Supplementary Information

Straightforward radical organic chemistry in neat and "on water"

Nelly Shapiro, ${ }^{\text {a }}$ Maria Kramer, ${ }^{\text {a }}$ Israel Goldberg, ${ }^{\text {a }}$ Arkadi Vigalok ${ }^{\text {a }}$ *

School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69967, Israel

Email: avigal@post.tau.ac.il

General Experimental Procedure. All reactions were performed in ultrapure water ($\Omega 18 \mathrm{MOhm}$) obtained using Barnstead EASYpure II UF water purification system. The reagents were purchased from Sigma-Aldrich and $A B C R$, and used as received. In all cases, the aldehydes were purified by distillation. The reactions were performed in test tubes using the Bradley's Carousel Workstation. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at ambient temperature in CDCl_{3} on a Bruker Avance- 400 spectrometer. The chemical shifts are reported in δ relative to external TMS. Solvent peaks (7.26ppm and 77.00 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively) were used as internal reference. CIMS measurements were recorded on a VG-Autospec M-250 instrument.

General conditions for Hydroacylations.

Mixture of the aldehyde (1.07 mmol) and phenyl vinyl sulfone ($0.178 \mathrm{mmol}, 6: 1$ ratio) was stirred with 3 ml of water for 16 hrs at $70^{\circ} \mathrm{C}$ in a 50 cc glass reactor in air. In case of perfluorooctene a mixture of the aldehyde (2.40 mmol) and olefin ($0.40 \mathrm{mmol}, 6: 1 \mathrm{ratio}$) were used for the reaction. The organic products were extracted with CDCl_{3} and the mixture analyzed by NMR spectroscopy.
Analysis of the reaction of:
1a with 2: ${ }^{1} \mathrm{H}$ NMR: $0.86\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 1.53\left(2 \mathrm{H}\right.$, quin, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.41(2 \mathrm{H}$, $\left.\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.89\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.37\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.56(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{CH}), 7.65$ $(1 \mathrm{H}, \mathrm{t}, J=7.4), 7.88(2 \mathrm{H}, \mathrm{d}, J=7.9, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR: 14.0, 22.5, 23.7, 28.9, 29.0, 31.5, 34.8, 42.8, 50.5, 127.9, 129.3, 133.9, 139.0, 206.2. $\left(\mathrm{MH}^{+}\right)$297.2, (calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}, 296.4$).

1b with 2: ${ }^{1} \mathrm{H}$ NMR: $0.86\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\right), 1.53\left(2 \mathrm{H}\right.$, quin, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.40(2 \mathrm{H}$, $\left.\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.36\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.56(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{CH}), 7.66$ $(1 \mathrm{H}, \mathrm{t}, J=7.4),, 7.89(2 \mathrm{H}, \mathrm{dd}, J=7.4,1.4,2 \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR: 13.7, 22.3, 23.3, 31.0, 34.7, 42.6, 50.4, 127.9, 129.3, 133.8, 138.9, 206.2. (MH^{+}) 269, (calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}, 268$).

1c with 2: ${ }^{1} \mathrm{H}$ NMR: $0.85\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.47\left(2 \mathrm{H}\right.$, quin, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.39(2 \mathrm{H}, \mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.86\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.36\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.55(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{CH}), 7.64(1 \mathrm{H}$, $\mathrm{t}, J=7.5), 7.87(2 \mathrm{H}, \mathrm{t}, J=7.6,2 \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR: 13.7, 22.0, 25.6, 34.8, 42.4, 50.4, 127.8, 129.3, 133.8, 138.9, 206.2. (MH^{+}) 255.1, (calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}, 254.3$).

1d with 2: ${ }^{1} \mathrm{H}$ NMR: $0.85\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53\left(2 \mathrm{H}\right.$, sext, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.37\left(2 \mathrm{H}, \mathrm{t}, J=7.4 H z, \mathrm{CH}_{2}\right)$, $2.85\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.35\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.54(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{CH}), 7.63(1 \mathrm{H}, \mathrm{t}, J=7.5), 7.87$ $(2 \mathrm{H}, \mathrm{t}, J=7.5,2 \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR: 13.5, 16.9, 34.8, 44.5, 50.4, 127.8, 129.3, 133.8, 138.8, 206.0. (MH $\left.{ }^{+}\right) 241$, (calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}, 240.3$).
1e with 2: ${ }^{1} \mathrm{H}$ NMR: $1.20-1.81(10 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{tt}, J=11.1,3.6 \mathrm{~Hz}, \mathrm{CH}), 2.94\left(2 \mathrm{H}, \mathrm{t}, J=7.8 H z, \mathrm{CH}_{2}\right), 3.37$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.57(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{CH}), 7.66(2 \mathrm{H}, \mathrm{t}, J=7.8 H z, 2 \mathrm{CH}), 7.90(1 \mathrm{H}, \mathrm{d}, J=7.8 H z, \mathrm{CH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta 25.3,25.8,28.8,33.0,50.8,50.9,128.0,129.5,134.0,139.2,209.3$. $\left(\mathrm{MH}^{+}\right) 281.1$, (calcd. for $\left.\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}, 280.4\right)$.
1f with 2: ${ }^{1} \mathrm{H}$ NMR: $0.80\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.11-1.58\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 2.39$ $(1 \mathrm{H}$, quin, $J=7.6,5.7 \mathrm{~Hz} \mathrm{CH}), 2.92\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.36\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.57(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{CH}), 7.66(1 \mathrm{H}, \mathrm{t}, J=7.6), 7.92(2 \mathrm{H}, \mathrm{d}, J=7.6,2.0 H z, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR: 11.6, 13.7, 22.6, 24.4, 29.4, 30.7, 34.1, $50.4,53.8,127.8,129.3,133.8,139.0,209.9 .\left(\mathrm{MH}^{+}\right) 297.2$, (calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}, 296.42$).
1a with 3a: ${ }^{1} \mathrm{H}$ NMR: $0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 1.59\left(2 \mathrm{H}\right.$, quin, $\left.J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.40$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.46\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.73\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (selected data): $\delta 14.0,22.6$, $23.8,25.1(\mathrm{t}, J=87 \mathrm{~Hz}), 29.1,29.2,31.7,33.1,42.9,207.3 .{ }^{19} \mathrm{~F}$ NMR: $-125.3,-122.6,-122.0,-121.0,-113.4(2 \mathrm{~F}$, quin, $\left.J=15 \mathrm{~Hz}, \mathrm{CF}_{2}\right),-79.9\left(3 \mathrm{~F}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CF}_{3}\right) .\left(\mathrm{MH}^{+}\right) 475$, (calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{13} \mathrm{O}, 474\right)$.

The reaction product has also been characterized by the single crystal X-ray analysis. CCDC-734004 contains the supplementary crystallographic data for this compound.

(a)

(b)

Molecular view (a) and crystal packing along b-axis (b) of a molecule of heptyl 2-(perfluorohexyl)ethyl ketone.

Crystal Data:

There are two independent molecules in the asymmetric unit. Chemical Formula $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{13} \mathrm{O}, M=474.31,0.3 \mathrm{x}$ $0.1 \times 0.1 \mathrm{~mm}^{3}$, colorless prisms, orthorhombic, space group $P b c a, a=20.5174(9), b=8.3935(4), c=$ $45.204(2) \AA, \alpha=90.00, \beta=90.00, \gamma=90.00^{\circ}, V=7784.7(6) \AA^{3}, Z=16, \rho_{\text {calcd. }}=1.619 \mathrm{~g} . \mathrm{cm}^{-3}, 2 \theta_{\max }=$ 25.01°, Nonius KappaCCD, MoK α radiation ($\lambda=0.71073 \AA$), graphite monochromator, $T=110(2) \mathrm{K}$, 6686 collected reflections, 4076 unique reflections ($R_{\text {int }}=0.0560$). $R 1=0.0851$, $w R 2=0.2474$ for data with $I>2 \sigma(I)$, and $R 1=0.1307, w R 2=0.2768$ for all unique data.

1b with 3a: ${ }^{1} \mathrm{H}$ NMR: $0.87\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.29\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\right), 1.60\left(2 \mathrm{H}\right.$, quin, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.37$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.44\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.70\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (selected data): $\delta 13.7,22.4$, $23.5,25.1(\mathrm{t}, J=87 \mathrm{~Hz}), 31.3,33.0,42.7,207.2 .{ }^{19} \mathrm{~F}$ NMR: $-125.8,-122.7,-122.1,-121.1,-113.5$ (2 F , quin, $J=15 \mathrm{~Hz}, \mathrm{CF}_{2}$), $-80.1\left(3 \mathrm{~F}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CF}_{3}\right) .\left(\mathrm{MH}^{+}\right) 447$, (calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{13} \mathrm{O}, 446$).
1c with 3a: ${ }^{1} \mathrm{H}$ NMR: $0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.32\left(2 \mathrm{H}\right.$, sext, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.58(2 \mathrm{H}$, quin, $J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.45\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (selected data): δ 13.7, 22.2, $25.1\left(\mathrm{t}, J=86 \mathrm{~Hz}\right.$), 25.8, 33.1, 42.6, 207.4. ${ }^{19} \mathrm{~F}$ NMR: $-126.7,-124.1,-123.4,-122.5,-114.8$ (2F, quin, $J=15 \mathrm{~Hz}, \mathrm{CF}_{2}$), $-81.5\left(3 \mathrm{~F}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CF}_{3}\right) .\left(\mathrm{MH}^{+}\right) 433$, (calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{13} \mathrm{O}, 432$).
1e with 3a: ${ }^{1} \mathrm{H}$ NMR: $1.20-1.88(10 \mathrm{H}, \mathrm{m}), 2.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (selected data): $\delta 25.2,25.7,28.6,31.2,50.9,51.1,210.5 .{ }^{19}$ F NMR: -125.3, -122.6, -122.0, -121.0, -113.4 (2F, quin, $J=15 \mathrm{~Hz}$, CF_{2}), $-79.9\left(3 \mathrm{~F}, \mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$). (MH^{+}) 459.1, (calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{13} \mathrm{O}, 458.3$).
1a with 3b: ${ }^{1} \mathrm{H}$ NMR: $0.76\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right), 1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.35\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.61\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (selected data): $\delta 13.6,31.4,32.8,42.5$, 207.0. ${ }^{19}$ F NMR: $-125.7,-122.9,-122.2,-121.2,-121.4,-113.8$ (2 F , quin, $J=15 \mathrm{~Hz}, \mathrm{CF}_{2}$), -80.5 ($3 \mathrm{~F}, \mathrm{t}, J=11 \mathrm{~Hz}$, CF_{3}).
1b with 3b: ${ }^{1} \mathrm{H}$ NMR: $0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.29\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\right), 1.60\left(2 \mathrm{H}\right.$, quin, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.36$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.46\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.72\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (selected data): $\delta 13.8,22.4$,
$23.5,25.0,31.3,33.1,42.8,207.4 .{ }^{19}$ F NMR: -125.5, $-122.8,-122.1,-121.2,-121.0,-113.6$ (2 F , quin, $J=16 \mathrm{~Hz}$, CF_{2}), $-80.3\left(3 \mathrm{~F}, \mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$). ($\left.\mathrm{MH}^{+}\right) 547.1$, (calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{17} \mathrm{O}, 546.3$).
1e with 3b: ${ }^{1} \mathrm{H}$ NMR: $1.18-1.90\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}\right), 2.40\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 2.75\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (selected data): $\delta 25.6,25.7,28.5,31.1,32.9,50.9,210.3 .{ }^{19}$ F NMR: -126.2, $-123.5,-122.8,-122.0(4 \mathrm{~F}, \mathrm{br}$ $\mathrm{s}, 2 \mathrm{CF}_{2}$), $-121.8,-114.3\left(2 \mathrm{~F}\right.$, quin, $J=14 \mathrm{~Hz}, \mathrm{CF}_{2}$), $-80.9\left(3 \mathrm{~F}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$). $\left(\mathrm{MH}^{+}\right) 559$, (calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{17} \mathrm{O}$, 558.3).

1f with 3b: ${ }^{1} \mathrm{H}$ NMR: $0.84-0.90\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{3}\right), 1.18-1.69\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 2.43\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 2.71(2 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (selected data): $\delta 11.8,13.8,22.8,24.7,29.6,31.0,32.8,54.0,211.1 .{ }^{19} \mathrm{~F}$ NMR: -$126.5,-123.9,-123.1,-122.3$ (4 F , br s, $2 \mathrm{CF}_{2}$), $-122.1,-114.7$ (2 F , quin, $J=15 \mathrm{~Hz}, \mathrm{CF}_{2}$), -81.3 ($3 \mathrm{~F}, \mathrm{t}, J=10 \mathrm{~Hz}$, CF_{3}). (MH^{+}) 575 , (calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{17} \mathrm{O}, 574.3$).
1a with 4: ${ }^{1} \mathrm{H}$ NMR: $0.88\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 1.64\left(2 \mathrm{H}\right.$, quin, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.75(2 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), $5.50(\mathrm{~m}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR (selected data): $\delta 14.0,22.3,22.5,28.829 .7,31.6,36.7,82.7$, (d quin, $J=197,25 \mathrm{~Hz}, \mathrm{CHF}), 198.0(\mathrm{t}, J=27 \mathrm{~Hz}, \mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR: -216.9 (d, $J=39$, CHF), -126.7 ($2 \mathrm{~F}, \mathrm{~m}, \mathrm{CF}_{2}$), -125.7 $(1 \mathrm{~F}, \mathrm{~d}, J=299 \mathrm{~Hz}$, $),-123.8(1 \mathrm{~F}, \mathrm{~m}),-123.5(1 \mathrm{~F}, \mathrm{~m}),-123.3\left(2 \mathrm{~F}, \mathrm{~m}, \mathrm{CF}_{2}\right),-122.6(2 \mathrm{~F}, \mathrm{~m}),-121.6(1 \mathrm{~F}, \mathrm{~d}$, $J=303 \mathrm{~Hz}$,), -121.1 (1F, dq, $J=292.6,14 \mathrm{~Hz}$,), $1117.1\left(1 \mathrm{~F}, \mathrm{~d}, J=293 \mathrm{~Hz}\right.$,), -81.3 ($3 \mathrm{~F}, \mathrm{t}, J=12 \mathrm{~Hz}, \mathrm{CF}_{3}$). (MH^{+}) 529 , (calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{16} \mathrm{O}, 528.3$).
1b with 4: ${ }^{1} \mathrm{H}$ NMR: $0.88\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2}\right), 1.65\left(2 \mathrm{H}\right.$, quin, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.74(2 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 5.49 (m, CHF). ${ }^{13} \mathrm{C}$ NMR (selected data): $\delta 13.9,22.4,23.2,31.5,36.6,82.6$, (dquin, $J=198$, $24 \mathrm{~Hz}, \mathrm{CHF}), 198.0(\mathrm{t}, J=28 \mathrm{~Hz}, \mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR: -216.5 (d, $\left.J=41, \mathrm{CHF}\right),-126.7\left(2 \mathrm{~F}, \mathrm{~m}, \mathrm{CF}_{2}\right),-125.7(1 \mathrm{~F}, \mathrm{~d}$, $J=296 \mathrm{~Hz}$,), -123.8 ($1 \mathrm{~F}, \mathrm{~m}$), -123.6 ($1 \mathrm{~F}, \mathrm{~m}$), $-123.4\left(2 \mathrm{~F}, \mathrm{~m}, \mathrm{CF}_{2}\right),-122.6(2 \mathrm{~F}, \mathrm{~m}),-121.3(1 \mathrm{~F}, \mathrm{~d}, J=298 \mathrm{~Hz}),-$ $121.1(1 \mathrm{~F}, \mathrm{dq}, J=293,13 \mathrm{~Hz}),,-117.5(1 \mathrm{~F}, \mathrm{~d}, J=293 \mathrm{~Hz}$, $),-81.8\left(3 \mathrm{~F}, \mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$.

General conditions for sulfide co-oxidation with cyclohexancarboxaldehyde.

Mixture of cyclohexancarboxaldehyde and sulfide ($0.15-0.43 \mathrm{mmol}$) in a $5: 1$ ratio was stirred under oxygen atmosphere for 1-4 hrs at RT in a 50 cc round-bottomed flask. The product ratio was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

General conditions for alkene co-oxidation with 2-ethylhexanal.

The reactions were performed in a 1 L three-necked round-bottom flask equipped with condenser and septum. To 100 mL of water at $\mathrm{pH}=1\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right), 1.8 \mathrm{~mL}(1.4 \mathrm{gram}, 11.5 \mathrm{mmol})$ of 2-ethylhexanal was added. Oxygen was passed through the mixture under vigorous stirring for 10 min and 1 gram ($1.4 \mathrm{~mL}, 8.9 \mathrm{mmol}$) of 1-octene was added. The mixture was heated to $60^{\circ} \mathrm{C}$ for 1 hr and the reminder of the aldehyde (2.9 gram, $3.7 \mathrm{~mL}, 23.7$ mmol) was slowly added over a 4 hr period. The oxygen was slowly passed above the mixture for 16 hrs . After cooling to room temperature, the organic layer was separated and the aqueous layer was extracted with diethyl ether. The aqueous phase could be recycled in octene co-oxidation. The organic extract was added to the organic layer and dried with MgSO_{4}, giving 5.3 gram of transparent oil. The ${ }^{1} \mathrm{H}$ NMR analysis of the products showed ca. 80% of 1,2 -octandiol and 20% of unreacted 1 -octene, alone with 2 -ethylhexanoic acid. The latter could be extracted by stirring the ether solution of the crude product with saturated aqueous NaHCO_{3} for 1 hr , followed by the phase separation. The aqueous phase was acidified to neutral pH giving pure 2 -ethylhexanoic acid. The ether phase contained 1,2-octandiol, 1-octene and small amounts of products of radical decomposition of 2ethylhexanal, and can be subjected to column chromatography (silica gel, 50% ethyl acetate - hexane) to give pure 1,2-octandiol.

Propene co-oxidation with 2-ethylhexanal.

In an 80 cc glass pressure vessel, 10 mL of $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{pH}=1, \mathrm{H}_{2} \mathrm{SO} 4\right)$ and $0.8 \mathrm{~mL}(5.1 \mathrm{mmol})$ of 2-ethylhexanal were added. The air was evacuated and 0.5 atm of propene was added via a vacuum line. Oxygen gas was added to the total pressure of 3 atm and the reactor was heated in an oil bath at $60^{\circ} \mathrm{C}$ for 16 hrs . The reaction mixture was cooled to room temperature, the excess pressure was released and the organic layer was carefully separated giving 0.65 gram (90%) of pure 2-ethylhexanoic acid. The aqueous layer was lyophilized to give pure 1,2propandiol ($40 \mathrm{mg}, 36 \%$ isolated yield).
When the reaction was performed in $\mathrm{D}_{2} \mathrm{O}$, only 1,2-propandiol was observed in solution by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

