## **Electronic Supplementary Information**

## AuPd/TiO<sub>2</sub> colloidal nanoparticle system stabilized in absence of organic ligands and its efficiency in environmentally benign aqueous oxidative catalysis

By Andrew J. Frank, Jacob Rawski, Kenneth E. Maly and Vladimir Kitaev.

| Catalyst<br>Composition                                       | Substrate        | Oxidant                       | Temp.<br>(°C) | Time<br>(hours) | %<br>Conversion | Comments                                                                       |  |  |  |
|---------------------------------------------------------------|------------------|-------------------------------|---------------|-----------------|-----------------|--------------------------------------------------------------------------------|--|--|--|
| H <sub>2</sub> O <sub>2</sub> oxidation                       |                  |                               |               |                 |                 |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | $H_2O_2$                      | 25            | 0.5             | 7.2             |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | H <sub>2</sub> O <sub>2</sub> | 50            | 0.5             | 29.8            |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | H <sub>2</sub> O <sub>2</sub> | 75            | 0.5             | 62.4            |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | H <sub>2</sub> O <sub>2</sub> | 90            | 0.5             | 97.6            |                                                                                |  |  |  |
| Air oxidation                                                 |                  |                               |               |                 |                 |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | air                           | 25            | 28              | 12.3            | 7:1 TiO <sub>2</sub> to Au <sub>70</sub> Pd <sub>30</sub>                      |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | air                           | 50            | 20              | 41.4            | 7:1 TiO <sub>2</sub> to Au <sub>70</sub> Pd <sub>30</sub>                      |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | air                           | 50            | 20              | 63.1            | 9:1 TiO <sub>2</sub> to Au <sub>70</sub> Pd <sub>30</sub>                      |  |  |  |
| Basic condition                                               | Basic conditions |                               |               |                 |                 |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | H <sub>2</sub> O <sub>2</sub> | 50            | 0.5             | 9.4             | pH 5.6 (KOH addition)                                                          |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | air                           | 50            | 16              | 15.7            | pH 5.6 (KOH addition)                                                          |  |  |  |
| <i>t</i> -butanol addition for increased substrate solubility |                  |                               |               |                 |                 |                                                                                |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub>                             | 1-phenylethanol  | H <sub>2</sub> O <sub>2</sub> | 50            | 0.5             | 19.6            | <i>t</i> -butanol added to reaction to help with solubility of 1-phenylethanol |  |  |  |
| Core vs. shell                                                |                  |                               |               |                 |                 |                                                                                |  |  |  |
| Au <sub>80</sub> Pd <sub>20</sub>                             | 1-phenylethanol  | H <sub>2</sub> O <sub>2</sub> | 50            | 0.5             | 23.1            | Au and Pd premixed (alloy instead of core/shell arrangement)                   |  |  |  |

Table S1. Results of catalytic aqueous oxidation under different conditions.

| Au <sub>80</sub> Pd <sub>20</sub> | 1-phenylethanol           | $H_2O_2$                      | 50 | 0.5   | 5.9  | Pd core, Au shell                                                                                               |  |  |  |
|-----------------------------------|---------------------------|-------------------------------|----|-------|------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| Au <sub>80</sub> Pd <sub>20</sub> | 1-phenylethanol           | $H_2O_2$                      | 50 | 0.5   | 29.5 | Au core, Pd shell                                                                                               |  |  |  |
| Other substrates                  |                           |                               |    |       |      |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 2-butanol                 | $H_2O_2$                      | 50 | 22    | 0.7  |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-octanol                 | $H_2O_2$                      | 50 | 22    | 0    |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 2-octanol                 | $H_2O_2$                      | 50 | 112.5 | 15.2 |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | benzyl alcohol            | $H_2O_2$                      | 50 | 0.5   | 3.3  | 1.3% benzoic acid also observed                                                                                 |  |  |  |
| AuPd decabedral cages             |                           |                               |    |       |      |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol           | $H_2O_2$                      | 50 | 0.5   | 2.6  |                                                                                                                 |  |  |  |
| Platinum shel                     | Platinum shell, gold core |                               |    |       |      |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pt <sub>30</sub> | 1-phenylethanol           | $H_2O_2$                      | 50 | 0.5   | 3.1  |                                                                                                                 |  |  |  |
|                                   |                           |                               |    |       |      |                                                                                                                 |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol           | H <sub>2</sub> O <sub>2</sub> | rt | 0.75  | 3.1  | exposed to a 400 W metal halide lamp, 5 cm distance                                                             |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol           | H <sub>2</sub> O <sub>2</sub> | rt | 0.75  | 2.9  | dark reaction - same conditions<br>as listed above, but wrapped in<br>Al-foil to exclude light                  |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol           | $H_2O_2$                      | rt | 24    | 76.5 | supported on $\beta$ -FeOOH (instead of TiO <sub>2</sub> ), exposed to a 400 W metal halide lamp, 5 cm distance |  |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol           | $H_2O_2$                      | rt | 24    | 13.3 | supported on TiO <sub>2</sub> , exposed to a 400 W metal halide lamp, 5 cm distance                             |  |  |  |
| no AuPd NPs                       | 1-phenylethanol           | $H_2O_2$                      | rt | 24    | 3.5  | $TiO_2$ only, exposed to a 400 W metal halide lamp, 5 cm distance                                               |  |  |  |
| $Au_{70}Pd_{30}$                  | 1-phenylethanol           | $H_2O_2$                      | rt | 20    | 52.9 | exposed to a 400 W metal halide lamp, 5 cm distance                                                             |  |  |  |
| $Au_{70}Pd_{30}$                  | 1-phenylethanol           | air                           | rt | 20    | 15.9 | exposed to a 400 W metal halide lamp, 5 cm distance                                                             |  |  |  |

| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol | air      | rt | 20   | 10   | dark reaction - same conditions<br>as listed above, but wrapped in<br>Al-foil to exclude light     |  |  |
|-----------------------------------|-----------------|----------|----|------|------|----------------------------------------------------------------------------------------------------|--|--|
| Hydrazine reduction               |                 |          |    |      |      |                                                                                                    |  |  |
| $Au_{70}Pd_{30}$                  | 1-phenylethanol | $H_2O_2$ | 50 | 1.75 | 4.4  | $N_2H_4$ reduced $Au_{70}Pd_{30}$ NPs, not<br>supported (TiO <sub>2</sub> leads to<br>aggregation) |  |  |
| Colloidal vs. dried and sintered  |                 |          |    |      |      |                                                                                                    |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol | $H_2O_2$ | 30 | 0.5  | 14.8 | As prepared colloidal dispersion                                                                   |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol | $H_2O_2$ | 30 | 0.5  | 2.9  | dried and redispersed (no $TiO_2$ )                                                                |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol | $H_2O_2$ | 30 | 0.5  | 2.7  | dried and redispersed (on TiO <sub>2</sub> )                                                       |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol | $H_2O_2$ | 30 | 0.5  | 2.3  | dried, sintered and redispersed (no $TiO_2$ )                                                      |  |  |
| Au <sub>70</sub> Pd <sub>30</sub> | 1-phenylethanol | $H_2O_2$ | 30 | 0.5  | 2.8  | dried, sintered and redispersed (on TiO <sub>2</sub> )                                             |  |  |

| % Pd | % Au | Temp.<br>(°C) | Time<br>(hours) | % 1-Phenylethanol | % Acetophenone | % Ethylbenzene |
|------|------|---------------|-----------------|-------------------|----------------|----------------|
| 0    | 100  | 90            | 2               | 57.3              | 42.7           | 0              |
| 20   | 80   | 90            | 2               | 1.4               | 98.6           | 0              |
| 40   | 60   | 90            | 2               | 10.8              | 88.5           | 0.7            |
| 60   | 40   | 90            | 2               | 43.8              | 48.8           | 7.4            |
| 80   | 20   | 90            | 2               | 41.7              | 42.5           | 15.8           |
| 100  | 0    | 90            | 2               | 24                | 36.9           | 39.1           |
|      |      |               |                 |                   |                |                |
| 21   | 79   | 90            | 16              | 51.3              | 38.7           | 10             |
| 21   | 79   | 90            | 28.5            | 58.9              | 34.6           | 6.5            |
| 21   | 79   | 90            | 75.5            | 10.2              | 84.6           | 5.2            |
|      |      |               |                 |                   |                |                |
| 21   | 79   | 50            | 16              | 75.8              | 22.2           | 2              |
| 21   | 79   | 50            | 29              | 61.4              | 32.8           | 5.8            |
| 21   | 79   | 50            | 76              | 55.6              | 39.7           | 4.7            |

Table S2. Products of 1-phenylethanol oxidation by hydrogen peroxide catalyzed with  $AuPd/TiO_2$ .

At higher palladium content and temperatures, a side reaction for the formation of ethylbenzene was observed. For oxidative catalyst with 30% Pd content, this side reaction was not observed.



**Figure S1.** SEM image of hydrazine reduced Au NPs, not supported on  $TiO_2$ .  $TiO_2$  addition was found to lead to aggregation. Hydrazine reduced Au NPs were found to have low catalytic activity, yielding only 4.4 % conversion of 1-phenylethanol to acetophenone at 50°C in 1.75 hours in the presence of  $H_2O_2$ .



**Figure S2.** (a) X-ray diffraction (XRD) pattern of titania dried at 100°C. Evidence of anatase and rutile (dashed lines) can be seen.

XRD (b) pattern of Au<sub>70</sub>Pd<sub>30</sub>/TiO<sub>2</sub> dried at 50-60°C and 10 torr, then sintered at 25°C for 30 minutes, 180°C, 350°C then 25°C for 1 hour each. Evidence of anatase (upper dashed line) and gold (lower dashed line) can be seen. No rutile palladium or was This illustrates that observed. the AuPd NP lattice is similar to that of pure gold, which indicates that there is a gold core, with a thin, palladium shell not producing enough XRD signal (Note that Pd is evident from EDX (Fig. S5).

(c) XRD pattern of Au/TiO<sub>2</sub> dried at 50-60°C and 10 torr. Evidence of Au NPs (dashed line) is evident. The TiO<sub>2</sub> in this sample is amorphous.



**Figure S3.** UV-Vis spectra of TiO<sub>2</sub> (red plot) and Au<sub>70</sub>Pd<sub>30</sub>/TiO<sub>2</sub> (blue plot) after the addition of  $H_2O_2$ . There is no strong evidence of a peak at 330 nm. A  $H_2O_2$  solution was used as the reference sample.



**Figure S4.** TEM of Au<sub>70</sub>Pd<sub>30</sub>/TiO<sub>2</sub> (a) before and (b) after being used for catalysis of 1phenylethanol to acetophenone at 50°C for 30 minutes in the presence of H<sub>2</sub>O<sub>2</sub>. The average size of the AuPd NPs were  $7.5 \pm 1.5$  nm before, and  $7.7 \pm 1.4$  nm after catalysis.



**Figure S5.** Energy-dispersive X-ray (EDX) map of  $Au_{70}Pd_{30}/TiO_2$ . In addition to confirmed presence of gold and palladium in the NPs, it can be seen that no carbon was evident in the samples exposed to peroxide, indicating complete hydrolysis and supporting all-inorganic stabilization.



**Figure S6.** Plot of percentage conversion of 1-phenylethanol to acetophenone versus the ratio of  $H_2O_2$  to 1-phenylethanol for catalysis with the Au<sub>70</sub>Pd<sub>30</sub>/TiO<sub>2</sub> system at 50°C for 1 hour. The minimal ratio of  $H_2O_2$  to 1-phenylethanol for optimal conversion was found to be 6:1.



**Figure S7.** Normalised conversion of 1-phenylethanol to acetophenone at 50°C for 30 minutes in the presence of  $H_2O_2$  versus the ratio of additional borate added to AuPd NPs.



**Figure S8.** Different loading of  $Au_{70}Pd_{30}$  NPs on TiO<sub>2</sub> for the conversion of 1-phenylethanol to acetophenone at 50°C for 30 minutes in the presence of H<sub>2</sub>O<sub>2</sub>.