Supporting Information to

Cyclopentadienyl and Pentamethylcyclopentadienyl Ruthenium Complexes as Catalysts for the Total Deoxygenation of 1,2-Hexanediol and Glycerol

Michelle E. Thibault,^a Domenico V. DiMondo,^a Michael Jennings^b, Patrícia Verardi Abdelnur,^c Marcos N. Eberlin^c and Marcel Schlaf^{a*}

^aThe Guelph-Waterloo Centre for Graduate Work in Chemistry (GWC)² Department of Chemistry, University of Guelph Guelph, Ontario, Canada N1G 2W1 mschlaf@uoguelph.ca

^b185 Chelsea Avenue London, ON, N6J 3J5 mjennings@teksavvy.com

^cLaboratório ThoMSon de Espectrometria de Massas Instituto de Química Universidade Estadual de Campinas 13083-970 Campinas, SP Brazil eberlin@iqm.unicamp.br

S2-S7: Details of the catalytic deoxygenation reactions of the 1,2-hexanediol model system.

S8 – S19 Compound Data Sheets and images of NMR spectra for catalysts 1-3.

S20: Images of the liquid/liquid extractor used in the optimized synthesis of [(cp)Ru(CH₃CN)₃](OTf):

S21: Experimental Conditions for single crystal X-ray analysis of 3.

S22: CIF file of **3**

S33: References

Details of the catalytic deoxygenation reactions of the 1,2-hexanediol model system.

Table S1 shows the product distribution for catalysts 1-3 after 24 h across the temperature range 125–225 °C in the presence of HOTf as the co-catalyst and in sulfolane solvent.

In general, the yield of 1-hexanol was < 20% and the yield of hexane traceable by GC in the sulfolane was less than 5%, except for catalyst 3. While the yields of 1-hexanol with 3 were comparable to those obtained with 1 and 2, at higher temperatures substantial amounts of hexane were formed by this catalyst. Furthermore, after 24 h at T \geq 150 °C two layers were noticed in the reactor upon cooling. GC/GC-MS and ¹³C NMR spectroscopy of the top layer identified it as hexane. As hexane has a limited solubility in sulfolane, the amount of hexane quantified by GC (max. ~ 17 % yield) reflects its solubility limit in sulfolane, not its actual yield. Thus, 3 is much more active than it appears from the quantitative GC analysis of the sulfolane layer alone. We previously observed the same behaviour and phase separation with [Ru(H₂O)₃(4'-phenyl-2,2':6',2"terpyridine)](OTf)₂ as the catalysts under similar conditions.¹ Due to the overall small amounts involved and its volatility,² a quantification of the hexane separated from the sulfolane is not meaningful. Tracking the conversion of the primary substrate 1,2hexanediol and the secondary substrate 1-hexanol allows the indirect establishment of the mass balance and therefore an assessment of the true catalyst activity. The increased production of 1-hexanol and its subsequent dehydration to hexene and hydrogenation to hexane observed with 3 suggests that the absence of the bulky methyl groups does in fact result in a more active catalyst compared to the cp^{*} complexes 1 and 2.

For all catalysts complete conversion of 1,2-hexanediol was seen at temperatures above 150 °C after 1 h. Other products detected by GC/GC-MS over the course of the reactions were hexanal, *cis/trans*-2-pentyl-4-butyl-1,3-dioxolane, traces of hexanoic acid, di-*n*-hexyl ether, 2,5(6)-dibutyl-1,4-dioxane, hexyl hexanoate, and 1,1'-oxy(dihexanol) (or the 1,2' or 2,2' isomer) in varying amounts. The amount of the condensation products hexanal and 1,3-dioxolane was often fairly high in the initial samples (about 25%), but decreases or disappears altogether over the course of the reaction. The other products were generally present in < 5% yield total. However, the sum of the products does not come close to equalling the mass balance. We hypothesize that in cases when no hexane layer was observed (i.e., with catalysts **1** and **2**), higher condensates or oligomers are forming under the acidic conditions, and these are not volatile enough for GC analysis, while at the same time being very difficult to isolate and quantify from the sulfolane solution.

Table S1: Deoxygenation of 1,2-Hexanediol by $[cp*Ru(OH_2)(bipy)](OTf)$ (1), $[cp*Ru(OH_2)(phen)](OTf)$ (2), and $[cpRu(CH_3CN)(bipy)](OTf)$ (3) as a function of temperature.^a

Catalyst		1	2	3
T [°C]	Recovery/Yield of Identified Products^b	[%]	[%]	[%]
125	125 1,2-hexanediol		42	n/d
	1-hexanol	0	0	n/d
	hexane	0	0	n/d
150	1,2-hexanediol	0	0	0
	1-hexanol	7	16	17
	hexane	0	1	$7^{\rm c}$
175	1,2-hexanediol	0	0	0
	1-hexanol	6	12	2
	hexane	0	1	3 ^c
200	1,2-hexanediol	0	0	0
	1-hexanol	3	0	3
	hexane	0	3	$4^{\rm c}$
225	1,2-hexanediol	0	n/d	0
	1-hexanol	0	n/d	0
	hexane	2	n/d	17 ^c

^aReaction conditions: 500 mmol/L substrate in sulfolane, 100 mmol/L dimethylsulfone as internal standard, 0.5 mol % catalyst, 4 equivalents of HOTf with respect to Ru (10 mmol/L), 4.83 MPa of $H_{2 (g)}$ (cold), 24 h. ^bBy quant. GC and GC-MS. ^cHexane content of the sulfolane phase; a hexane layer separates from the sulfolane solution.

Figure S1 shows a representative time/temperature profile using catalyst 1. At high enough temperatures the yield of 1-hexanol shortly reaches a maximum albeit at still low overall yields < 10 %), and then begins to decrease as it forms small amounts of hexene, hexane and dihexyl ether. Very similar 1-hexanol time-concentration profiles are obtained with catalysts 2 and 3. Moreover, the catalysts are stable to at least 200 °C with no sign of decomposition. This was confirmed by an experiment in which 1,2-hexanediol was hydrogenated at 225 °C using 1. After 24 h, the reaction solution was recharged with the same amount of substrate, the reactor re-pressurized, and the mixture hydrogenated for another 24 h. The catalyst was still active and after a total of 48 h reaction time, substantial amounts of hexane and hexenes (by GC/GC-MS) were observed floating on top of the sulfolane upon completion of this particular experiment, indicating that with longer reaction times and higher temperatures 1 also is capable of totally deoxygenating the substrate, but the fact that hexenes were present in the product layer suggest a lower activity of 1 and 2 vs 3 as a function of steric bulk of the cp^* vs the cp ligand. Also this experiment suggests that the higher condensates or oligomers formed in this reaction and that must be present in the reused solution (as discussed above) do eventually react to fully deoxygenated products. Reuse of a solution of catalyst 3 also gives complete conversion of 1,2-hexanediol to hexane with phase separation as in the first run with no visually apparent decomposition of the clear red catalyst solution.

Figure S1: Time/Temperature Profile of 1,2-Hexanediol Deoxygenation to 1-hexanol Using Catalyst **1**.

To probe the possible effects of different acid and water concentrations on the dehydration and condensation equilibria preceding the hydrogenations themselves and therefore the selectivity of the reaction overall, the acid- and water-concentrations in the reactions were systematically varied using a 24-well parallel reactor $(24 \times 2 \text{ mL glass test tubes})$ with both [cp*Ru(N–N)](OTf) catalysts (1 and 2). Reaction conditions were [1,2-hexanediol] = 500 mmol/L, 6.89 MPa H₂ (cold), 0.5 mol % catalyst, [dimethyl sulfone] = 100 mmol/L (internal GC standard), in sulfolane. The concentration of water ranged from 0 to 20 v/v %, while the amount of acid added was between 4 and 16 equivalents with respect to catalyst (10 – 40 mmol/L). This allowed for an array of 20 samples, each with a different acid and water content, and 4 blanks containing only 100 mmol/L dimethyl sulfone in sulfolane. Figures S2 and S3, respectively, summarize the results at 150 °C after 24 h and 2 h for catalyst 1.

No clear trend in the yield of 1-hexanol across increasing acid or water concentrations or ideal combination of acid and H₂O for the maximization of the 1-hexanol yield emerges from the reaction carried out at 150 °C for 24 h. With 20 % H₂O, 5–50 % of the 1,2-hexanediol was still present, as well as 5–10 % of *cis/trans*-2-pentyl-4-butyl-1,3-dioxolane. Small quantities of hexanol and hexanoic acid were observed in some of the other samples, but in general, the bulk of the 1,2-hexanediol was unaccounted for, i.e., as with the 1,2-hexanediol temperature profiles the mass balances by GC are incomplete due to the formation of non-volatile oligomers with these catalysts at this temperature.

Figure S2: 1,2-Hexanediol Acid/Water Series, Catalyst 1, 150 °C, 24 h

When the hydrogenation was stopped after 2 h instead of 24 h, a different pattern emerged. The highest yields of 1-hexanol were at lower water concentrations, though again there was not a clear trend. Little, if any, diol remained at 0-5 % H₂O, though some hexanal and traces of hexanoic acid were present. Only a trace of 1-hexanol formed with 15–20 % H₂O, but the mass balance was good at higher water concentrations, consisting of varying amounts of 1,2-hexanediol, hexanal, and 2-pentyl-4-butyl-1,3-dioxolane.

Figure S3: 1,2-Hexanediol Acid/Water Series, Catalyst 1, 150 °C, 2 h

Upon increasing the temperature to 175 °C for 24 h, formation of non-volatile condensation products is the dominant reaction, though there is some 1-hexanol formation with 20 % H₂O. After 24 h at 200 °C, no volatile products were observed. Acid/H₂O parallel experiments were also conducted using **2** at 175 °C for 2 and 24 h, but the results were not significantly different from those obtained with **1**. In general, the

parallel acid/H₂O experiments indicated that a high water content is necessary to reduce the degree of condensation reactions. At higher temperatures, these reactions dominate to the extent that either the desired product (hexanol, in this case) does not form, or it is consumed over 24 h. This is particularly apparent when comparing results after 2 h with those after 24 h. As noted above under more forcing conditions catalyst **1** also produces hexene and hexane, the presence of which could however not be proven when using parallel reactor due to the small reaction volume (< 1.5 mL in each well). As we did not anticipate better selectivities to 1-hexanol with catalyst **3** (it generates a hexane layer even at T = 150 °C; see Table 1), an acid/water concentration study was not carried out with this system.

1,2-Hexanediol Hydrogenation in MeOH

Common to all of the hexanediol hydrogenation experiments was the complete lack of a mass balance. Generally less than 25% of the products could be quantified; the remainder was either not volatile enough to be analyzed by GC or was present as a hexane layer phase separated from the aqueous sulfolane reaction solution and hence also not reliably quantifiable. In an attempt to obtain better mass balances, a hydrogenation experiment using **1** as the catalyst was performed in a 50 mL minireactor using MeOH as the solvent instead of sulfolane. Under these conditions 1,2-hexanediol or its derivatives were anticipated to preferentially form methyl ethers, dimethyl acetals or ketals, which should be volatile enough to analyze by GC and GC-MS, rather than non-volatile self-condensation products.

Table S2 summarizes the results of the MeOH experiment. Approximately 50% of the substrate was consumed as methyl ethers, lending support to the hypothesis that 1,2-hexanediol can dimerize or oligomerize to non-volatile products. In addition, two layers were observed after hydrogenation. ¹H NMR spectroscopy and GC-MS analysis of the top layer indicated that it was a mixture of one or more of dihexyl ether, methoxyhexanes, 1-hexanol, and hexane, while the bottom layer was aqueous MeOH.

Table S2: Product Distribution from Hydrogenation of 1,2-Hexanediol in MeOH Using Catalyst **1**.^a

Compound ^b	Yield
	[%]
1,2-Hexanediol	2
Hexenes	< 1
OMe-hexanes	22
3-Hexanone	1
2-Hexanone	< 1
Hexanal	< 1
1-Hexanol	34
1,1-(OMe) ₂ -hexane	< 1
1,2-(OMe) ₂ -hexane	9
1-OMe-2-hexanol	12
2-OMe-1-hexanol	7
Dihexyl ether	< 1
2-Pentyl-4-butyl-1,3-	0
dioxolane	
2-Butyl-2-octenal	< 1
Product Loss (%)	2

^aConditions: $[1,2-\text{Hexanediol}] = 500 \text{ mmol/L}, 200 \text{ °C}, 4.83 \text{ MPa H}_2 \text{ (cold)}, 8 \text{ HOTf} with respect to [Ru], 0.5 mol% [cp*Ru(OH_2)(bipy)](OTf) (1), [dimethyl sulfone] = 100 mmol/L ISTD, in MeOH, 12 h. ^b Identified by GC-MS against authentic samples or by database match of fragmentation pattern.$

Conclusions from the Deoxygenation Reactions of 1,2-Hexanediol

With catalyst 1 and 2 condensation reactions dominate at reaction temperatures greater than 150 °C and reaction times ≤ 24 h. The addition of water alleviates this problem to a certain extent, but also results in decreased catalytic activity. Either the increased water content inhibits displacement of the aqua ligand by dihydrogen, or more likely the high water content pushes the dehydration equilibrium between 1,2-hexanediol and hexanal towards the former. In contrast, under the same conditions the more active and promiscuous catalyst 3 completely deoxygenates 1,2-hexanediol to hexane in ≤ 24 h, which appears as a separate product layer, indicating that for this catalyst hydrogenation of the reactive intermediates hexanal and hexene competes effectively with reactions leading to oligomeric non-volatile products.

CompoundName:ruthenium(II)triflate (1)

Aqua(2,2'-bipyridine)(η^5 -pentamethylcyclopentadienyl)-

MW: 559.60 g/mol

¹**H:** (300 MHz, CD₃OD): 1.60 (s, 15H), 7.69 (t, J = 5.7 Hz, 2H), 8.03 (t, J = 7.2 Hz, 2H), 8.37 (d, J = 7.5 Hz, 2 H), 9.45 (d, J = 4.2 Hz, 2H).

¹³C: (75 MHz, CD₃OD): 9.6 (*C*H₃), 78.0 (*C*), 123.4 (*C*H), 127.5 (*C*H), 137.9 (*C*H), 154.0 (*C*H), 157.9 (*C*).

Heteronuclei (³¹P, ²⁹Si, etc.):

IR:

UV:

MS: (+ESI) m/e calc. for $C_{20}H_{23}N_2^{102}Ru$: 393.0937, found 393.0869 $[(C_5Me_5)^{102}Ru(bipy)]^+$.

EA:	C%	H%	N%	_%	_%
Theor	y: 45.08	4.50	5.01		
Found	45.26	4.59	5.19		

S 9

Compound Name: Aqua(η^5 -pentamethylcyclopentadienyl)(1,10-phenanthroline)ruthenium(II) triflate (2)

MW: 583.63 g/mol

Appearance: Dark yellow powder

Lit. and/or notebook # and page: MT-5-427 (best), p. 37

First made on date: January 11, 2007

Made by: Michelle Thibault

Chromatography conditions:

¹**H:** (300 MHz, dmso- d_6): 1.56 (s, 15H), 8.09 (dd, J = 5.1, 8.1 Hz, 2H), 8.25 (s, 2H), 8.79 (d, J = 7.8 Hz, 2 H), 9.38 (d, J = 5.1 Hz, 2H).

¹³C: (75 MHz, dmso-*d*₆): 8.7 (*C*H₃), 86.5 (*C*), 126.1 (*C*H), 127.5 (*C*H), 129.8 (*C*), 1.36.5 (*C*H), 146.4 (*C*), 154.2 (*C*H).

Heteronuclei (³¹P, ²⁹Si, etc.):

IR:

UV:

MS: (+ESI) m/e calc. for $C_{22}H_{23}N_2^{102}Ru$: 417.0937, found 417.0879 $[(C_5Me_5)^{102}Ru(phen)]^+$.

S 12

Compound Name: $(2,2-bipyridine)(\eta^5-cyclopentadienyl)(acetonitrile))ruthenium(II) triflate [6]$

MW: 514 g/mol

Experimental Data:

¹**H NMR** (400 MHz, acetonitrile- d_3): $\delta = 1.95$ (s, 3H), 4.41 (s, 5H), 7.49 (td, J = 6.6, 1.2 Hz, 2H), 8.00 (td, J = 7.6, 1.6 Hz, 2H), 8.28 (d, J = 7.2 Hz, 2H), 9.46 (d, J = 7.6 Hz, 2H).

¹³**C NMR** (75 MHz, acetonitrile- d_3): δ = 72.1 (*C*H), 123.8 (*C*H), 126.8 (*C*H), 138.0 (*C*H), 156.9 (*C*H), 157.1 (*C*).

MS (MALDI) m/e calc. for $C_{15}H_{13}N_2^{102}Ru$: 323.1815, found 322.9991 $[cp^{102}Ru(bipy)]^+$.

S 15

Mass Spectrometry
Q-Tof: 317.0068
TOF MS ES+ 1.37e4
Parent peak = 322.9991 m/z corresponds to cation with loss of CH ₃ CN

%

%

S 18

Isotope Distribution for Ruthenium metal in Mass Spec Plot

Reference

Isotope Distribution Calculator, Scientific Instrument Services. Available online: <u>http://www2.sisweb.com/mstools/isotope.htm</u>

Images of the liquid/liquid extractor used in the optimized synthesis of [(cp)Ru(CH₃CN)₃](OTf):

Experimental Conditions for single crystal X-ray analysis of Complex 3.

Crystals of $[cpRu(NCMe)(\mu-bipy)][F_3CSO_3]$ were grown from a concentrated aqueous solution. An orange plate was mounted on a glass fibre. Data were collected at low temperature (-123 °C) on a Nonius Kappa-CCD area detector diffractometer with COLLECT (Nonius B.V., 1997-2002). The unit cell parameters were calculated and refined from the full data set. Crystal cell refinement and data reduction were carried out using HKL2000 DENZO-SMN (Otwinowski & Minor, 1997). The absorption correction was applied using HKL2000 DENZO-SMN (SCALEPACK). The crystal data and refinement parameters for $[cpRu(NCMe)(\mu-bipy)][F_3CSO_3]$ are listed in Table I. Interatomic distances and angles are listed in Table III. The reflection data were consistent with a triclinic space group: P-1.

The SHELXTL/PC V6.14 for Windows NT (Sheldrick, G.M., 2001) suite of programs was used to solve the structure by direct methods. Subsequent difference Fourier syntheses allowed the remaining atoms to be located. Independent molecules were formed. The cation and anion were both very well ordered. All of the non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atom positions were calculated geometrically and were included as riding on their respective carbon atoms.

The largest residue electron density peak (0.674 e/Å³) was associated with the rutheniumnitrogen bridging unit. Full-matrix least squares refinement on F² gave R₁ = 3.95 for 2σ data and wR₂ = 9.20 for all data (GOOF = 1.053). The final solution was submitted to the IUCR checkCIF program and had no Alert level A's or B's.

CIF file for [cpRu(NCCH₃)(bipy)](OTf) (3)

data_08081 SHELXL-97 _audit_creation_method _chemical_name_systematic ; ? ; _chemical_name_common ? ? _chemical_melting_point _chemical_formula_moiety 'C17 H16 N3 Ru, C F3 O3 S' 'C18 H16 F3 N3 O3 Ru S' _chemical_formula_sum _chemical_formula_weight 512.47 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'F' 'F' 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ru' 'Ru' -1.2594 0.8363 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M 'P-1' _symmetry_space_group_name_Hall '-P 1' loop _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 9.3778(10)_cell_length_b 10.7852(10)_cell_length_c 11.1818(13)_cell_angle_alpha 101.718(5) _cell_angle_beta 114.717(4)_cell_angle_gamma 102.712(5)_cell_volume 944.94(17) _cell_formula_units_Z 2 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 16909

2.04 _cell_measurement_theta_min _cell_measurement_theta_max 27.48 _exptl_crystal_description plate _exptl_crystal_colour orange exptl crystal size max 0.30 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min 0.03 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.801 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 512 _exptl_absorpt_coefficient_mu 0.995 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.7546 _exptl_absorpt_correction_T_max 0.9756 _exptl_absorpt_process_details 'DENZO-SMN (Otwinowski & Minor, 1997)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Nonius Kappa-CCD' _diffrn_measurement_method $\fi scans, and \w scans with \k$ offsets' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 8794 _diffrn_reflns_av_R_equivalents 0.045 _diffrn_reflns_av_sigmaI/netI 0.0617 diffrn reflns limit h min -12_diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 2.67 27.77 _diffrn_reflns_theta_max _reflns_number_total 4337 3549 _reflns_number_gt _reflns_threshold_expression $I>2\s(I)$ _computing_data_collection 'COLLECT (Nonius, 1997-2001)' computing cell refinement 'DENZO-SMN (Otwinowski & Minor, 1997)' _computing_data_reduction DENZO-SMN _computing_structure_solution 'SHELXS-97 (Sheldrick, 1997)'

'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement _computing_molecular_graphics 'SHELXTL/PC (Sheldrick, 2001)' _computing_publication_material SHELXTL/PC _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^2^$, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc $w=1/[\s^2^{(Fo^2^)+(0.0380P)^2^+0.5160P}]$ where $P = (Fo^2^+2Fc^2^)/3'$ _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4337 _refine_ls_number_parameters 263 refine ls number restraints 0 _refine_ls_R_factor_all 0.0574 _refine_ls_R_factor_gt 0.0395 _refine_ls_wR_factor_ref 0.0920 _refine_ls_wR_factor_gt 0.0854 _refine_ls_goodness_of_fit_ref 1.053 _refine_ls_restrained_S_all 1.053 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv atom site adp type atom site occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags

```
_atom_site_disorder_assembly
 _atom_site_disorder_group
Ru Ru 0.53312(3) 0.74225(3) 0.73805(3) 0.01980(9) Uani 1 1 d . . .
C1 C 0.7710(5) 0.8806(4) 0.7871(4) 0.0332(9) Uani 1 1 d . . .
H1A H 0.8374 0.9683 0.8656 0.040 Uiso 1 1 calc R . .
C2 C 0.6500(5) 0.8617(4) 0.6493(4) 0.0313(9) Uani 1 1 d . . .
H2A H 0.6158 0.9346 0.6149 0.038 Uiso 1 1 calc R . .
C3 C 0.5889(5) 0.7246(4) 0.5674(4) 0.0293(8) Uani 1 1 d . . .
H3A H 0.5064 0.6834 0.4655 0.035 Uiso 1 1 calc R . .
C4 C 0.6755(5) 0.6563(4) 0.6574(4) 0.0273(8) Uani 1 1 d . . .
H4A H 0.6621 0.5586 0.6286 0.033 Uiso 1 1 calc R . .
C5 C 0.7867(4) 0.7521(4) 0.7913(4) 0.0286(8) Uani 1 1 d . . .
H5A H 0.8656 0.7342 0.8738 0.034 Uiso 1 1 calc R . .
N6 N 0.3265(4) 0.5676(3) 0.6424(3) 0.0226(6) Uani 1 1 d . . .
C7 C 0.2195(5) 0.4676(4) 0.5813(4) 0.0259(8) Uani 1 1 d . . .
C8 C 0.0837(5) 0.3385(4) 0.4987(4) 0.0336(9) Uani 1 1 d . . .
H8A H -0.0175 0.3534 0.4380 0.050 Uiso 1 1 calc R . .
H8B H 0.0625 0.2946 0.5611 0.050 Uiso 1 1 calc R . .
H8C H 0.1149 0.2807 0.4413 0.050 Uiso 1 1 calc R . .
N11 N 0.3754(3) 0.8480(3) 0.7530(3) 0.0216(6) Uani 1 1 d . . .
C12 C 0.3026(4) 0.9087(3) 0.6618(4) 0.0279(8) Uani 1 1 d . . .
H12A H 0.3242 0.9051 0.5856 0.034 Uiso 1 1 calc R . .
C13 C 0.1977(5) 0.9761(3) 0.6755(4) 0.0339(9) Uani 1 1 d . . .
H13A H 0.1500 1.0192 0.6103 0.041 Uiso 1 1 calc R . .
C14 C 0.1630(5) 0.9804(4) 0.7835(4) 0.0359(9) Uani 1 1 d . . .
H14A H 0.0917 1.0266 0.7946 0.043 Uiso 1 1 calc R . .
C15 C 0.2341(5) 0.9162(4) 0.8760(4) 0.0321(9) Uani 1 1 d . . .
H15A H 0.2096 0.9159 0.9503 0.039 Uiso 1 1 calc R . .
C16 C 0.3414(4) 0.8520(3) 0.8600(4) 0.0233(7) Uani 1 1 d . . .
C17 C 0.4286(4) 0.7858(3) 0.9556(4) 0.0231(7) Uani 1 1 d . . .
C18 C 0.4077(5) 0.7738(4) 1.0687(4) 0.0303(8) Uani 1 1 d . . .
H18A H 0.3316 0.8079 1.0878 0.036 Uiso 1 1 calc R . .
C19 C 0.4986(5) 0.7119(4) 1.1534(4) 0.0341(9) Uani 1 1 d . . .
H19A H 0.4855 0.7027 1.2313 0.041 Uiso 1 1 calc R . .
C20 C 0.6084(5) 0.6636(4) 1.1236(4) 0.0322(8) Uani 1 1 d . . .
H20A H 0.6728 0.6213 1.1812 0.039 Uiso 1 1 calc R . .
C21 C 0.6236(5) 0.6772(3) 1.0098(4) 0.0274(8) Uani 1 1 d . . .
H21A H 0.6997 0.6436 0.9901 0.033 Uiso 1 1 calc R . .
N22 N 0.5348(3) 0.7362(3) 0.9246(3) 0.0210(6) Uani 1 1 d . . .
O31 O 1.0393(3) 0.8109(3) 1.3186(3) 0.0335(6) Uani 1 1 d . . .
O32 O 1.3051(3) 0.8131(3) 1.3321(3) 0.0340(6) Uani 1 1 d . . .
O33 O 1.0680(3) 0.7788(2) 1.1095(3) 0.0316(6) Uani 1 1 d . . .
S34 S 1.12656(11) 0.76879(9) 1.24719(9) 0.02455(19) Uani 1 1 d . . .
C35 C 1.0649(5) 0.5872(4) 1.2138(4) 0.0297(8) Uani 1 1 d . . .
F36 F 1.1393(3) 0.5302(2) 1.1518(2) 0.0417(6) Uani 1 1 d . . .
F37 F 0.9004(3) 0.5257(2) 1.1336(3) 0.0456(6) Uani 1 1 d . . .
F38 F 1.1074(3) 0.5602(2) 1.3338(3) 0.0429(6) Uani 1 1 d . . .
```

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12

Ru 0.02062(15) 0.01942(15) 0.01976(16) 0.00653(11) 0.01004(12) 0.00706(11) $C1 \quad 0.030(2) \quad 0.0260(18) \quad 0.038(2) \quad 0.0005(17) \quad 0.022(2) \quad -0.0029(16)$ C2 0.033(2) 0.035(2) 0.043(2) 0.0230(18) 0.028(2) 0.0153(17)C3 0.029(2) 0.041(2) 0.024(2) 0.0110(17) 0.0184(17) 0.0131(17) C4 0.030(2) 0.0308(19) 0.032(2) 0.0106(16) 0.0221(18) 0.0162(16) C5 0.0176(18) 0.043(2) 0.029(2) 0.0134(17) 0.0140(16) 0.0101(16)N6 0.0224(16) 0.0251(15) 0.0220(16) 0.0091(13) 0.0113(13) 0.0088(13) C7 0.029(2) 0.0313(19) 0.0216(19) 0.0103(16) 0.0153(17) 0.0108(17) $C8 \ 0.031(2) \ 0.0279(19) \ 0.033(2) \ 0.0028(16) \ 0.0167(19) \ -0.0032(16)$ N11 0.0185(15) 0.0208(14) 0.0207(15) 0.0061(12) 0.0061(12) 0.0062(12) C12 0.0243(19) 0.0261(18) 0.026(2) 0.0073(15) 0.0075(16) 0.0067(15) C13 0.0221(19) 0.0238(18) 0.045(3) 0.0113(17) 0.0064(18) 0.0091(16) C14 0.023(2) 0.0273(19) 0.047(3) 0.0025(18) 0.0121(19) 0.0090(16)C15 0.0242(19) 0.033(2) 0.035(2) 0.0016(17) 0.0163(18) 0.0074(16) $\texttt{C16} \quad \texttt{0.0185(17)} \quad \texttt{0.0194(16)} \quad \texttt{0.0254(19)} \quad \texttt{0.0039(14)} \quad \texttt{0.0077(15)} \quad \texttt{0.0039(14)}$ C17 0.0205(18) 0.0208(16) 0.0213(18) 0.0008(14) 0.0097(15) 0.0014(14) C18 0.028(2) 0.038(2) 0.024(2) 0.0065(16) 0.0151(17) 0.0056(17) $C19 \quad 0.035(2) \quad 0.040(2) \quad 0.027(2) \quad 0.0143(18) \quad 0.0179(19) \quad 0.0044(18)$ C20 0.032(2) 0.034(2) 0.026(2) 0.0148(17) 0.0102(18) 0.0061(17) C21 0.029(2) 0.0257(18) 0.027(2) 0.0108(16) 0.0118(17) 0.0091(16) N22 0.0213(15) 0.0212(14) 0.0178(15) 0.0051(12) 0.0089(13) 0.0050(12) 031 0.0392(16) 0.0367(14) 0.0366(16) 0.0167(13) 0.0228(14) 0.0215(13) 032 0.0259(14) 0.0380(14) 0.0320(16) 0.0108(12) 0.0094(13) 0.0103(12) 033 0.0357(15) 0.0371(14) 0.0238(14) 0.0174(12) 0.0121(12) 0.0135(12) $S34 \ 0.0250(5) \ 0.0264(4) \ 0.0237(5) \ 0.0121(4) \ 0.0105(4) \ 0.0106(4)$ C35 0.033(2) 0.036(2) 0.029(2) 0.0177(17) 0.0154(18) 0.0190(18)F36 0.0550(16) 0.0377(12) 0.0425(15) 0.0126(11) 0.0286(13) 0.0247(12) F37 0.0346(14) 0.0322(12) 0.0546(17) 0.0126(11) 0.0131(13) 0.0032(10) F38 0.0643(17) 0.0421(13) 0.0420(15) 0.0282(11) 0.0312(14) 0.0293(12) _geom_special_details All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 geom bond publ flag Ru N6 2.071(3) . ? Ru N22 2.094(3) . ? Ru N11 2.095(3) . ? Ru C2 2.157(3) . ?

Ru C4 2.160(3) . ? Ru C3 2.164(3) . ? Ru C1 2.164(3) . ? Ru C5 2.168(3) . ? C1 C2 1.418(6) . ? C1 C5 1.433(5) . ? C1 H1A 1.0000 . ? C2 C3 1.412(5) . ? C2 H2A 1.0000 . ? C3 C4 1.447(5) . ? C3 H3A 1.0000 . ? C4 C5 1.410(5) . ? C4 H4A 1.0000 . ? C4 C5 1.410(5) . ? C4 H4A 1.0000 . ? C5 H5A 1.0000 . ? N6 C7 1.135(4) . ? C7 C8 1.459(5) . ? C8 H8A 0.9800 . ? C8 H8B 0.9800 . ? C8 H8B 0.9800 . ? N11 C12 1.349(4) . ? N11 C16 1.357(4) . ? C12 C13 1.384(5) . ? C12 H12A 0.9500 . ? C13 C14 1.371(6) . ? C14 C15 1.383(6) . ? C14 H14A 0.9500 . ? C15 C16 1.390(5) . ? C15 H15A 0.9500 . ? C16 C17 1.468(5) . ? C17 N22 1.358(4) . ?
C20 C21 1.371(5) . ? C20 H20A 0.9500 . ?
C21 N22 1.351(4) . ?
031 \$34 1.441(2) . ?
O32 S34 1.438(3) . ? O33 S34 1 439(2) ?
S34 C35 1.826(4) . ?
C35 F36 1.329(4) . ?
C35 F37 1.332(4). ? C35 F38 1.344(4). ?
<pre>loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3</pre>
_geom_angle geom angle site symmetry 1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag N6 Ru N22 85.76(11) ?

N6 Ru N11 87.39(10) . . ? N22 Ru N11 76.36(10) . . ? N6 Ru C2 130.46(14) . . ? N22 Ru C2 143.56(14) . . ? N11 Ru C2 98.62(12) . . ? N6 Ru C4 95.12(12) . . ? N22 Ru C4 124.41(12) . . ? N11 Ru C4 159.18(13) . . ? C2 Ru C4 64.23(13) . . ? N6 Ru C3 97.20(13) . . ? N22 Ru C3 163.32(12) . . ? N11 Ru C3 120.08(12) . . ? C2 Ru C3 38.14(14) . . ? C4 Ru C3 39.11(13) . . ? N6 Ru C1 158.95(12) . . ? N22 Ru Cl 108.88(13) . . ? N11 Ru C1 110.33(12) . . ? C2 Ru C1 38.32(15) . . ? C4 Ru C1 64.26(14) . . ? C3 Ru C1 64.47(15) . . ? N6 Ru C5 125.67(12) . . ? N22 Ru C5 100.27(12) . . ? N11 Ru C5 146.75(13) . . ? C2 Ru C5 64.24(14) . . ? C4 Ru C5 38.03(14) . . ? C3 Ru C5 64.68(14) . . ? C1 Ru C5 38.63(14) . . ? C2 C1 C5 107.5(3) . . ? C2 C1 Ru 70.6(2) . . ? C5 C1 Ru 70.81(19) . . ? C2 C1 H1A 126.2 . . ? C5 C1 H1A 126.2 . . ? Ru C1 H1A 126.2 . . ? C3 C2 C1 109.3(3) . . ? C3 C2 Ru 71.20(19) . . ? C1 C2 Ru 71.1(2) . . ? C3 C2 H2A 125.3 . . ? C1 C2 H2A 125.3 . . ? Ru C2 H2A 125.3 . . ? C2 C3 C4 106.8(3) . . ? C2 C3 Ru 70.66(19) . . ? C4 C3 Ru 70.29(19) . . ? C2 C3 H3A 126.6 . . ? C4 C3 H3A 126.6 . . ? Ru C3 H3A 126.6 . . ? C5 C4 C3 108.4(3) . . ? C5 C4 Ru 71.29(19) . . ? C3 C4 Ru 70.60(18) . . ? C5 C4 H4A 125.8 . . ? C3 C4 H4A 125.8 . . ? Ru C4 H4A 125.8 . . ? C4 C5 C1 108.0(3) . . ? C4 C5 Ru 70.68(19) . . ? C1 C5 Ru 70.6(2) . . ? C4 C5 H5A 126.0 . . ? C1 C5 H5A 126.0 . . ? Ru C5 H5A 126.0 . . ?

C7 N6 Ru 173.0(3) . . ? N6 C7 C8 177.8(4) . . ? C7 C8 H8A 109.5 . . ? C7 C8 H8B 109.5 . . ? H8A C8 H8B 109.5 . . ? C7 C8 H8C 109.5 . . ? H8A C8 H8C 109.5 . . ? H8B C8 H8C 109.5 . . ? C12 N11 C16 118.3(3) . . ? C12 N11 Ru 124.5(2) . . ? C16 N11 Ru 117.2(2) . . ? N11 C12 C13 122.3(3) . . ? N11 C12 H12A 118.9 . . ? C13 C12 H12A 118.9 . . ? C14 C13 C12 119.6(4) . . ? C14 C13 H13A 120.2 . . ? C12 C13 H13A 120.2 . . ? C13 C14 C15 118.7(3) . . ? C13 C14 H14A 120.7 . . ? C15 C14 H14A 120.7 . . ? C14 C15 C16 119.8(4) . . ? C14 C15 H15A 120.1 . . ? C16 C15 H15A 120.1 . . ? N11 C16 C15 121.3(3) . . ? N11 C16 C17 114.6(3) . . ? C15 C16 C17 124.1(3) . . ? N22 C17 C18 121.6(3) . . ? N22 C17 C16 114.2(3) . . ? C18 C17 C16 124.2(3) . . ? C19 C18 C17 119.4(3) . . ? C19 C18 H18A 120.3 . . ? C17 C18 H18A 120.3 . . ? C20 C19 C18 119.2(3) . . ? C20 C19 H19A 120.4 . . ? C18 C19 H19A 120.4 . . ? C21 C20 C19 119.2(3) . . ? C21 C20 H20A 120.4 . . ? C19 C20 H20A 120.4 . . ? N22 C21 C20 122.7(3) . . ? N22 C21 H21A 118.6 . . ? C20 C21 H21A 118.6 . . ? C21 N22 C17 117.9(3) . . ? C21 N22 Ru 124.6(2) . . ? C17 N22 Ru 117.2(2) . . ? 032 S34 033 115.40(16) . . ? 032 S34 031 114.98(16) . . ? 033 S34 031 114.98(15) . . ? O32 S34 C35 102.58(16) . . ? O33 S34 C35 103.27(16) . . ? O31 S34 C35 103.02(16) . . ? F36 C35 F37 107.9(3) . . ? F36 C35 F38 107.0(3) . . ? F37 C35 F38 107.0(3) . . ? F36 C35 S34 111.8(2) . . ? F37 C35 S34 112.0(2) . . ? F38 C35 S34 110.8(3) . . ?

loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 geom torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N6 Ru C1 C2 68.0(4) . . . ? N22 Ru C1 C2 -159.81(19) . . . ? N11 Ru C1 C2 -77.8(2) . . . ? C4 Ru C1 C2 80.3(2) ? C3 Ru C1 C2 36.7(2) ? C5 Ru C1 C2 117.4(3) . . . ? N6 Ru C1 C5 -49.4(5) . . . ? N22 Ru C1 C5 82.8(2) . . . ? N11 Ru C1 C5 164.8(2) . . . ? C2 Ru C1 C5 -117.4(3) . . . ? C4 Ru C1 C5 -37.1(2) . . . ? C3 Ru C1 C5 -80.7(2) ? C5 C1 C2 C3 0.3(4) . . . ? Ru C1 C2 C3 -61.3(2) . . . ? C5 C1 C2 Ru 61.5(2) . . . ? N6 Ru C2 C3 -35.0(3) . . . ? N22 Ru C2 C3 152.4(2) . . . ? N11 Ru C2 C3 -128.9(2) . . . ? C4 Ru C2 C3 38.7(2) . . . ? C1 Ru C2 C3 119.1(3) . . . ? C5 Ru C2 C3 81.1(2) . . . ? N6 Ru C2 C1 -154.04(19) . . . ? N22 Ru C2 C1 33.4(3) . . . ? N11 Ru C2 C1 112.0(2) . . . ? C4 Ru C2 C1 -80.4(2) . . . ? C3 Ru C2 C1 -119.1(3) . . . ? C5 Ru C2 C1 -38.0(2) . . . ? C1 C2 C3 C4 - 0.2(4) . . . ?Ru C2 C3 C4 -61.4(2) . . . ? C1 C2 C3 Ru 61.2(2) . . . ? N6 Ru C3 C2 153.9(2) . . . ? N22 Ru C3 C2 -106.7(4) ? N11 Ru C3 C2 62.8(2) C4 Ru C3 C2 -116.8(3) . . . ? C1 Ru C3 C2 -36.9(2) . . . ? C5 Ru C3 C2 -79.9(2) . . . ? N6 Ru C3 C4 -89.3(2) . . . ? N22 Ru C3 C4 10.1(5) . . . ? N11 Ru C3 C4 179.59(19) ? C2 Ru C3 C4 116.8(3) . . . ? C1 Ru C3 C4 79.9(2) . . . ? C5 Ru C3 C4 36.9(2) . . . ? C2 C3 C4 C5 0.0(4) . . . ?Ru C3 C4 C5 -61.6(2) ? C2 C3 C4 Ru 61.6(2) . . . ? N6 Ru C4 C5 -146.7(2) . . . ?

N22 Ru C4 C5 -58.3(2) . . . ? N11 Ru C4 C5 117.2(4) ? C2 Ru C4 C5 80.4(2) C3 Ru C4 C5 118.2(3) . . . ? C1 Ru C4 C5 37.7(2) . . . ? N6 Ru C4 C3 95.1(2) . . . ? N22 Ru C4 C3 -176.52(19) . . . ? N11 Ru C4 C3 -1.0(5) . . . ? C2 Ru C4 C3 -37.7(2) ? C1 Ru C4 C3 -80.5(2) . . . ? C5 Ru C4 C3 -118.2(3) . . . ? C3 C4 C5 C1 0.2(4) . . . ? Ru C4 C5 C1 -61.0(2) . . . ? C3 C4 C5 Ru 61.2(2) . . . ? C2 C1 C5 C4 -0.3(4) . . . ? Ru C1 C5 C4 61.1(2) ? C2 C1 C5 Ru -61.4(2) . . . ? N6 Ru C5 C4 42.3(3) . . . ? N22 Ru C5 C4 134.5(2) . . . ? N11 Ru C5 C4 -144.8(2) . . . ? C2 Ru C5 C4 -80.4(2) . . . ? C3 Ru C5 C4 -38.0(2) . . . ? C1 Ru C5 C4 -118.1(3) . . . ? N6 Ru C5 C1 160.4(2) . . . ? N22 Ru C5 C1 -107.5(2) . . . ? N11 Ru C5 C1 -26.7(3) . . . ? C2 Ru C5 C1 37.7(2) . . . ? C4 Ru C5 C1 118.1(3) . . . ? C3 Ru C5 C1 80.1(2) . . . ? N6 Ru N11 C12 -96.9(3) . . . ? N22 Ru N11 C12 176.9(3) . . . ? C2 Ru N11 C12 33.7(3) . . . ? C4 Ru N11 C12 0.7(5) . . . ? C3 Ru N11 C12 -0.1(3) . . . ? C1 Ru N11 C12 71.5(3) . . . ? C5 Ru N11 C12 88.9(3) . . . ? N6 Ru N11 C16 81.2(2) . . . ? N22 Ru N11 C16 -5.0(2) . . . ? C2 Ru N11 C16 -148.2(3) . . . ? C4 Ru N11 C16 178.8(3) . . . ? C3 Ru N11 C16 178.1(2) . . . ? Cl Ru N11 C16 -110.4(3) . . . ? C5 Ru N11 C16 -93.0(3) . . . ? C16 N11 C12 C13 1.1(5) Ru N11 C12 C13 179.2(3) . . . ? N11 C12 C13 C14 -1.1(6) . . . ? C12 C13 C14 C15 -0.3(6) . . . ? C13 C14 C15 C16 1.6(6) . . . ? C12 N11 C16 C15 0.2(5) . . . ? Ru N11 C16 C15 -178.0(3) . . . ? C12 N11 C16 C17 -178.8(3) . . . ? Ru N11 C16 C17 2.9(4) . . . ? C14 C15 C16 N11 -1.6(5) . . . ? C14 C15 C16 C17 177.4(3) ? N11 C16 C17 N22 2.7(4) . . . ? C15 C16 C17 N22 -176.4(3) . . . ? N11 C16 C17 C18 -177.7(3) . . . ?

C15 C16 C17 C18 3.3(6) ?	
N22 C17 C18 C19 0.9(5) ?	
C16 C17 C18 C19 -178.7(3) ?	
C17 C18 C19 C20 0.1(6) ?	
C18 C19 C20 C21 -0.6(6) ?	
C19 C20 C21 N22 -0.1(6) ?	
C20 C21 N22 C17 1.1(5) ?	
C20 C21 N22 Ru -173.3(3) ?	
C18 C17 N22 C21 -1.6(5) ?	
C16 C17 N22 C21 178.1(3) ?	
C18 C17 N22 Ru 173.2(3) ?	
C16 C17 N22 Ru -7.1(4) ?	
N6 Ru N22 C21 92.7(3) ?	
N11 Ru N22 C21 -179.0(3) ?	
C2 Ru N22 C21 -93.0(3) ?	
C4 Ru N22 C21 -0.7(3) ?	
C3 Ru N22 C21 -8.3(6) ?	
C1 Ru N22 C21 -71.9(3) ?	
C5 Ru N22 C21 -32.9(3) ?	
N6 Ru N22 C17 -81.8(2) ?	
N11 Ru N22 C17 6.6(2) ?	
C2 Ru N22 C17 92.6(3) ?	
C4 Ru N22 C17 -175.1(2) ?	
C3 Ru N22 C17 177.3(4) ?	
C1 Ru N22 C17 113.7(2) ?	
C5 Ru N22 C17 152.7(2) ?	
O32 S34 C35 F36 -58.0(3) ?	
O33 S34 C35 F36 62.3(3) ?	
O31 S34 C35 F36 -177.7(3) ?	
O32 S34 C35 F37 -179.3(2) ?	
$O33 S34 C35 F37 - 59.0(3) \dots$?	
O31 S34 C35 F37 61.0(3) ?	
O32 S34 C35 F38 61.3(3) ?	
O33 S34 C35 F38 -178.4(2) ?	
O31 S34 C35 F38 -58.4(3) ?	
	0 0 5 0
_diffrn_measured_fraction_theta_max	0.973
_allrn_retins_theta_tull	27.77
_diffrn_measured_fraction_theta_full	0.973
_refine_diff_density_max 0.674	
_refine_diff_density_min -0.950	
_refine_diff_density_rms 0.111	

References

- (1) Taher, D.; Thibault, M. E.; Mondo, D. D.; Jennings, M.; Schlaf, M. *Chem. Eur. J.* **2009**, 10132.
- (2) Even with cooling by an ice-bath, substantial amounts of hexane are lost upon venting the reactor at the end of the reaction.