# Enantioselective Aldol Reaction of Cyclic Ketones with Aryl Aldehydes Catalyzed by Cyclohexanediamine Derived Salt in the Presence of Water

Jin-Hong Lin,<sup>a</sup> Cheng-Pan Zhang<sup>a</sup> and Ji-Chang Xiao\*<sup>a</sup>

<sup>*a*</sup> Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China. Fax: (+86) 21-6416 6128; E-mail: <u>jchxiao@mail.sioc.ac.cn</u>

## Contents:

| General information                                                                    | .S2  |
|----------------------------------------------------------------------------------------|------|
| The Synthesis of Chiral catalyst                                                       | .S2  |
| General Procedures for Catalytic Asymmetric Aldol Reaction                             | .S5  |
| Crystal data for catalyst <b>1m</b>                                                    | .S7  |
| Copies of <sup>1</sup> H NMR, <sup>19</sup> F NMR and <sup>13</sup> C NMR of Compounds | .S8  |
| Copies of HPLC Spectra of Aldol Reaction Products                                      | .S28 |

General information: <sup>1</sup>H NMR spectra were recorded with a Bruker AM-300 (300 M Hz), or Varian VXR (300 MHz) spectrometer. <sup>19</sup>F NMR spectra were recorded with a Bruker AM-300 (282 MHz) with CFCl<sub>3</sub> as an external standard (negative for up field). <sup>13</sup>C NMR spectra were recorded with a Bruker AM-400 (100 MHz) spectrometer. MS was recorded with a Hewlett–Packard HP-5989A spectrometer. Elemental analyses were obtained with a Perkin–Elmer 2400 Series II Elemental Analyzer. Infrared spectra were measured with a Perkin–Elmer 983 spectrometer. Optical rotations were measured on a JASCO P-1030 Polarimeter at  $\lambda$ =589 nm. Analytical high performance liquid chromatography (HPLC) was carried out on Waters 515 instrument (2487 Dual  $\lambda$  Absorbance Detector and 515 HPLC Pump) using chiral column. N,N-disubstituted diamines were prepared according to literature procedure.<sup>1, 2</sup> Unless otherwise noted, reagents were commercially available and used as received.

#### Typical procedure for the synthesis of catalyst 1a-1c and 1f:

Aqueous hydrochloric acid (0.9 mmol) was added to the solution of diamine (1 mmol) in water (2 mL) and the mixture was stirred overnight. Then the solution was washed by ethyl ether (3×10 mL). Water was removed under reduced pressure to give the diamine salt. The salt in methanol (3 mL) was added slowly to the methanol (3 mL) solution of sodium 1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (420 mg, 1 mmol). The reaction mixture was stirred for 12 hours. The solvent was concentrated in vacuum and the residue was added to dichloromethane (5 mL). After filtration, the solvent was removed under reduced pressure and the pure product was obtained.

#### $(S) \hbox{-} 1 \hbox{-} (pyrrolidin \hbox{-} 2 \hbox{-} ylmethyl) pyrrolidinium$

1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (1a)

Viscous oil; 82% yield;  $[\alpha]_D^{25} = 14.1$  (c = 0.60, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  6.70 (1H, tt, J = 51.1, 5.3 Hz), 3.78~3.66 (1H, m), 3.28~3.19 (2H, m), 2.87 (1H, t, J = 12.5 Hz), 2.81~2.67 (2H, m), 2.66~2.52 (3H, m), 2.24~2.10 (1H, m), 2.09~1.95 (2H, m), 1.89~1.75 (4H, m), 1.71~1.57 (m, 1H); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -83.94~-84.10 (m, 2F), -85.43~-85.67 (m, 2F), -120.08 (s, 2F), -129.40~-129.55 (m, 2F), -132.34~-132.55 (m, 2F), -140.33~-140.67 (m, 2F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  58.07, 56.41, 53.88, 45.46, 28.16, 23.59, 23.33; IR (film) (cm<sup>-1</sup>): 3080, 2975, 2810, 1618, 1465, 1349, 1285, 1193, 1146, 1054, 974, 913, 811, 640; MS (ESI): 155.2 [cation]<sup>+</sup>, 397.0 [anion]<sup>-</sup>; Anal. Calcd for C<sub>15</sub>H<sub>20</sub>F<sub>12</sub>N<sub>2</sub>O<sub>4</sub>S: C, 32.62; H, 3.65; N, 5.07; Found: C, 32.70; H, 3.71; N, 4.89.

#### (S)-1-(pyrrolidin-2-ylmethyl)piperidinium

1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (1b)

Viscous oil; 84% yield;  $[\alpha]_D^{23} = 16.9$  (c = 0.86, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  6.70 (1H, tt, J = 51.2, 5.6 Hz), 3.89~3.75 (1H, m), 3.29~3.17 (2H, m), 2.76~2.52 (4H, m), 2.45 (2H, br), 2.23~1.93 (3H, m), 1.73~1.55 (5H, m), 1.55~1.36 (2H, m); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -83.91~-84.09 (m, 2F), -85.43~-85.65 (m, 2F), -120.07 (s, 2F), -129.33~-129.55 (m, 2F), -132.32~-132.60 (m, 2F), -140.34~-140.68 (m, 2F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  58.99, 56.57, 54.31, 45.40, 27.99, 25.12, 23.56, 23.38; IR (film) (cm<sup>-1</sup>): 3085, 2946, 2862, 1618, 1459, 1350, 1285, 1245, 1197, 1147, 1055, 975, 811, 640; MS (ESI): 169.2 [cation]<sup>+</sup>, 396.8 [anion]<sup>-</sup>; Anal. Calcd for C<sub>16</sub>H<sub>22</sub>F<sub>12</sub>N<sub>2</sub>O4S'H<sub>2</sub>O: C, 32.88; H, 4.14; N, 4.79; Found: C, 33.24; H, 4.04; N, 4.58.

### (S)-4-(pyrrolidin-2-ylmethyl)morpholin-4-ium

1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (1c)

Viscous oil; 84% yield;  $[\alpha]_D^{24} = 21.3$  (c = 0.66, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  6.71 (1H, tt, J = 51.0, 5.8 Hz), 3.88~3.78 (1H, m), 3.74~3.64 (4H, m), 3.29~3.19 (2H, m), 2.70~2.51 (4H, m), 2.49~2.33 (2H, m), 2.22~1.95 (3H, m), 1.71~1.57 (1H, m); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -83.95~-84.10 (m, 2F), -85.45~85.65 (m, 2F), -120.10 (s, 2F), -129.39~129.55 (m, 2F), -132.39~132.56 (m, 2F), -140.33~140.69 (m, 2F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  66.53, 58.92, 56.79, 53.13, 45.44, 27.72, 23.51; IR (film) (cm<sup>-1</sup>): 3090, 2968, 2866, 2825, 1620, 1460, 1350, 1285, 1249, 1195, 1147, 1118, 1055, 975, 811, 640; MS (ESI): 171.2 [cation]<sup>+</sup>, 396.8 [anion]<sup>-</sup>; Anal. Calcd for C<sub>15</sub>H<sub>20</sub>F<sub>12</sub>N<sub>2</sub>O<sub>5</sub>S: C, 31.70; H, 3.55; N, 4.93; Found: C, 31.47; H, 3.94; N, 4.80.

### (1R,2R)-2-(dipropylamino)cyclohexanaminium

1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (1f)

Viscous oil; 84% yield;  $[\alpha]_D^{26} = -47.4$  (c = 1.69, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  6.69 (1H, tt, J = 50.8, 5.7 Hz), 2.99~2.87 (1H, m), 2.56~2.32 (5H, m), 2.15~2.05(1H, m), 1.98~1.70 (3H, m), 1.61~1.22 (8H, m), 0.90 (6H, t, J = 7.4 Hz); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -83.86~-84.00 (m, 2F), -85.38~-85.60 (m, 2F), -119.97 (s, 2F), -129.34~-129.46 (m, 2F), -132.30~-132.47 (m, 2F), -140.27~-140.60(m, 2F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  63.51, 51.57, 30.43, 24.64, 24.08, 23.48, 21.17 (br), 11.29; IR (film) (cm<sup>-1</sup>): 2964, 2879, 1461, 1349, 1285, 1255, 1201, 1147, 1054, 971, 809, 639; MS (ESI): 199.6 [cation]<sup>+</sup>, 397.0 [anion]<sup>-</sup>; Anal. Calcd for C<sub>18</sub>H<sub>28</sub>F<sub>12</sub>N<sub>2</sub>O<sub>4</sub>S: C, 36.25; H, 4.73; N, 4.70; Found: C, 36.39; H, 4.79; N, 4.64.

#### Typical procedure for the synthesis of catalyst 1d and 1e:

To the solution of diamine (0.55 mmol) in water (2 mL) was added the water (3 mL) solution of 1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonic acid (199 mg, 0.5 mmol) and the mixture was stirred overnight. An oil product was obtained and crowded at the bottom. The crude product was first separated by decantion and washed by water ( $3 \times 4$  mL). And then it was dissolved in dichloromethane (10 mL) and dried over anhydrous MgSO<sub>4</sub>. The solvent was removed under reduced pressure and the pure product was obtained.

#### (S)-N,N-dipropyl-N-(pyrrolidin-2-ylmethyl)

aminium

1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (1d)

Viscous oil; 93% yield;  $[\alpha]_D^{23} = 18.5$  (c = 0.31, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  6.71 (1H, tt, J = 51.2, 5.6 Hz), 3.78~3.67 (1H, m), 3.28~3.20 (2H, m), 2.75~2.40 (6H, m), 2.21~1.94 (3H, m), 1.72~1.60 (1H, m), 1.60~1.36 (4H, m), 0.90 (6H, t, J = 7.3 Hz); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -83.96~84.11 (m, 2F), -85.46~85.73 (m, 2F), -120.11 (s, 2F), -129.41~129.56 (m, 2F), -132.33~132.66 (m, 2F), -140.37~140.72(m, 2F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  57.20, 55.32, 54.90, 45.04, 27.76, 23.26, 19.30, 11.31; IR (film) (cm<sup>-1</sup>): 3084, 2969, 2880, 2821, 1614, 1463, 1350, 1055, 975, 811, 640; MS (ESI): 185.5 [cation]<sup>+</sup>, 397.0 [anion ]<sup>-</sup>; Anal. Calcd for C<sub>17</sub>H<sub>26</sub>F<sub>12</sub>N<sub>2</sub>O<sub>4</sub>S: C, 35.06; H, 4.50; N, 4.81; Found: C, 35.53; H, 4.61; N, 4.56.

(S)-N,N-dibutyl-N-(pyrrolidin-2-ylmethyl)

aminium

1,1,2,2-tetrafluoro-2-(1,1,2,2,3,3,4,4-octafluorobutoxy)ethanesulfonate (1e) Viscous oil; 91% yield;  $[\alpha]_D^{24} = 16.4$  (*c* = 0.88, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  6.71 (1H, tt, J = 51.2, 5.6 Hz), 3.78~3.66 (1H, m), 3.28~3.20 (2H, m), 2.75~2.42 (6H, m), 2.32~1.91 (3H, m), 1.73~1.58 (1H, m); 1.56~1.19 (8H, m), 0.94 (6H, t, J = 7.2 Hz); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -83.92~-84.10 (m, 2F), -85.42~-85.68 (m, 2F), -120.06 (s, 2F), -129.36~-129.56 (m, 2F), -132.35~-132.61 (m, 2F), -140.31~-140.69(m, 2F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  57.09, 54.75, 53.13, 44.99, 28.14, 27.78, 23.32, 20.26, 13.71; IR (film) (cm<sup>-1</sup>): 3084, 2965, 2940, 2877, 1466, 1350, 1286, 1249, 1195, 1145, 1054, 974, 809, 639; MS (ESI): 213.5 [cation]<sup>+</sup>, 397.0 [anion ]<sup>-</sup>; Anal. Calcd for C<sub>19</sub>H<sub>30</sub>F<sub>12</sub>N<sub>2</sub>O<sub>4</sub>S: C, 37.38; H, 4.95; N, 4.59; Found: C, 37.62; H, 5.02; N, 4.46.

#### Typical procedure for the synthesis of catalyst 1g-1h and 1k-1m:

To the dichloromethane (2 mL) solution of CF<sub>3</sub>SO<sub>3</sub>H (1 mmol) was added the solution of (1*R*,2*R*)-2-(dipropylamino)cyclohexanamine (1 mmol) in dichloromethane (2 mL) and the mixture was stirred overnight. The solvent was removed under reduced pressure. The resulting residue was then purified by flash chromatography to give (1*R*,2*R*)-2-(dipropylamino)cyclohexanaminium trifluoromethanesulfonate (**1g**). Viscous oil; 90% yield;  $[\alpha]_D^{25} = -72.8$  (*c* = 1.07, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  3.06~2.93 (1H, m), 2.55~2.25 (5H, m), 2.17~2.06(1H, m), 1.99~1.71 (3H, m), 1.64~1.18 (8H, m), 0.91 (6H, t, *J* = 7.4 Hz); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -80.56 (s, 3F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  120.14 (q, *J* = 318.7 Hz), 63.28, 51.51, 30.28, 24.67, 24.14, 23.45, 21.11, 11.39; IR (film) (cm<sup>-1</sup>): 2943, 2875, 1616, 1477, 1287, 1243, 1167, 1031, 639; MS (ESI): 199.6 [cation]<sup>+</sup>, 149.1 [anion]<sup>-</sup>; Anal. Calcd for C<sub>13</sub>H<sub>27</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S: C, 44.81; H, 7.81; N, 8.04; Found: C, 45.20; H, 7.48; N, 7.98.

#### (1*R*,2*R*)-2-(dipropylamino)cyclohexanaminium 2,2,2-trifluoroacetate (1h)

White solid; 96% yield;  $[\alpha]_D^{24} = -74.8$  (c = 0.48, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  3.06~2.94 (1H, m), 2.55~2.29 (5H, m), 2.16~2.06(1H, m), 2.00~1.70 (3H, m), 1.62~1.22 (8H, m), 0.91 (6H, t, J = 7.3 Hz); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -77.39 (s, 3F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  161.94, 62.28, 51.35, 29.29, 24.83, 24.14, 23.40, 21.78 (br), 11.63; IR (film) (cm<sup>-1</sup>): 2967, 2938, 2878, 1677, 1586, 1420, 1200, 1174, 1137, 832, 797, 720; MS (ESI): 199.6 [cation]<sup>+</sup>, 113.2 [anion]<sup>-</sup>; Anal. Calcd for C<sub>14</sub>H<sub>27</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>·H<sub>2</sub>O: C, 50.89; H, 8.85; N, 8.48; Found: C, 50.86; H, 8.68; N, 8.08.

#### (1R,2R)-2-(diethylamino)cyclohexanaminium trifluoromethanesulfonate (1k)

Viscous oil; 95% yield;  $[\alpha]_D^{23} = -57.9$  (c = 0.55, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  3.07~2.92 (1H, m), 2.76~2.59 (2H, m), 2.56~2.37(3H, m), 2.17~2.05 (1H, m), 1.98~1.69 (3H, m), 1.44~1.23 (m, 4H), 1.08 (6H, t, J = 7.2 Hz); <sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -80.55 (s, 3F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  120.13 (q, J = 327.3 Hz), 62.94, 51.57, 43.62 (br), 30.60, 24.65, 24.09, 23.81, 13.29; IR (film) (cm<sup>-1</sup>): 3512, 3114, 2942, 2868, 1624, 1477, 1458, 1388, 1285, 1246, 1167, 1031, 759, 639; MS (ESI): 171.4 [cation]<sup>+</sup>, 149.0 [anion]<sup>-</sup>; Anal. Calcd for C<sub>11</sub>H<sub>23</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S: C, 41.24; H, 7.24; N, 8.74; Found: C, 41.35; H, 7.32; N, 8.66.

#### (1R, 2R)-2-(dimethylamino)cyclohexanaminium trifluoromethanesulfonate (11)

White solid; 92% yield;  $[\alpha]_D^{25} = -27.3$  (c = 0.26, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  5.09 (3H, br), 2.93~2.81 (1H, m), 2.66~2.53 (1H, m), 2.45 (6H, s), 2.24~2.12 (1H, m), 1.98~1.74 (3H, m), 1.56~1.18 (4H, m); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz)  $\delta$  -78.67 (s, 3F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  120.12 (q, J = 321.4 Hz), 66.22, 51.06, 39.39 (br), 31.56, 24.32, 24.22, 21.69; IR (film) (cm<sup>-1</sup>):

3500, 3103, 2945, 2870, 1653, 1475, 1255, 1228, 1170, 1032, 640; MS (ESI): 143.4 [cation]<sup>+</sup>, 149.0 [anion ]<sup>-</sup>; Anal. Calcd for  $C_9H_{19}F_3N_2O_3S'0.5H_2O$ : C, 35.87; H, 6.69; N, 9.30; Found: C, 35.43; H, 6.43; N, 9.01.

#### (1R,2R)-2-(dibutylamino)cyclohexanaminium trifluoromethanesulfonate (1m)

White solid; 95% yield;  $[\alpha]_D^{25} = -68.9 \ (c=1.03, CHCl_3)$ <sup>1</sup>H NMR (CD<sub>3</sub>OD, 300 MHz)  $\delta$  3.06~2.88 (1H, m), 2.65~2.31 (5H, m), 2.17~2.05 (1H, m), 1.99~1.67 (3H, m), 1.53~1.22 (12H, m), 0.95 (6H, t, *J* = 7.3 Hz);<sup>19</sup>F NMR (CD<sub>3</sub>OD, 282 MHz)  $\delta$  -80.59 (s, 3F); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100MHz)  $\delta$  120.17 (q, *J* = 325.7 Hz), 63.34, 51.65, 30.24, 24.68, 24.09, 23.51, 20.39, 13.67; IR (film) (cm<sup>-1</sup>): 3219, 3161, 2956, 2872, 2839, 1619, 1465, 1443, 1287, 1239, 1221, 1166, 1030, 989, 637; MS (ESI): 227.4 [cation]<sup>+</sup>, 149.0 [anion]<sup>-</sup>; Anal. Calcd for C<sub>15</sub>H<sub>31</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S: C, 47.85; H, 8.30; N, 7.44; Found: C, 48.12; H, 8.37; N, 7.58.

#### Typical procedure for the aldol reaction:

To a suspension of catalyst 1m (18.8 mg, 0.05 mmol) in water (2 mL) was added cyclic ketone (1 mmol). After stirring for one minute, aryl aldehyde (0.5 mmol) was introduced. Then the reaction was kept at room temperature for the time indicated in Table 2. After completion of the reaction, the product precipitated as solid. The crude product was collected by filtration. Diastereoselectivity was determined by <sup>1</sup>H NMR analysis of the crude product. Further column chromatography gave the pure product.

### 2-(Hydroxy(p-nitrophenyl)methyl)cyclohexanone (4a)

95% Yield;  $[\alpha]_D^{27} = -12.1$  (*c*=0.75, CHCl<sub>3</sub>), 95% ee; <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  8.21 (2H, d, *J* = 8.7 Hz), 7.51 (2H, d, *J* = 8.7 Hz), 4.90 (1H, dd, *J* = 8.4, 3.0 Hz), 4.09 (1H, d, *J* = 3.0 Hz), 2.65~2.45 (2H, m), 2.43~2.30 (1H, m), 2.18~2.08 (1H, m), 1.87~1.78 (1H, m), 1.72~1.34 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 17.8 min, minor enantiomer tr = 22.8 min.

#### 2-(Hydroxy(m-nitrophenyl)methyl)cyclohexanone (4b)

94% Yield;  $[\alpha]_D^{22}$  = -33.3 (*c*=1.09, CHCl<sub>3</sub>), 96% ee; <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  8.21 (1H, s), 8.16 (1H, d, *J* = 7.8 Hz), 7.67 (1H, d, *J* = 7.5 Hz), 7.53 (1H, t, *J* = 7.8 Hz), 4.89 (1H, dd, *J* = 8.7, 3.0 Hz), 4.12(1H, d, *J* = 3.0 Hz), 2.67~2.56 (1H, m), 2.55~2.45 (1H, m), 2.44~2.30 (1H, m), 2.17~2.07 (1H, m), 1.87~1.78 (1H, m), 1.75~1.23 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 214 nm, 0.7mL/min; major enantiomer tr = 19.12 min, minor enantiomer tr = 15.64 min.

#### 2-(Hydroxy(p-(trifluoromethyl)phenyl)methyl)cyclohexanone (4c)

94% Yield;  $[\alpha]_D^{22} = -23.8$  (c = 1.05, CHCl<sub>3</sub>), 96% ee; <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (2H, d, J = 7.8 Hz), 7.45 (2H, d, J = 7.8 Hz), 4.85 (1H, dd, J = 8.8, 2.7 Hz), 4.03 (1H, d, J = 2.7 Hz), 2.66~2.55 (1H, m), 2.54~2.45(1H, m), 2.43~2.30 (1H, m), 2.17~2.06 (1H, m), 1.87~1.76 (1H, m), 1.76~1.23 (4H, m); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -62.5 (s, 3F); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 12.08 min, minor enantiomer tr = 14.09 min.

#### 2-(Hydroxy-(*p*-cyanophenyl)methyl)cyclohexanone (**4d**)

82% Yield;  $[\alpha]_D^{23} = -19.6 \ (c = 0.77, CHCl_3)$ , 86% ee. <sup>1</sup>H NMR (300MHz, CDCl\_3):  $\delta$  7.65 (2H, d, J = 8.1 Hz), 7.44 (2H, d, J = 8.1 Hz), 4.84 (1H, dd, J = 8.6, 3.0 Hz), 4.04 (1H, d, J = 3.0 Hz), 2.63~2.45 (2H, m), 2.43~2.30 (1H, m), 2.17~2.06 (1H, m), 1.88~1.78 (1H, m), 1.76~1.24 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 16.08 min, minor enantiomer tr = 19.63min.

#### 2-(Hydroxy(p-bromophenyl)methyl)cyclohexanone (4e)

>99% Yield;  $[\alpha]_D^{27}$  =-22.7 (*c* = 0.79, CHCl<sub>3</sub>), 98% ee. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  7.47 (2H, d, *J* = 8.1 Hz), 7.20 (2H, d, *J* = 8.1Hz), 4.75 (1H, dd, *J* = 8.9, 2.7 Hz), 3.98 (1H, d, *J* = 2.7 Hz), 2.62~2.43 (2H, m), 2.42~2.28 (1H, m), 2.16~2.03 (1H, m), 1.86~1.75 (1H, m), 1.75~1.19 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 13.32 min, minor enantiomer tr = 15.02 min.

#### 2-((4-chlorophenyl)(hydroxy)methyl)cyclohexanone (4f)

96% Yield;  $[\alpha]_D^{24} = -26.0 \ (c = 1.09, \text{CHCl}_3)$ , 93% ee. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  7.29 (4H, dd, J = 20.0, 8.5 Hz), 4.76 (1H, dd, J = 8.6, 2.7 Hz), 3.98 (1H, d, J = 2.7 Hz), 2.64~2.43 (2H, m), 2,41~2.28 (1H, m), 2.18~2.00 (1H, m), 1.86~1.73 (1H, m), 1.70~1.16 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 12.55 min, minor enantiomer tr = 13.98 min.

#### 2-((2,4-dichlorophenyl)(hydroxy)methyl)cyclohexanone (4g)

84% Yield;  $[\alpha]_D^{23} = -21.3$  (c = 1.06, CHCl<sub>3</sub>), 97% ee; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.50 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 2.0 Hz), 7.30 (1H, dd, J = 8.4, 2.0 Hz), 5.29 (1H, d, J = 8.0 Hz), 4.05 (1H, br), 2.68~2.57 (1H, m), 2.52~2.42 (1H, m), 2.41~2.27 (1H, m), 2.16~2.04 (1H, m), 1.88~1.78 (1H, m), 1.77~1.50 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (9:1hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 14.22 min, minor enantiomer tr = 16.89 min.

#### 2-((3,4-dichlorophenyl)(hydroxy)methyl)cyclohexanone (4h)

94% Yield;  $[\alpha]_D^{23} = -19.8$  (*c* = 0.82, CHCl<sub>3</sub>), 96% ee; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 (1H, d, *J* = 2.1 Hz), 7.41 (1H, d, *J* = 8.2 Hz), 7.15 (1H, dd, *J* = 8.2, 2.1 Hz), 4.74 (1H, dd, *J* = 8.7, 3.0 Hz), 4.01 (1H, d, *J* = 3.0 Hz), 2.60~2.44 (2H, m), 2.41~2.28 (1H, m), 2.16~2.05 (1H, m), 1.87~1.76(1H, m), 1.75~1.48 (3H, m), 1.40~1.23 (1H, m); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  215.30, 141.50, 132.76, 131.99, 130.49, 129.21, 126.66, 73.98, 57.42, 42.89, 30.94, 27.89, 24.90; IR (film, cm<sup>-1</sup>): 3505, 2944, 2917, 1704, 1560, 1465, 1127, 1029, 888; MS (EI): 274, 272, 256, 254, 219, 175, 145; Anal. Calcd for C<sub>13</sub>H<sub>14</sub>Cl<sub>2</sub>O<sub>2</sub>: C, 57.16; H, 5.17; Found: C, 57.16; H, 5.10; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 20.02 min, minor enantiomer tr = 18.29 min.

2-(biphenyl-4-yl(hydroxy)methyl)cyclohexanone (**4i**)

56% Yield;  $[\alpha]_D^{23} = -21.1$  (c = 0.59, CHCl<sub>3</sub>), 93% ee. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  7.61~7.54

(4H, m), 7.48~7.31 (5H, m), 4.84 (1H, dd, J = 8.8, 2.7 Hz), 3.99 (1H, d, J = 2.7 Hz), 2.74~2.60 (1H, m), 2.57~2.31 (2H, m), 2.17~2.03 (1H, m), 1.86~1.74 (1H, m), 1.72~1.22 (4H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (9:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 28.25 min, minor enantiomer tr = 31.62 min.

#### 2-(hydroxy(p-nitrophenyl)methyl)cyclopentanone (4j)

34% Yield;  $[\alpha]_D^{22} = 3.22$  (c = 0.73, CHCl<sub>3</sub>), 84% ee. <sup>1</sup>H NMR (300MHz, CDCl<sub>3</sub>):  $\delta$  8.23 (2H, d, J = 8.6 Hz), 7.54 (2H, d, J = 8.6 Hz), 5.43 (1H, br) (*syn*), 4.85 (1H, d, J = 9.2 Hz) (*anti*), 4.75 (1H, s), 2.56~1.63 (7H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (19:1 hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 40.85 min, minor enantiomer tr = 44.78 min.

#### 3-(hydroxy(4-nitrophenyl)methyl)dihydro-2H-pyran-4(3H)-one (4k)

57% Yield;  $[\alpha]_D^{23} = 3.6$  (c = 0.90, CHCl<sub>3</sub>), 98% ee. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.24 (2H, d, J = 8.6 Hz), 7.52 (2H, d, J = 8.6 Hz), 4.99 (1H, dd, J = 8.6, 3.4 Hz), 4.27~4.16 (1H, m), 3.84~3.67 (3H, m), 3.46 (1H, dd, J = 12.2, 9.9 Hz), 2.96~2.85 (1H, m), 2.75~2.63 (1H, m); 2.58~2.47 (1H, m); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1 hexane:2-propanol), 254 nm, 0.7 mL/min; major enantiomer tr = 30.05 min, minor enantiomer tr = 35.55 min.

#### 3-(hydroxy(4-(trifluoromethyl)phenyl)methyl)dihydro-2H-pyran-4(3H)-one (4l)

75% Yield;  $[\alpha]_D^{27} = -9.5$  (*c* = 0.76, CHCl<sub>3</sub>), 95% ee; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (2H, d, *J* = 7.6 Hz), 7.46 (2H, d, *J* = 7.6 Hz), 4.94 (1H, d, *J* = 8.5 Hz), 4.25~4,14 (1H, m), 3.81~3.65 (3H, m), 3.41 (1H, t, *J* = 11.0 Hz), 2.94~2.83 (1H, m), 2.75~2.61 (1H, m); 2.58~2.48 (1H, m); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -62.5 (s, 3F); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  209.40, 144.20, 130.45 (q, *J* = 30.6 Hz), 126.95, 125.57 (q, *J* = 3.6 Hz), 123.94 (q, *J* = 272 Hz), 71.48, 69.73, 68.32, 57.82, 42.65; IR (film, cm<sup>-1</sup>): 3446, 2979, 2868, 1701, 1621, 1478, 1335, 1096, 843; MS (EI): 274, 256, 175,173, 145; Anal. Calcd for C<sub>13</sub>H<sub>13</sub>F<sub>3</sub>O<sub>3</sub>: C, 56.94; H, 4.78; Found: C, 56.92; H, 4.72; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (4:1hexane:2-propanol), 214 nm, 0.7 mL/min; major enantiomer tr = 12.79 min, minor enantiomer tr = 15.29 min.

Crystal data for **1m** (CCDC 737246):  $C_{15}H_{31}F_{3}N_{2}O_{3}S$ , M = 376.48, Orthorhombic, space group P2 (1)2(1)2(1), a = 7.6593 (7) Å, b = 12.5747 (11) Å, c = 20.4376(18) Å, alpha = beta = gamma = 90 deg. V = 1968.4(3) Å<sup>3</sup>, T = 293(2) K, Z = 4,  $\mu$ (Mo-K $\alpha$ ) = 0.206 mm<sup>-1</sup>, R1 = 0.0451, wR2 = 0.1018 (I > 2 $\sigma$  (I)); R1 = 0.0521, wR2 = 0.1048 (all data). Reflections collected / unique: 11642 / 4266 [R(int) = 0.0617].

References:

- 1. M. Asami, Bull. Chem. Soc. Jpn., 1990, 63, 721-727.
- 2. S. Luo, H. Xu, J. Li, L. Zhang, J.-P. Cheng, J. Am. Chem. Soc. 2007, 129, 3074-3075.

































Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2009



















#### DEFAULT REPORT

| Peak<br># | Time<br>[min] | Area<br>[uv*sec] | Height<br>[uv] | Area<br>[%] | BL |      |
|-----------|---------------|------------------|----------------|-------------|----|------|
| 1         | 10.124        | 157211.00        | 12025.79       | 1.60        | BB |      |
| 2         | 13.198        | 3131.21          | 167.27         | 0.03        | BV |      |
| 3         | 14.249        | 113601.93        | 5373.75        | 1.16        | VV |      |
| 4         | 15.390        | 69374.87         | 3883.48        | 0.71        | VB |      |
| 5         | 16.457        | 43251.20         | 2256.58        | 0.44        | BV |      |
| 6         | 17.807        | 9202852.80       | 430655.10      | 93.88       | VB |      |
| 7         | 22.852        | 213017.00        | 7905.99        | 2.17        | BB | 3. * |
|           |               |                  |                |             |    |      |

9802440.00 462267.97 100.00









| 序号  | 峰号 | 组份名 | 保留时间   | 峰高        | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|-----------|------------|----------|
| 1   | 1  |     | 9, 502 | 48495.0   | 507954.0   | 1.9283   |
| 2   | 2  |     | 10.752 | 42517.4   | 503668.6   | 1.9120   |
| 3   | 3  |     | 13.318 | 827797.2  | 12608842.9 | 47.8654  |
| 4   | 4  |     | 15.018 | 721377.2  | 12721827.2 | 48.2943  |
| 合计: |    |     |        | 1640186.8 | 26342292.6 | 100.0000 |



| 序号  | 峰号 | 组份名 | 保留时间   | 峰高       | 峰面积       | 面积百分比(%) |  |
|-----|----|-----|--------|----------|-----------|----------|--|
| 1   | 1  |     | 9.518  | 7434.7   | 80583.4   | 1.2111   |  |
| 2   | 2  |     | 10.752 | 812.6    | 9822.5    | 0.1476   |  |
| 3   | 3  |     | 13.318 | 424278.7 | 6485537.2 | 97.4706  |  |
| 4   | 4  |     | 15.018 | 3445.6   | 77895.9   | 1.1707   |  |
| 合计: |    |     |        | 435971.6 | 6653839.0 | 100.0000 |  |





| 序号  | 峰号 | 组份名 | 保留时间   | 峰高       | 峰面积       | 面积百分比(%) |
|-----|----|-----|--------|----------|-----------|----------|
| 1   | 1  |     | 9.185  | 506.0    | 3154.4    | 0.1618   |
| 2   | 2  |     | 10.252 | 357.6    | 4085.1    | 0.2096   |
| 3   | 3  |     | 12.552 | 133200.9 | 1872351.9 | 96.0495  |
| 4   | 4  |     | 13.985 | 4555.6   | 69769.1   | 3. 5791  |
| 合计: |    |     |        | 138620.1 | 1949360.5 | 100.0000 |



| 序号  | 峰号 | 组份名 | 保留时间   | 峰高       | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|----------|------------|----------|
| 1   | 1  |     | 14.752 | 287196.0 | 6353454.1  | 46. 4474 |
| 2   | 2  |     | 15.518 | 41901.0  | 894733.4   | 6.5410   |
| 3   | 3  |     | 17.552 | 188673.5 | 6430620.5  | 47.0116  |
| 合计: |    |     |        | 517770.5 | 13678808.0 | 100.0000 |



| <b>広</b> | 峰号     | 组份名 | 保留时间               | 峰高                   | 峰面积                   | 面积百分比(%)          |
|----------|--------|-----|--------------------|----------------------|-----------------------|-------------------|
| 1 2      | 1<br>2 |     | 14. 218<br>16. 885 | 304728. 1<br>3958. 4 | 6594047.2<br>109097.6 | 98.3724<br>1.6276 |
| 合计:      |        |     |                    | 308686.5             | 6703144.8             | 100.0000          |







| 序号  | 峰号 | 组份名 | 保留时间   | 峰高       | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|----------|------------|----------|
| 1   | 1  |     | 18.285 | 17773.4  | 375779.9   | 1.9056   |
| 2   | 2  |     | 20.018 | 822621.2 | 19343987.6 | 98.0944  |
| 合计: |    |     |        | 840394.6 | 19719767.5 | 100.0000 |



| 序号  | 峰号 | 组份名 | 保留时间   | 峰高        | 峰面积        | 面积百分比(%) |  |
|-----|----|-----|--------|-----------|------------|----------|--|
| 1   | 1  |     | 28.318 | 692614.7  | 24383848.6 | 49.9438  |  |
| 2   | 2  |     | 31.618 | 617143.2  | 24438684.8 | 50.0562  |  |
| 合计: |    |     |        | 1309757.9 | 48822533.4 | 100.0000 |  |



| 序号     | 峰号     | 组份名 | 保留时间               | 峰高                    | 峰面积                     | 面积百分比(%)            |
|--------|--------|-----|--------------------|-----------------------|-------------------------|---------------------|
| 1<br>2 | 1<br>2 |     | 28. 252<br>31. 618 | 821396. 1<br>28816. 8 | 29192313.0<br>1099710.4 | 96. 3696<br>3. 6304 |
| 合计:    |        |     |                    | 850212.8              | 30292023.4              | 100.0000            |



| 序号   | 峰号 | 组份名 | 保留时间    | 峰高        | 峰面积       | 面积百分比(%) |  |
|------|----|-----|---------|-----------|-----------|----------|--|
| 1    | 1  |     | 22. 985 | 71260.8   | 2628714.8 | 31.7495  |  |
| 2    | 2  |     | 33.518  | 41052.2   | 2614324.0 | 31.5757  |  |
| 3    | 3  |     | 40.552  | ~ 24175.3 | 1518336.0 | 18, 3384 |  |
| 4    | 4  |     | 43.885  | 19439.0   | 1518173.4 | 18.3364  |  |
| 1000 |    |     |         |           |           |          |  |



| 序号  | 峰号 | 组份名 | 保留时间   | 峰高      | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|---------|------------|----------|
| 1   | 1  |     | 23.118 | 8462.2  | 310538 5   | 0 2006   |
| 2   | 2  |     | 34.085 | 7458.1  | 440752.7   | 14 0407  |
| 3   | 3  |     | 40.852 | 33843.4 | 2183295, 8 | 69 5516  |
| 4   | 4  |     | 44.785 | 2754.8  | 204513.3   | 6. 5150  |
| 合计: |    |     |        | 52518.5 | 3139100.3  | 100.0000 |



| 皮里               | 峰是               | 组份名      | 保留时间                                     | 峰高                                             | 峰面积                                                    | 面积百分比(%)                                                                   |
|------------------|------------------|----------|------------------------------------------|------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------|
| 1<br>2<br>3<br>4 | 1<br>2<br>3<br>4 | 21. W 14 | 22. 552<br>25. 785<br>31. 452<br>36. 718 | 34974. 4<br>30401. 6<br>297497. 7<br>278958. 7 | 1021975. 0<br>1025950. 3<br>13562338. 1<br>13564623. 8 | $\begin{array}{c} 3.\ 5029\\ 3.\ 5166\\ 46.\ 4863\\ 46.\ 4942 \end{array}$ |
| 合计:              | :                |          |                                          | 641832.3                                       | 29174887.2                                             | 100.0000                                                                   |



| 序号  | 峰号 | 组份名 | 保留时间   | 峰高       | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|----------|------------|----------|
| 1   | 1  |     | 24.885 | 17939.2  | 575346.6   | 1.3630   |
| 2   | 2  |     | 27.185 | 1481.8   | 49513.9    | 0.1173   |
| 3   | 3  |     | 30.052 | 915812.2 | 41161240.3 | 97.5086  |
| 4   | 4  |     | 35.552 | 9320.3   | 426840.3   | 1.0112   |
| 合计: |    |     |        | 944553.5 | 42212941.1 | 100.0000 |



| 序号  | 峰号 | 组份名 | 保留时间   | 峰高        | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|-----------|------------|----------|
| 1   | 1  |     | 9.152  | 132890.8  | 1404086.3  | 6.4570   |
| 2   | 2  |     | 10.352 | 115820.2  | 1443891.9  | 6.6401   |
| 3   | 3  |     | 12.785 | 595606.5  | 9450490.0  | 43.4603  |
| 4   | 4  |     | 15.218 | 491004.6  | 9446626.1  | 43. 4426 |
| 合计: |    |     |        | 1335322.0 | 21745094.4 | 100.0000 |





| 序号  | 峰号 | 组份名 | 保留时间   | 峰高        | 峰面积        | 面积百分比(%) |
|-----|----|-----|--------|-----------|------------|----------|
| 1   | 1  |     | 9.185  | 6625.5    | 86733.1    | 0.3949   |
| 2   | 2  |     | 10.352 | 21342.8   | 249048.1   | 1.1339   |
| 3   | 3  |     | 12.785 | 1291917.3 | 21108551.8 | 96.1063  |
| 4   | 4  |     | 15.285 | 27578.0   | 519427.4   | 2.3649   |
| 合计: |    |     |        | 1347463.5 | 21963760.5 | 100.0000 |