ESI for

A simple and efficient protocol for the palladium-catalyzed

ligand-free Suzuki reaction at room temperature in aqueous DMF

Chun Liu,* Qijian Ni, Fanying Bao and Jieshan Qiu State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2, Dalian 116024, P R China, Fax: (+)86-411-84986182; email: <u>chunliu70@yahoo.com</u>

Contents

Materials, Methods and Experimental Procedures	S 1
Control Experiments in Different Conditions	S1-S2
Characterization Data	S2-S5
¹ H NMR Spectra for all Cross-Coupling Products	S6-S20

Materials and Methods

Unless stated otherwise, all the reactions were carried out under air. All aryl halides and arylboronic acids were purchased from Alfa Aesar, Avocado. All other chemicals were purchased from commercial sources and used without further purification. NMR spectra were recorded on a Varian Inova 400 spectrometer. Chemical shifts are reported in ppm relative to TMS. All products were isolated by short chromatography on a silica gel (200~300 mesh) column using petroleum ether (60~90 °C), unless otherwise noted.

Experimental Procedure

A mixture of aryl bromide (0.5 mmol), arylboronic acid (0.75 mmol), $PdCl_2$ (0.0025 mmol, 0.44 mg), K_2CO_3 (1 mmol), distilled water (2 mL) and DMF (2 mL) was stirred at room temperature under air for the indicated time. The mixture was added to brine (15 mL) and extracted four times with diethyl ether (4×15 mL). The solvent was concentrated under vacuum and the product was isolated by short chromatography on a silica gel (200~300 mesh) column.

Control Experiments in Different Conditions

The Suzuki Reaction of N-Heteroaryl Halides with Arylboronic Acids: PdCl₂ (0.0075 mmol, 1.32 mg), K₃PO₄·7H₂O (1 mmol) were used instead of PdCl₂ (0.0025 mmol, 0.44 mg), K₂CO₃ (1 mmol) in the above procedure.

Suzuki reaction performed in nitrogen:

Both the solid materials such as aryl halides, arylboronic acids, base and catalyst and solvent (DMF and water) were all degassed for three times. And then the mixture of them was stirred at 25 °C for indicated time. The mixture was added to brine (15 mL)

and extracted four times with diethyl ether ($4 \times 15 \text{ mL}$). The solvent was concentrated under vacuum and the product was isolated by short chromatography on a silica gel ($200 \sim 300 \text{ mesh}$) column.

Characterization Data

4-methoxybiphenyl¹ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.54 (t, *J* = 8.0 Hz, 4H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H), ppm.

4-methylbiphenyl²

¹H NMR (400 MHz, CDCl₃, TMS): δ 7.58 (d, J = 7.6 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 7.2 Hz, 2H), 7.33 (t, J = 6.8 Hz, 1H), 7.25 (t, J = 3.2 Hz, 2H), 2.41 (s, 3H), ppm.

4-phenylbenzonitrile²

¹H NMR (400 MHz, CDCl₃, TMS): δ 7.00 (m, 4H), 7.59 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.2Hz, 2H), 7.45 (t, J = 9.2 Hz, 1H), ppm.

4-acetylbiphenyl^{3,4}

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.04 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 7.2 Hz, 1H), 2.62 (s, 3H), ppm.

4-methoxyl-4'-methylbiphenyl⁵

¹H NMR (400 MHz, CDCl₃, TMS): δ 7.48 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 2.36 (s, 3H), ppm.

4-methoxyl-3'-methylbiphenyl⁶ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.52 (d, J = 9.2 Hz, 2H), 7.33 (m, 3H), 7.12 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.41 (s, 3H), ppm.

4,4'-dimethoxylbiphenyl⁷ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.48 (d, J = 8.8 Hz, 4H), 6.96 (d, J = 8.8 Hz, 4H), 3.85 (s, 6H), ppm.

4-cyano-4'-methoxybiphenyl⁴ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.67 (m, J = 6.0 Hz, 4H), 7.54 (d, J = 8.8 Hz,

2H), 7.01 (d, *J* = 8.8 Hz, 2H), 3.75 (s, 3H), ppm.

4-methoxyl-4'-fluorobiphenyl⁵ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.50 (m, 4H), 7.10 (t, *J* = 8.8 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), ppm. 4-acetyl-4'-fluorobiphenyl⁸

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.03 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 2.0 Hz, 2H), 7.59 (m, J = 3.2 Hz, 2H), 7.16 (t, J = 6.0 Hz, 2H), 2.54 (s, 3H), ppm.

4'-methoxy-4-biphenylaldehyde⁵

¹H NMR (400 MHz, CDCl₃, TMS): δ 10.05 (s, 1H), 7.95 (d, *J* =8.0 Hz, 2H), 7.70 (d, *J* =8.0 Hz, 2H), 7.60 (d, *J* =8.8 Hz, 2H), 7.0 (d, *J* =8.8 Hz, 2H), 3.85 (s, 3H), ppm.

2-methylbiphenyl⁹

¹H NMR (400 MHz, CDCl₃, TMS): *δ* 7.39-7.46 (m, 2H), 7.31-7.35 (m, 3H), 7.24-7.26 (m, 4H), 2.25 (s, 3H), ppm.

2-methoxylbiphenyl² ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.60-6.95 (m, 9H), 3.81 (s, 3H), ppm.

2-phenylbenzonitrile⁶ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.75 (d, *J* = 6.8 Hz, 1H), 7.63 (t, *J* = 8.4 Hz, 1H), 7.40 - 7.55 (m, 7H), ppm.

2-cyano-4'-methylbiphenyl³

¹H NMR (400 MHz, CDCl₃, TMS): δ 7.74 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H), ppm.

4-methoxyl-2'-methylbiphenyl⁶ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.19 - 7.23 (m, 6H), 6.92 (d, *J* = 8.4 Hz, 2H), 3.80 (s, 3H), 2.26 (s, 3H), ppm.

2,4'-dimethoxybiphenyl⁵ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.47 (d, *J* = 9.2 Hz, 2H), 7.29 (t, *J* = 3.2 Hz, 2H), 6.93 - 7.03 (m, 4H), 3.84 (s, 3H), 3.81 (s, 3H), ppm.

2,2'-dimethoxybiphenyl⁷ ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.24-7.33 (m, 4H), 7.00 (m, 2H), 3.75 (s, 6H), ppm.

2-phenylpyridine¹⁰

¹H NMR (400 MHz, CDCl₃, TMS): *δ* 8.70 (d, *J* = 4.4 Hz, 1H), 7.99 (d, *J* = 7.2 Hz, 2H), 7.75 (m, 2H), 7.49-7.39 (m, 3H), 7.25 - 7.21 (m, 1H), ppm.

2-p-tolylpyridine¹⁰

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.66 (d, *J* = 4.8 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.72 - 7.68 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.21 - 7.18 (m, 1H), 2.41 (s, 3H),

ppm.

2-(4-methoxyphenyl)pyridine¹⁰

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.66 (d, J = 4.4 Hz, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.65 - 7.73 (m, 2H), 7.17 (t, J = 6.0 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), ppm.

2-(4-fluorophenyl)pyridine¹⁰

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.66 (d, J = 4.8 Hz, 1H), 7.94 - 7.98 (m, 2H), 7.65 - 7.75 (m, 2H), 7.12 - 7.25 (m, 3H), ppm.

2-methoxyl-5-phenylpyridine¹¹

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.39 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.53 - 7.51 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 3.98 (s, 3H), ppm.

2-methoxy-5-p-tolyl-pyridine

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.36 (d, J = 2.4 Hz, 1H), 7.28 (dd, 1H), 7.39 (d, J = 8.0 Hz, 2H), 6.96 (t, J = 4.0 Hz, 2H), 6.78 (d, J = 8.8 Hz, 1H), 3.96 (s, 3H), 2.96 (s, 3H), ppm; ¹³C NMR δ 163.5, 144.8, 137.4, 137.2, 135.0, 130.1, 129.7, 126.6.1, 110.8, 53.6, 21.2, ppm.

2-methoxyl-5-(4-fluorophenyl)pyridine

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.33 (d, J = 2.4 Hz, 1H), 7.74 (dd, J = 8.4, 2.4 Hz, 1H), 7.49 - 7.45 (m, 2H), 7.15 - 7.11 (m, 2H), 6.81 (d, J = 8.4, 1H), 3.98 (s, 3H), ppm; ¹³C NMR δ 163.6 (d, J = 8.0 Hz), 161.2, 144.8, 137.4, 134.1 (d, J = 3.0 Hz), 129.2, 128.3 (d, J = 8.0 Hz), 115.9 (d, J = 22.0 Hz), 110.9, 53.57, ppm; MS (EI) m/z 203 (M⁺, 100%): 204, 175, 172, 146, 133, 132, 107, 83, 63. Melting Point: 75 °C.

2-methoxyl-5-(2-methyl phenyl)pyridine

¹H NMR (400 MHz, CDCl₃, TMS): δ 8.13 (d, J = 2.8 Hz, 1H), 7.54 (dd, J = 8.8, 2.4 Hz, 1H), 7.28 - 7.19 (m, 4H), 6.79 (d, J = 8.4, 1H), 3.98 (s, 3H), 2.27 (s, 3H), ppm; 13C NMR δ 163.3, 146.7, 139.7, 138.3, 135.9, 130.7, 130.6, 130.1, 127.8, 126.2, 110.3, 53.6, 20.6, ppm; MS (EI) m/z 199 (M⁺, 100%): 200, 198, 170, 169, 167, 154, 141, 128, 127, 115, 102, 89, 77, 63, 48, 39.

2-phenylpyrazine¹⁰

¹H NMR (400 MHz, CDCl₃, TMS): δ 9.03 (s, 1H), 8.64 (s, 1H), 8.52 (d, *J* =2.4 Hz, 1H), 8.03 (d, *J* =7.6 Hz, 2H), 7.54 (m, 3H), ppm.

2-(4-methyl phenyl) pyrazine¹⁰

¹H NMR (400 MHz, CDCl₃, TMS): δ 9.01 (s, 1H), 8.61 (s, 1H), 8.48 (d, J = 2.4 Hz,

1H), 7.93 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H), ppm.

Reference

- (1) C. Deng, S. Guo, Y. Xie and J. Li, Eur. J. Org. Chem., 2007, 1457.
- (2) D. Saha, K. Chattopadhyay and B. Ranu, Tetrahedron Lett., 2009, 50, 1003.
- (3) A. Indolese, Tetrahedron Lett., 1997, 38, 3513.
- (4) Z. Weng, L. Koh and T. Hor, J. Organomet. Chem., 2004, 689, 18.

(5) Y. Kitamura, A. Sakurai, T. Udzu, T. Maegawa, Y. Monguchi and H. Sajiki, *Tetrahedron*, 2007, **63**, 10596.

- (6) L. Ackermann, C. Gschrei, A. Althammer and M. Riederer, Chem. Commun., 2006, 1419.
- (7) V. Courtois, R. Barhdadi, M. Troupel and J. Périchon, Tetrahedron, 1997, 53, 11569.
- (8) N. Bumagin and V. Bykov, Tetrahedron, 1997, 53, 14437.
- (9) T. Mino, Y. Shirae, M. Sakamoto and T. Fujita, J. Org. Chem., 2005, 70, 2191.
- (10) C. Liu and W. Yang, Chem. Commun., 2009, 6267.
- (11) J. Li, Q. Zhu and Y. Xie, Tetrahedron, 2006, 62, 10888.

