Electronic Supplementary Information for

Creation of Highly Stable Monomeric Pd(II) Species in an Anion-exchangeable Hydroxy Double Salt Interlayer: Application to Aerobic Alcohol Oxidation under an Air Atomosphere

Takayoshi HARA, Masakazu ISHIKAWA, Junya SAWADA, Nobuyuki ICHIKUNI

and Shogo SHIMAZU*

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi 1-33, Inage, Chiba 263-8522, Japan TEL&FAX: +81-43-290-3379 E-mail: shimazu@faculty.chiba-u.jp

Table of Contents

1. Materials	2
2. XRD profiles of synthesized Pd/NiZn catalysts (Fig. 1S)	2
3. XRD profiles for the HT-supported Pd catalysts (Fig. 2S)	3
4. IR spectra for the Pd/NiZn catalysts (Fig. 3S)	4
5. Curve-fitting result of the $[Pd(OH)_4]^{2-}$ species in the aqueous solution (Fig. 4S)	5
6. Curve-fitting result for the synthesized Pd/NiZn catalysts (Fig. 5S)	6
7. Hot filtration experiment (Fig. 6S)	7
8. Screening of reaction conditions (Table 1S)	8
9. Hammet plot (Fig.7S)	9

1. Materials

Ni(OAc)₂·4H₂O and Zn(OAc)₂·2H₂O were obtained from Wako Pure Chemical Ind. Co. Ltd. K₂PdCl₄ purchased from Aldrich was used without further purification. Alcohols as a substrate and solvents were purchased from Wako Pure Chemical Ind. Co. Ltd., Tokyo Kasei, and Aldrich.

(triangle in the second state in the second state is a second state in the second

2. XRD profiles of the synthesized Pd/NiZn catalysts

Figure 1S. XRD profiles for (a) NiZn, (b) fresh Pd/NiZn(0.02), (c) recovered Pd/NiZn(0.02), (d) fresh Pd/NiZn(1) and (e) NiZn treated with excess NaOH aq.

3. XRD profiles for the HT-supported Pd catalysts

Figure 2S. XRD profiles for (a) fresh Pd/HT(0.02), (b) recovered Pd/HT(0.02) and (c) parent-HT.

4. IR spectra for the Pd/NiZn catalysts

Figure 3S. IR spectra for (a) NiZn, (b) fresh Pd/NiZn(0.02), (c) fresh Pd/NiZn(1) and (d) NiZn treated with excess aqueous NaOH.

5. Curve-fitting result of the $[Pd(OH)_4]^{2-}$ species in the aqueous solution

Figure 4S. Curve-fitting of Fourier-filtered EXAFS of aqueous $[Pd(OH)_4]^{2-}$ solution. The solid curve is obtained experimentally and the dashed curve is the calculated fit.

6. Curve-fitting result for the synthesized Pd/NiZn catalysts

Figure 5S. Curve-fitting of Fourier-filtered EXAFS of (a) fresh Pd/NiZn(0.02) and (b) recovered Pd/NiZn(0.02), (c) fresh Pd/NiZn(1) and (d) Pd/NiZn(1). The solid curve is obtained experimentally, and the dashed curve is the calculated fit.

7. Hot filtration experiment

Figure 6S. Effect of removal of the Pd/NiZn(0.02) catalyst on the aerobic benzyl alcohol oxidation: without removal of Pd/iZn(0.02) (\bullet); an arrow indicates the removal of the Pd/NiZn(0.02) (\blacksquare). Reaction conditions: benzyl alcohol (0.5 mmol), Pd/NiZn(0.02) (Pd: 2 mol%), toluene (2.5 mmol), 353 K, O₂ atmosphere..

8. Screening of reaction conditions

_

_

	OH + 0.5 O ₂ —	d catalyst (Pd: 2 r	mol%)	←0 + H ₂ O
Entry	Pd catalyst	Solvent	$\operatorname{Convn}^{b}(\%)$	Yield ^b (%)
1	Pd/NiZn(0.02)	PhCF ₃	>99	97
2	Pd/NiZn(0.02)	toluene	81	79
3	Pd/NiZn(0.02)	ClCH ₂ CH ₂ Cl	79	71
4	Pd/NiZn(0.02)	n-heptane	58	50
5	Pd/NiZn(0.02)	ethyl acetate	47	42
6	Pd/NiZn(0.02)	acetonitrile	trace	trace
7	Pd/NiZn(0.02)	DMF	trace	trace
8	Pd/NiZn(0.02)	DMSO	trace	trace
9	Pd/NiZn(0.02)	ethanol	47	41
10	Pd/NiZn(0.02)	water	trace	trace
11	$Pd(OAc)_2$	toluene	8	8
12	K_2PdCl_4	toluene	0	0
13	$PdCl_2(PhCN)_2$	toluene	trace	trace
14	NiZn	PhCF ₃	trace	trace
15	none	PhCF ₃	0	0

Table 1S Screening of reaction conditions for benzylalcohol oxidation^a

^{*a*} Reaction conditions: benzylalcohol (0.5 mmol), Pd catalyst (Pd: 2 mol%), solvent (2.5 mL), 353 K, 1 h, O₂ balloon. ^{*b*} Determined by GC analysis using an internal standard technique.

9. Hammet plot

Figure 7S. Hammett plots for competitive oxidation of benzyl alcohol and *p*-substituted benzyl alcohols. $\log(k_{\rm X}/k_{\rm H})$ versus Brown-Okamoto $\sigma^{+,1}$ Reaction conditions: benzyl alcohol (0.5 mmol), *p*-substituted benzyl alcohol (0.5 mmol), Pd/NiZn(0.02) (Pd: 2 mol%), PhCF₃ (2.5 mL), 353 K, air flow (1 atm, 20 mL/min).

[1] H. C. Brown, Y. Okamoto, J. Am. Chem. Soc., 1958, 80, 4979.