Supporting information

Experimental

Synthesis of catalyst

The Pd/Al-MCM-41 catalyst was synthesized from tetraethyl orthosilicate (TEOS) (Wako), sodium aluminate (Wako) and PdCl₂ in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB, Aldrich). Molar composition of the final gel was SiO₂: x Al: 0.5 NaOH: 0.12 CTAB: 118 H₂O and x can be varied from 0.25 to 0.01. A mixture of 1.05 g of CTAB, 0.48 g of NaOH and 50.9 g of deionized water was stirred at 35 °C to make a clear solution followed by the addition of required amount of sodium aluminate. After stirring for 1 hr, 10 ml of 1 wt% Pd salt solution was added to the gel and the color turns into brownish yellow. The resulting mixture was again stirred for 1 h followed by the addition of 5g of TEOS into the solution. Stirring was continued for another 1h. Finally, the gel was transferred to Teflon-lined stainless steel autoclaves for hydrothermal treatment at 140 °C for 48 h. After crystallization for 48h, the solid product was filtered, washed with water and dried at 60 °C. Calcination of the sample was carried out at 550 °C in air for 8 h to remove the template and the catalyst was characterized by XRD, TEM etc. The analysis shows that the catalyst contains 1 wt % of Pd.

Phase behavior studies

Phase behavior of the reaction mixture is of major concern for understanding the catalytic system in scCO₂. The phase behavior of compound <u>4</u> (scheme 1b) was studied using a view cell and the details are described elsewhere (M. Chatterjee, Y. Ikushima, F. Zhao, *New J. Chem*, **2002**, *27*, 510.). In brief, the cell was placed over a magnetic stirrer for stirring the content and connected to a pressure controller to regulate the pressure inside the view cell. In addition, a temperature controller was also used to maintain the desired temperature of 80 °C. Substrate was introduced into the view cell followed by hydrogen at the constant pressure of 4 MPa while CO₂ pressure was varied in the range of 7-14 MPa and the phase behavior of substrate-H₂ –CO₂ system was monitored. Figure S2 exhibits the phase behavior of compound <u>4</u> (scheme 1b) with the variation of CO₂ pressure.

Figure S1. Effect of reaction temperature on the ring opening in scCO₂; Reaction conditions: P_{CO2} = 14 MPa, P_{H2} = 4 MPa, Time=20 h; Temp. = 80 °C; HH= half hydrogenated product; compound <u>5</u> and C8 alkane= compound <u>6</u> from scheme 1b

Figure S2

Initial biphasic system

Transition state 10-11 MPa

Single phase at 14 MPa

Figure S3

Figure S3. TEM image of the Pd/Al-MCM-41 catalyst (a) before and (b) after the reaction; (c) wide angel XRD pattern of the catalyst before (below) and after the reaction (above).

Substrate	Catalyst	Conv. (%)	HH (%)	Alkane product (%)
Imidazole	Pd/C	90.0	N.D.	-
	Pd/Al_2O_3	71.2	N.D.	-
	Pd/Al-MCM-41	94.8	N.D.	-
Thiophene	Pd/C	no reaction	-	-
	Pd/Al ₂ O ₃	no reaction	-	-
	Pd/Al-MCM-41	no reaction	-	-
	Pd/Al-MCM-41 ^a	no reaction	-	-

Table S1. Hydrogenation and dehydration/hydrogenation of N and S containing compounds in $scCO_2$

^{a)} Thiophene + Compound <u>4</u> from scheme 1b; N. D. = not detected, No reaction for thiophene carbaxaldehyde because of the catalyst poisoning, Reaction conditions: Temp.= 80 °C, P_{CO2} =14 MPa, P_{H2} = 4 MPa, Time =20h