Electronic Supplementary Information for

Metal-Free Tandem Reaction in Water:

An Efficient and Regioselective Synthesis of 3-Hydroxyisoindolin-1-ones

Yu Zhou, Yun Zhai, Jian Li, Deju Ye, Hualiang Jiang, and Hong Liu*

The Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China

Email: <u>hliu@mail.shcnc.ac.cn</u>.

Contents

X-ray cryst	tallographic st	ructure of com	oound 9Aa	S3

The Synthesis of Intermediate M	[1 and its applied	cation
---------------------------------	--------------------	--------

Dehydration Reaction Study for Compound 9Aa
--

Copies of ¹ H NMR a	and ¹³ C NMR	of CompoundsS	8
--------------------------------	-------------------------	---------------	---

X-ray crystallographic structure of compound 9Aa

Bond precision:		C-C = 0.0046 A		А	Wavelength=0.71073		
Cell:	a=9.2376	(10)	b=14.:	5788(16)	c=14.938	3(17)	
	alpha=66	.775(2)	beta=7	74.994(2)	gamma=7	74.785(2)	
Temperature:	293 K						
		Calculate	ed			Reported	
Volume		1756.3(3)			1756.3(3)	
Space group P - 2		P -1	2 -1			P-1	
Moiety formula C22		C22 H19	22 H19 N O2				
Sum formula		C22 H19 N O2			C22 H19 N O2		
Mr		329.38				329.38	
Dx,g cm-3		1.246				1.246	
Z		4				4	
Mu (mm-1)		0.080				0.080	
F000		696.0				696.0	
F000'		696.30					
h,k,lmax		11,17,18				11,17,18	
Nref		6535				6443	
Tmin,Tmax		0.987,0.9	994			0.767,1.000	
Tmin'		0.979					
Correction method= EMPIRICAL							
Data completeness= 0.986 Theta(max)= 25.500							
R(reflections))= 0.0516	(2759)		wR2(re	eflections)=	0.1038(6443)	
S = 0.844		Npai	r= 453				

CCDC 755262 contains the supplementary crystallographic data for this paper. These data can be also obtained free

of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General Procedure for Synthesis of Intermediate M1

To a suspension solution of 2-(phenylethynyl)benzoic acid (**7A**, 0.1 mmol) in H₂O (3 mL) were added Bu₄N⁺OAc⁻ (5 mol%). Subsequently, the reaction vial was sealed under Ar protection and the mixture was heated to 100 °C for 20 min under the participation of microwave irritation. The cold mixture was concentrated in vaccum, and the resulting residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1) to afford the expected enol lactone intermediate 3-benzylideneisobenzofuran-1(*3H*)-one (**M1**). The characterization data obtained are as follows: ¹H NMR (CDCl₃, 300 MHz) δ 7.95 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.75 (m, 2H), 7.55 (t, 1H), 7.42 (t, 2H), 7.32 (m, 1H), 6.43 (s, 1H); LRMS (EI) *m/z* 222 (M⁺). HRMS (EI) *m/z* calcd C₁₅H₁₀O₂ (M)⁺ 222.0681, found 222.0690. These spectral data are consistent with previous reports.^[S1]

Synthesis of the target product 9Aa from intermediate M1

To a suspension solution of **M1** (0.1 mmol) in H₂O (3 mL) was added Bu₄N⁺OAc⁻ (5 mol%). After the mixture was stirred at room temperature for 10 min in the presence of Ar protection, benzyl amine (**8a**, 0.2 mmol) was added. Subsequently, the resulting mixture was underwent microwave irritation at 100 °C under Ar protection for 10 min. And then, the cold mixture was concentrated in vaccum, the resulting residue was purified by flash chromatography (petroleum ether/ethyl acetate = 4/1, v/v) to afford the expected product **9Aa** with 95% yield.

References:

[S1] (a) M. Uchiyama, H. Ozawa, K. Takuma, Y. Matsumoto, M. Yonehara, K. Hiroya, T. Sakamoto, *Org. Lett.*, 2006, 8, 5517; (b) L. Zhou, H. F. Jiang, *Tetrahedron Lett.*, 2007, 48, 8449; (c) E. Marchal, P. Uriac, B. Legouin, L. Toupet, P. van de Weghe, *Tetrahedron*, 2007, 63, 9979; (d) C. Kanazawa, M. Terada, *Tetrahedron Lett.* 2007, 48, 933.

Dehydration Reaction Study for Compound 9Aa

A solution of **9Aa** (0.5 mmol) in 6N hydrochloric acid solution (2 mL) and methanol (20 mL) was stirred at room temperature for 4 h. The solvent was removed under reduced pressure, and the residue was purified by a flash chromatography (petroleum ether/ethyl acetate = 25/1, v/v, as an eluent) to product (*E*)-**11** (as major product) and (*Z*)-**11**, respectively, and the E/*Z*-isomers were determined by comparing the ¹H NMR with the reported spectrum data.^[S2]

The characterization data are as follows: (*E*)-11: ¹H NMR (CDCl₃, 300 MHz) δ 7.91 (d, *J* = 7.2 Hz, 1H), 7.32 (m, 13H), 6.47 (s, 1H), 5.14 (s, 2H); LRMS (EI) *m/z* 311 (M⁺). (*Z*)-11: ¹H NMR (CDCl₃, 300 MHz) δ 7.93 (d, *J* = 7.2 Hz, 1H), 7.74 (d, *J* = 7.5 Hz, 1H), 7.62 (t, 1H), 7.54 (t, 1H), 7.31 (m, 2H), 7.24 (m, 1H), 7.06 (m, 5H), 6.72 (s, 1H), 6.52 (d, *J* = 7.5 Hz, 2H), 4.93 (s, 2H); LRMS (EI) *m/z* 311 (M⁺).

[[]S2] (a) L. Li, M. Wang, X. Zhang, Y. Jiang, D. Ma, *Org. Lett.* 2009, 11, 1309. (b) K. Cherry, A. Duchene, J. Thibonnet, J. L. Parrain, E. Anselmi, M. Abarbri, *Synthesis*, 2009, 2, 257; (c) H. Cao, L. McNamee, H. Alper, *Org. Lett.*, 2008, 10, 5281; (d) N. G. Kundu, M. W. Khan, *Tetrahedron*, 2000, 56, 4777; (e) W. W. Khan, N. G. Kundu, *Synlett.*, 1997, 12, 1435.

Copies of ¹H NMR and ¹³C NMR of Compounds

Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

S32

Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

