961.
18		A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani, Y. Aoyagi, <i>Heterocycles</i> 1990 , <i>31</i> 1951.

Reaction conditions: 2 mmol (1 eq.) 4-bromophenol, 1.0 equiv. boronic acid, 20 ml buffer (1.0 M, NaOH/NaHCO₃, pH = 11), air, cat. (0.02 mol% palladacycle 4). Reaction times not optimized. ^{a)} Carboxylic acids isolated as corresponding sodium salts. ^{b)} No analytical data available.

2833-2839.

[2] Bedford, R. B.; Hazelwood, S. L.; Horton, P. N.; Hursthouse M. B. Dalton Trans. 2003, 4164-4174.

^[1] Blancam, I.; San Martin, R.; Churruca, F.; Domínguez, E.; Urtiaga, M. K.; Arriortua, M. I. Organometallics 2008, 27,