This journal is (c) The Royal Society of Chemistry 2010

Supplementary data: Adsorption isotherms

Figure 1. Nitrogen adsorption isotherms and pore size distributions derived from the adsorption branch. (A): SiO₂-A; (B) SiO₂-B; (C) Al₂O₃; (D) TiO₂; (E) Al₂O₃/SiO₂; (F) WO₃; (G) WO₃/SiO₂-3 and (H) WO₄SiO₂.

ICP-AES Analysis

Performed by ALS Scandinavia AB. Webb: <u>www.alsglobal.se</u> Email: <u>info.lu@alsglobal.com</u> Phone: +46 920 28 99 00 Fax: +46 920 28 99 40 Adress: Aurorum 10, 977 75 Luleå, Sweden.

Method

This journal is (c) The Royal Society of Chemistry 2010

0.1 g was melted with 0.375 g LiBO₂ and was dissolved in HNO₃. LOI (loss of ignition) was performed at 1000°C. Analysis has been performed according to EPA-method (modified) 200.7(ICP-AES) and 200.8 (ICP-QMS).

Result

ICP-AES analysis for W in the WO₄/SiO₂ material: 9880 mg/kg.

Characterization and analysis techniques

¹H-NMR was used for quantitative analysis of the products obtained after each run. The spectra were recorded at 400 MHz using a JEOL, model Eclipse FT-NMR Oxford instrument. The olefin bond in cyclohexene at 5.60 ppm was monitored and quantified using benzene as internal standard. The α and β methylene groups in adipic acid, which appear at 2.20 ppm and 1.50 ppm, respectively were used for quantification of the yield. The two α methine groups in cyclohexanediol at 3.25 ppm were used to determine the amount of this compound in the reaction mixture. The ¹H-NMR runs were made at 25°C using either CDCl₃ or DMSO-d₆ as solvent. The concentration of added standard (benzene) was controlled by weight with an accuracy of \pm 1mg.

Determination of the specific surface area was performed on an ASAP 2010 instrument, using nitrogen adsorption and the Brunauer-Emmett-Teller (BET) method.²² The pore size distribution was calculated from the isotherms using the Barret-Joyner-Halenda (BJH) procedure.²³ All samples were dried at 225°C in a vacuum oven for approximately 3 h before measurement.

Samples for the transmission electron microscopy (TEM), run on a JEOL 1200 EX II instrument at 120 kV, were prepared by placing a drop of an ethanol dispersion of the mesoporous material onto a copper Holey grid.

Scanning electron microscopy (SEM) was performed with a LEO Ultra 55 FEG equipped with an Oxford Inca x-sight EDX system, operated at 6.0 kV with WD = 3 mm. Specimen were prepared by placing the material onto a carbon tape with a silver glue.

Small angle X-ray scattering (SAXS) was performed with a Kratky compact small angle system on a HECUS Mbraun, Graz instrument. All runs were performed under vacuum at 50 kV and 40 mA. The runs were performed with monochromatic CuK α 1 radiation using a Ni-filter. The samples were prepared by moulding the mesoporous oxide and then placing the particles in a paste holder with thin mica windows.

Low angle X-ray powder diffraction (XRD) was performed on a LynxEye AXS D8 ADVANCE $\theta/2\theta$ diffractometer, linear detector. The runs were performed at 40 kV and 40 mA, in monochromatic mode with G(111) CuK α 1 radiation (λ =1.5406 Å, step size 0.050, step time 366 s and primary slit width 0.2 mm).

X-ray photoelectron spectroscopy (XPS or ESCA) was performed on a Perkin-Elmer PHI 5000C spectrometer equipped with a pre-treatment reactor cell. The runs were performed under a base pressure in the analysis chamber of 1×10^{-8} Pa, in a monochromatic mode with MgK α radiation at 187.85 eV. A small

Supplementary Material (ESI) for Green Chemistry

This journal is (c) The Royal Society of Chemistry 2010

amount of mesoporous material was placed onto a tape with adhesives on both sides. The information depth was approximately 4-5 nm. The surface composition is given as atomic percentage of the elements.

Supplementary Material (ESI) for Green Chemistry

This journal is (c) The Royal Society of Chemistry 2010