

Electronic Supplementary Information

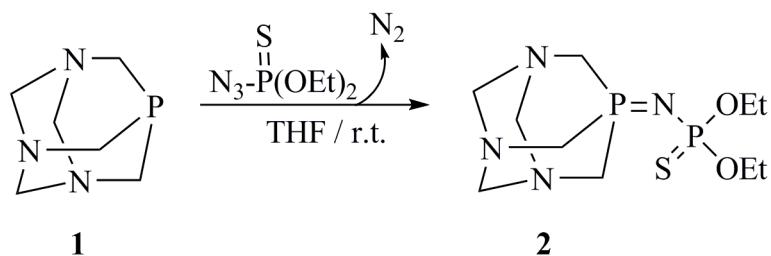
Highly Efficient Copper(I) Catalyst for 1,3-Dipolar Cycloaddition of Azides with Terminal and 1-Iodoalkynes in Water: Regioselective Synthesis of 1,4-Disubstituted and 1,4,5-Trisubstituted-1,2,3-Triazoles

Joaquín García-Álvarez,* Josefina Díez, and José Gimeno

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica “Enrique Moles” (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain

Table of Contents

General Methods.	S2
Synthesis of <i>N</i>-thiophosphorylated iminophosphorane ligand 2	S2
Synthesis of Cu(I) complex 3	S3
X-Ray Structure of compound 3	S4
Synthesis of 1,2,3-triazoles	S4
Synthesis of 5-iodo-1,2,3-triazoles	S19
X-Ray Structure of compound 7a	S24
References	S45

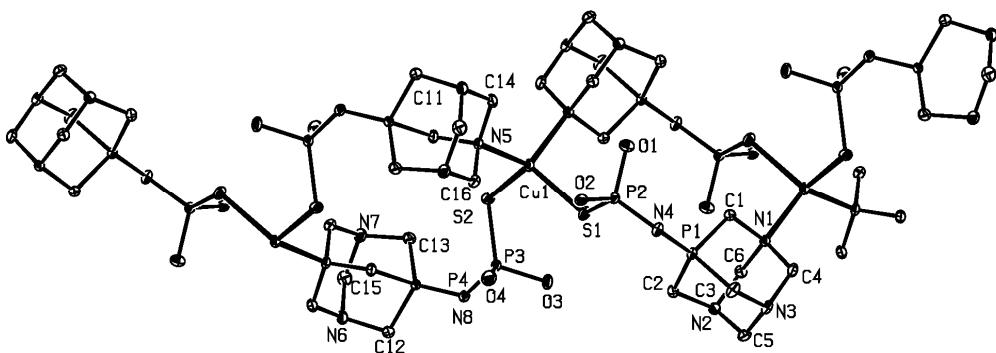

Experimental Section

General Methods. The conductivities were measured at room temperature, in ca. 10^{-3} mol dm⁻³ water solutions, with a Jenway PCM3 conductimeter. The C, H, and N analyses were carried out with a Perkin-Elmer 2400 microanalyzer. NMR spectra were recorded on a Bruker DPX300 instrument at 300 MHz (¹H), 282.4 MHz (¹⁹F) or 75.4 MHz (¹³C) using SiMe₄, C₆F₆ or 85% H₃PO₄ as standards. DEPT experiments have been carried out for all the compounds reported in this paper. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; bs, broad signal; m, multiplet.

Preparation and characterization of the hydrosoluble iminophosphorane ligand **2** and its Cu(I) complex **3**.

Synthetic procedures were performed under an atmosphere of dry nitrogen using vacuum-line and standard Schlenk techniques. Solvents were dried by standard methods and distilled under nitrogen before use. All reagents were obtained from commercial suppliers and used without further purification with the exception of compounds PTA^{1a} and N₃P(=S)(OEt)₂,² which were prepared by following the method reported in the literature.

Synthesis of the *N*-thiophosphorylated iminophosphorane ligand **2**.



Scheme ESI-1. Synthesis of the *N*-thiophosphorylated iminophosphorane ligand **2**

A solution of the commercially available phosphine ligand PTA (0.314 g, 2 mmol) in 40 mL of THF was treated, at room temperature, with the *N*-thiophosphorylated azide N₃P=S(OEt)₂ (2.1 mmol) for 4 h.^{1b} Then, the solvent was evaporated to dryness to give a colorless oil which was dissolved in *ca.* 5 mL of CH₂Cl₂. The addition of diethyl ether (*ca.* 50 mL) precipitated a white microcrystalline solid, which was washed with diethyl ether (3 x 10 mL) and dried in vacuo. Yield 78% (0.506 g). Anal. Calcd for

$C_{10}H_{22}N_4O_2P_2S$: C, 37.03; H, 6.84; N, 17.28. Found: C, 37.19; H, 6.79; N, 17.33. IR (KBr, cm^{-1}): ν 588, 751, 791, 837, 1025, 1097, 1165, 1206, 1238, 1275, 1368. $^{31}P\{^1H\}$ NMR (D_2O): δ -27.92 (d, $^2J_{PP} = 8.9$ Hz, P=N), 62.38 (d, $^2J_{PP} = 8.9$ Hz, P=S) ppm. 1H NMR (D_2O): δ 1.39 (m, 6H, OCH_2CH_3), 4.10 (m, 4H, OCH_2CH_3), 4.37 (dd, 6H, $^2J_{HP} = 9.6$ Hz, $^4J_{HP} = 2.9$ Hz, PCH_2N), 4.43 and 4.54 (AB spin system, 3H each, $J_{HA,HB} = 13.7$ Hz, NCH_2N) ppm. $^{13}C\{^1H\}$ NMR (D_2O): δ 15.37 (d, $^3J_{CP} = 8.2$ Hz, OCH_2CH_3), 51.91 (dd, $^1J_{CP} = 53.0$ Hz, $^3J_{CP} = 4.1$ Hz, PCH_2N), 62.93 (d, $^2J_{CP} = 5.8$ Hz, OCH_2CH_3), 70.20 (d, $^3J_{CP} = 9.3$ Hz, NCH_2N).

Synthesis of Cu(I) complex 3. A solution of the iminophosphorane ligand **2** (2 mmol) in 30 mL of CH_2Cl_2 was treated with $[Cu(NCCH_3)_4][PF_6]$ (0.372 g, 1 mmol) and stirred at room temperature for 1 h to yield a pale-yellow clear solution. The solvent was then concentrated (*ca.* 1 mL) in *vacuo* and the addition of diethyl ether (*ca.* 50 mL) precipitated a white solid, which washed with diethyl ether (3 x 10 mL) and dried in *vacuo*. **3:** Yield 81% (0.695 g). Anal. Calcd for $CuC_{20}H_{44}F_6N_8P_5O_4S_2$: C, 28.02; H, 5.17; N, 13.07. Found: C, 28.10; H, 5.15; N 13.15. Conductivity (water, 20 °C): 117 $\Omega^{-1}\cdot cm^2\cdot mol^{-1}$. IR (KBr, cm^{-1}): ν 559, 943, 956, 973, 1010, 1029, 1207, 1238, 1277, 1288. $^{31}P\{^1H\}$ NMR ($(CD_3)_2C=O$): δ -144.04 (sept, $J_{PF} = 707.2$ Hz, PF_6), -34.73 (bs, P=N), 59.96 (bs, P=S) ppm. 1H NMR ($(CD_3)_2C=O$): δ 1.23 (t, 6H, $^3J_{HH} = 7.1$ Hz, OCH_2CH_3), 3.94 (m, 4H, OCH_2CH_3), 4.23 (d, 6H, $^2J_{HP} = 9.4$ Hz, PCH_2N), 4.32 and 4.41 (AB spin system, 3H each, $J_{HA,HB} = 13.2$ Hz, NCH_2N) ppm. $^{13}C\{^1H\}$ NMR ($(CD_3)_2C=O$): δ 15.99 (d, $^3J_{CP} = 8.5$ Hz, OCH_2CH_3), 54.10 (dd, $^1J_{CP} = 51.7$ Hz, $^3J_{CP} = 2.9$ Hz, PCH_2N), 62.64 (d, $^2J_{CP} = 6.4$ Hz, OCH_2CH_3), 72.10 (d, $^3J_{CP} = 9.5$ Hz, NCH_2N) ppm.

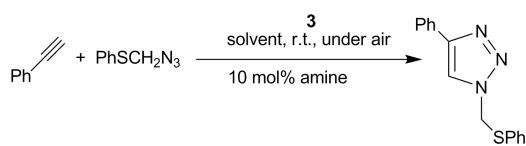


Figure ESI-1. ORTEP-type view of the structure of compound **3** showing the crystallographic labelling scheme. Hydrogen atoms, ethyl groups and PF_6^- anions have been omitted for clarity. Thermal ellipsoids are drawn at 10% probability level. Selected bond lengths (\AA): $\text{Cu(1)-S(1)} = 2.314(1)$; $\text{Cu(1)-S(2)} = 2.320(1)$; $\text{Cu(1)-N(1)} = 2.1576(3)$; $\text{Cu(1)-N(5)} = 2.131(4)$. Selected bond angles ($^\circ$): $\text{N(5)-Cu(1)-N(1)} = 117.92(11)$; $\text{N(5)-Cu(1)-S(1)} = 114.77(9)$; $\text{N(1)-Cu(1)-S(1)} = 103.77(8)$; $\text{N(5)-Cu(1)-S(2)} = 105.16(8)$; $\text{N(1)-Cu(1)-S(2)} = 103.02(8)$; $\text{S(1)-Cu(1)-S(2)} = 111.71(4)$.

General procedure for the synthesis of 1,2,3-triazoles

All reagents were obtained from commercial suppliers and used without further purification with the exception of compound $p\text{-NC}(\text{C}_6\text{H}_4)\text{C}\equiv\text{CH}$, which was prepared by following the method reported in the literature.³ Typical procedure for the synthesis of 1,2,3-triazoles; synthesis of diphenyl(1-(phenylthiomethyl)-1*H*-1,2,3-triazol-4-yl)methanol (**4f**): 0.0042 g (0.5 mol%) of catalyst **3** were dissolved in 2 mL of H_2O under air. 1,1-diphenyl-2-propyn-1-ol (1mmol, 0.208 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) were added in the presence of 0.012 mL (10 mol%) of 2,6-lutidine. The course of the reaction was monitored by regular sampling and analysis by NMR and GC. The reaction was stirred at room temperature for 4h, after which time a yellow powder had formed. The crude of the reaction was washed with CH_2Cl_2 (3x10mL) and the combined organic fractions were concentrated by evaporation to give **4f** as a white solid (0.354 g, 95%). Table S.I-1 summarizes the optimization studies of the CuAAC using **3** as catalyst.

Table ESI-1. Optimization studies of the CuAAC using **3** as catalyst^[a]

entry	solvent	amine	mol % of 3	Time[h]	Yield[%] ^[b]
1	THF	2,6-lutidine	0.5	18	94
2	water	2,6-lutidine	0.5	6	95
3	water	-	0.5	-	0
4	water	NEt ₃	0.5	9	97
5	water	pyridine	0.5	8	93
6	water	TMEDA	0.5	11	98
7	water	1,10-Phen	0.5	10	97
8	water	2,6-lutidine	0.25	24	93

^[a] General Conditions: amine (10 mol%), PhCCH (1mmol), PhSCH₂N₃ (1mmol), 2 mL of solvent, under air, r.t. ^[b] isolated yields

The identity of the 1,2,3-triazoles **4a**,^{4a} **4e**,^{4b} **5a**,^{4c} **5b**,^{4d} **5c**,^{4e} **5e**,^{4f} **5g**,^{4f} **6a**,^{4g} **6e**,^{4h} **6g**,^{4g} was assessed by comparison of their ¹H and ¹³C{¹H} NMR spectroscopic data with those previously reported in the literature and by their fragmentation in GC/MS.

4-butyl-1-(phenylthiomethyl)-1H-1,2,3-triazole (4b) Synthesized from 1-hexyne (1mmol, 0.116 mL) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.232 g, 94%, brown oil; Anal. Calcd for C₁₃H₁₇N₃S: C, 63.12; H, 6.93; N, 16.99. Found: C, 63.20; H, 6.89; N 17.02. IR (cm⁻¹): ν 690, 741, 1025, 1223, 1439, 2925. ¹H NMR (CDCl₃): δ 0.94 (t, 3H, *J* = 7.4 Hz), 1.34 and 1.63 (m, 2H each), 2.71 (t, 2H, *J* = 7.4 Hz), 5.61 (s, 2H), 7.30 (s, 1H), 7.32 (m, 5H) ppm. ¹³C{¹H} NMR (CDCl₃): δ 13.79, 22.18, 25.27, 31.41, 53.73, 120.19, 128.63, 129.44, 132.03, 132.25, 135.65, 148.99 ppm.

4-cyclohexenyl-1-(phenylthiomethyl)-1H-1,2,3-triazole (4c) Synthesized from 1-ethynylcyclohexene (1mmol, 0.117 mL) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.252 g, 93%, white solid; Anal. Calcd for C₁₅H₁₇N₃S: C, 66.39; H, 6.31; N, 15.48. Found: C, 66.47; H, 6.34; N 15.43. IR (cm⁻¹): ν 892, 1024, 1226, 1439, 1482, 1582, 1661, 1718, 2928. ¹H NMR (CDCl₃): δ 1.66 (m, 4H), 2.14 (m, 2H), 2.28 (m, 2H), 5.54 (s, 2H), 6.45 (m, 1H), 7.26 (m, 5H), 7.37 (1H, m) ppm. ¹³C{¹H} NMR (CDCl₃): δ 22.07, 22.32, 25.17, 26.18, 53.54, 117.81, 125.20, 126.94, 128.43, 129.33, 131.98, 132.08, 149.80 ppm.

diphenyl(1-(phenylthiomethyl)-1*H*-1,2,3-triazol-4-yl)methanol (4d) Synthesized from 1,1-diphenyl-2-propyn-1-ol (1mmol, 0.208 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.354 g, 95%, white solid; Anal. Calcd for C₂₂H₁₉N₃OS: C, 70.75; H, 5.13; N, 11.25. Found: C, 70.68; H, 5.17; N 11.21. IR (cm⁻¹): ν 694, 750, 794, 890, 1016, 1048, 1125, 1172, 1231, 1363, 1447, 3023, 3399. ¹H NMR (CD₂Cl₂): δ 4.02 (s, 1H), 5.59 (s, 2H), 7.09 (s, 1H), 7.35 (m, 15H) ppm. ¹³C{¹H} NMR (CD₂Cl₂): δ 54.08, 76.51, 122.44, 127.09, 127.48, 127.98, 128.94, 129.45, 131.55, 133.09, 145.78, 154.22 ppm.

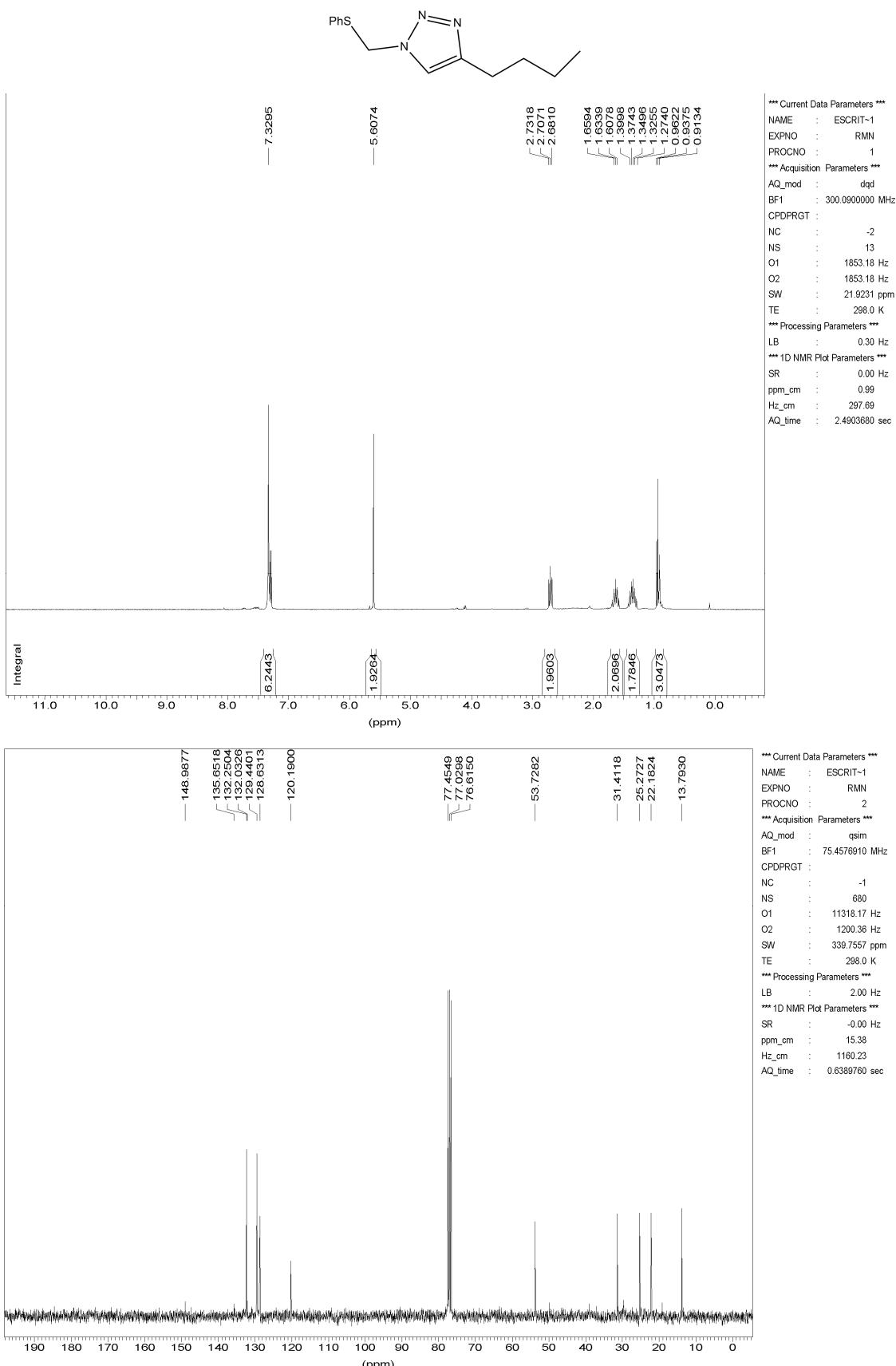
4-(1-(phenylthiomethyl)-1*H*-1,2,3-triazol-4-yl)benzonitrile (4f) Synthesized from 4-ethynylbenzonitrile (1mmol, 0.127 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.283 g, 97%, white solid; Anal. Calcd for C₁₆H₁₂N₄S: C, 65.73; H, 4.14; N, 19.16. Found: C, 65.68; H, 4.13; N 19.22. IR (cm⁻¹): ν 492, 554, 689, 754, 834, 1045, 1071, 1277, 1449, 1612, 2228, 3094. ¹H NMR (CDCl₃): δ 5.69 (s, 2H), 7.33 (m, 5H), 7.66 (m, 2H), 7.90 (m, 3H) ppm. ¹³C{¹H} NMR (CDCl₃): δ 54.11, 111.52, 118.76, 120.48, 126.11, 128.88, 129.61, 132.23, 132.73, 134.74 ppm.

ethyl 1-(phenylthiomethyl)-1*H*-1,2,3-triazole-4-carboxylate (4g) Synthesized from ethyl propiolate (1mmol, 0.102 mL) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.260 g, 99%, yellow oil; Anal. Calcd for C₁₂H₁₃N₃O₂S: C, 54.74; H, 4.98; N, 15.96. Found: C, 54.67; H, 4.95; N 15.91. IR (cm⁻¹): ν 492, 692, 757, 1024, 1046, 1212, 1382, 1472, 1728, 2981, 3123. ¹H NMR (CD₂Cl₂): δ 1.38 (t, 3H, *J* = 7.1 Hz), 4.39 (q, 2H, *J* = 7.1 Hz), 5.66 (s, 2H), 7.28 (bs, 5H), 8.12 (s, 1H) ppm. ¹³C{¹H} NMR (CD₂Cl₂): δ 14.28, 54.24, 61.37, 127.03, 129.00, 129.66, 132.33, 140.61, 160.51 ppm.

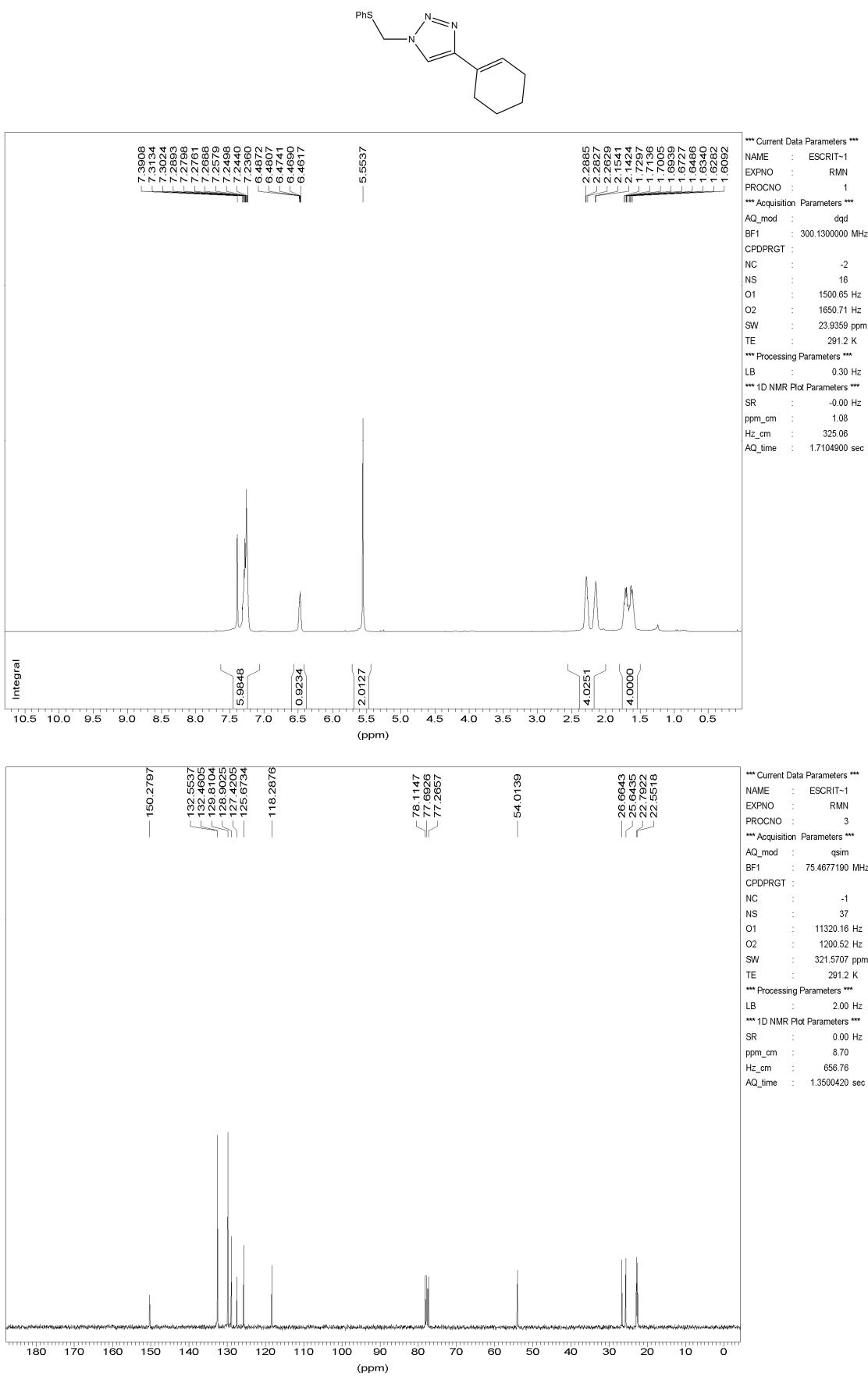
(1-benzyl-1*H*-1,2,3-triazol-4-yl)diphenylmethanol (5d) Synthesized from 1,1-diphenyl-2-propyn-1-ol (1mmol, 0.208 g) and benzylazide (1 mmol, 0.125 mL) using general procedure, 0.321 g, 94%, white solid; Anal. Calcd for C₂₂H₁₉N₃O: C, 77.40; H, 5.61; N, 12.31. Found: C, 77.49; H, 5.56; N 12.40. IR (cm⁻¹): ν 694, 758, 1016, 1231, 1446, 3398. ¹H NMR (CD₂Cl₂): δ 3.97 (s, 1H), 5.49 (s, 2H), 7.13 (s, 1H), 7.32 (m, 15H) ppm. ¹³C{¹H} NMR (CD₂Cl₂): δ 54.12, 76.78, 122.47, 127.23, 127.51, 127.89, 128.05, 128.73, 129.13, 134.64, 145.72, 154.46 ppm.

4-(1-benzyl-1*H*-1,2,3-triazol-4-yl)benzonitrile (5f) Synthesized from 4-ethynylbenzonitrile (1mmol, 0.127 g) and benzylazide (1 mmol, 0.125 mL) using general procedure, 0.252 g, 97%, white solid; Anal. Calcd for C₁₆H₁₂N₄: C, 73.83; H, 4.65; N, 21.52. Found: C, 73.74; H, 4.70; N 21.60. IR (cm⁻¹): ν 556, 719, 832, 871, 971,

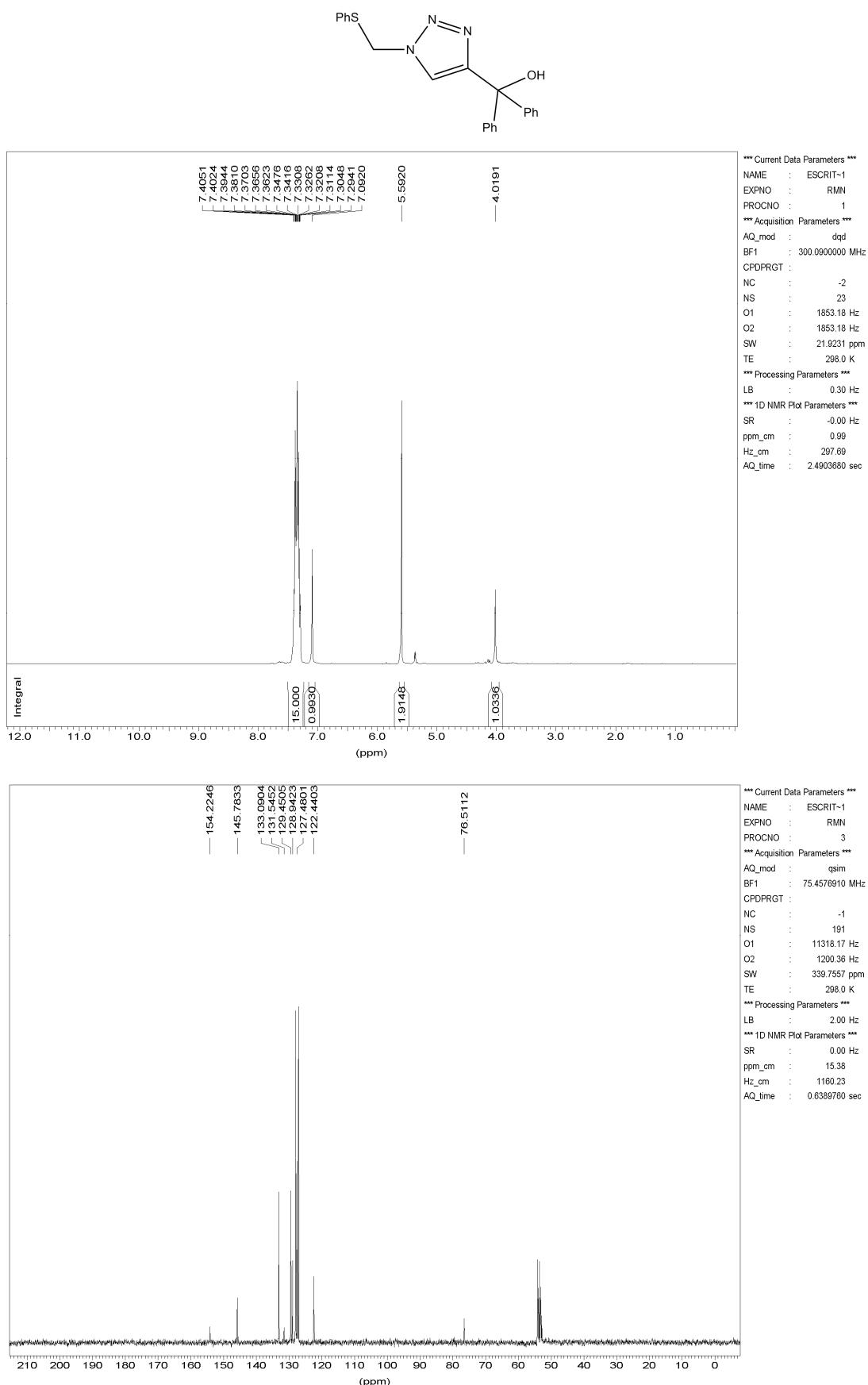
1048, 1176, 1238, 1461, 1609, 2223, 3018. ^1H NMR (CDCl_3): δ 5.59 (s, 2H), 7.36 (m, 5H), 7.64 (m, 2H), 7.85 (s, 1H), 7.90 (m, 2H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 54.39, 111.37, 118.79, 120.93, 126.05, 128.07, 128.16, 128.98, 129.26, 132.66, 134.34, 134.98, 146.30 ppm.

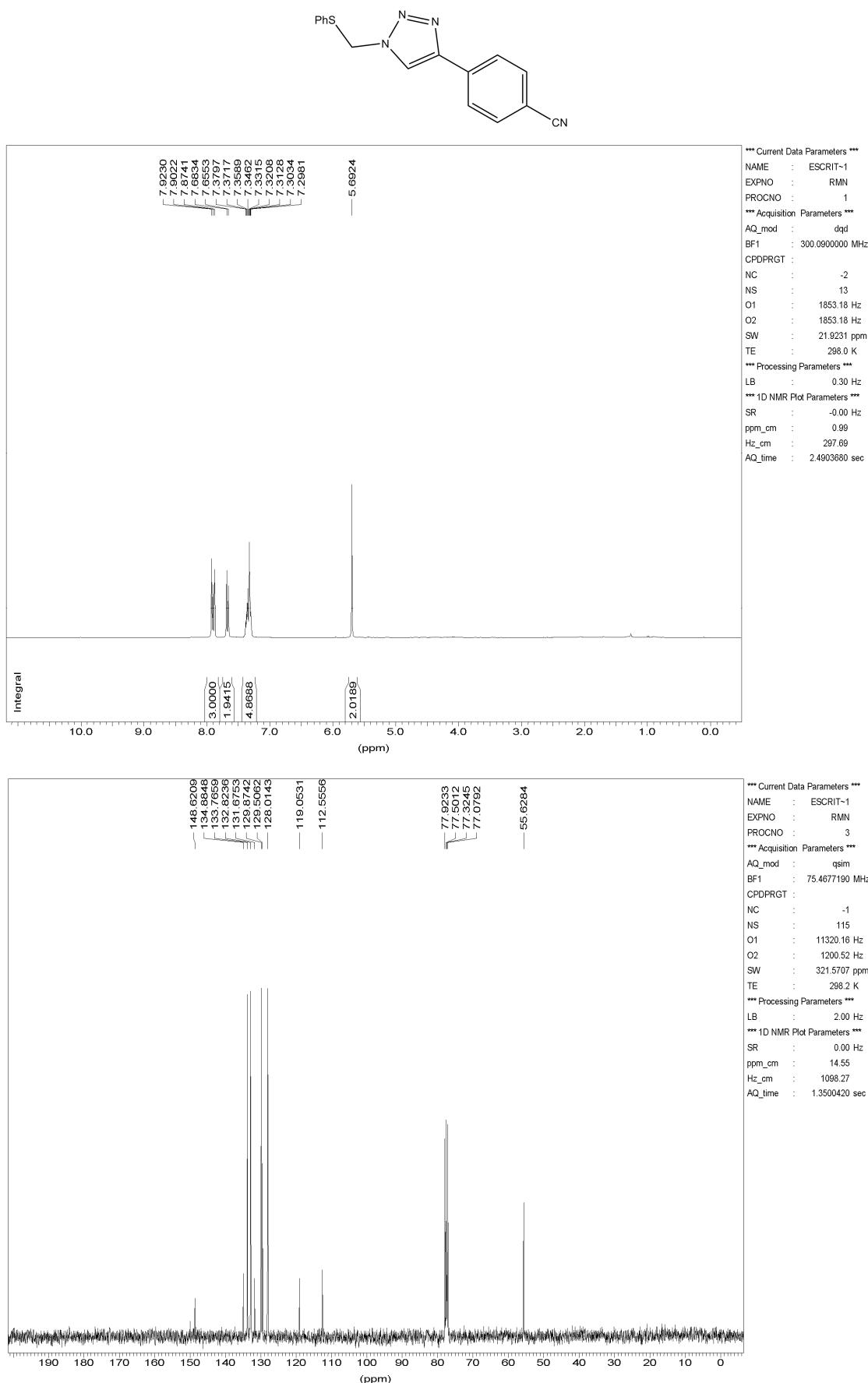

1-adamantyl-4-butyl-1H-1,2,3-triazole (6b) Synthesized from 1-hexyne (1mmol, 0.116 mL) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.243 g, 94%, white solid; Anal. Calcd for $\text{C}_{16}\text{H}_{25}\text{N}_3$: C, 74.09; H, 9.71; N, 16.20. Found: C, 74.17; H, 9.65; N 16.25. IR (cm^{-1}): ν 677, 814, 843, 1057, 1102, 1248, 1453, 2852, 2912. ^1H NMR (CDCl_3): δ 0.90 (t, 3H, J = 6.9 Hz), 1.36 and 1.62 (m, 2H each), 1.76 (bs, 6H), 2.20 (bs, 9H), 2.68 (t, 2H, J = 6.9 Hz), 7.31 (s, 1H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 13.79, 22.18, 25.27, 31.41, 53.73, 120.19, 128.63, 129.44, 132.03, 132.25, 135.65, 148.99 ppm.

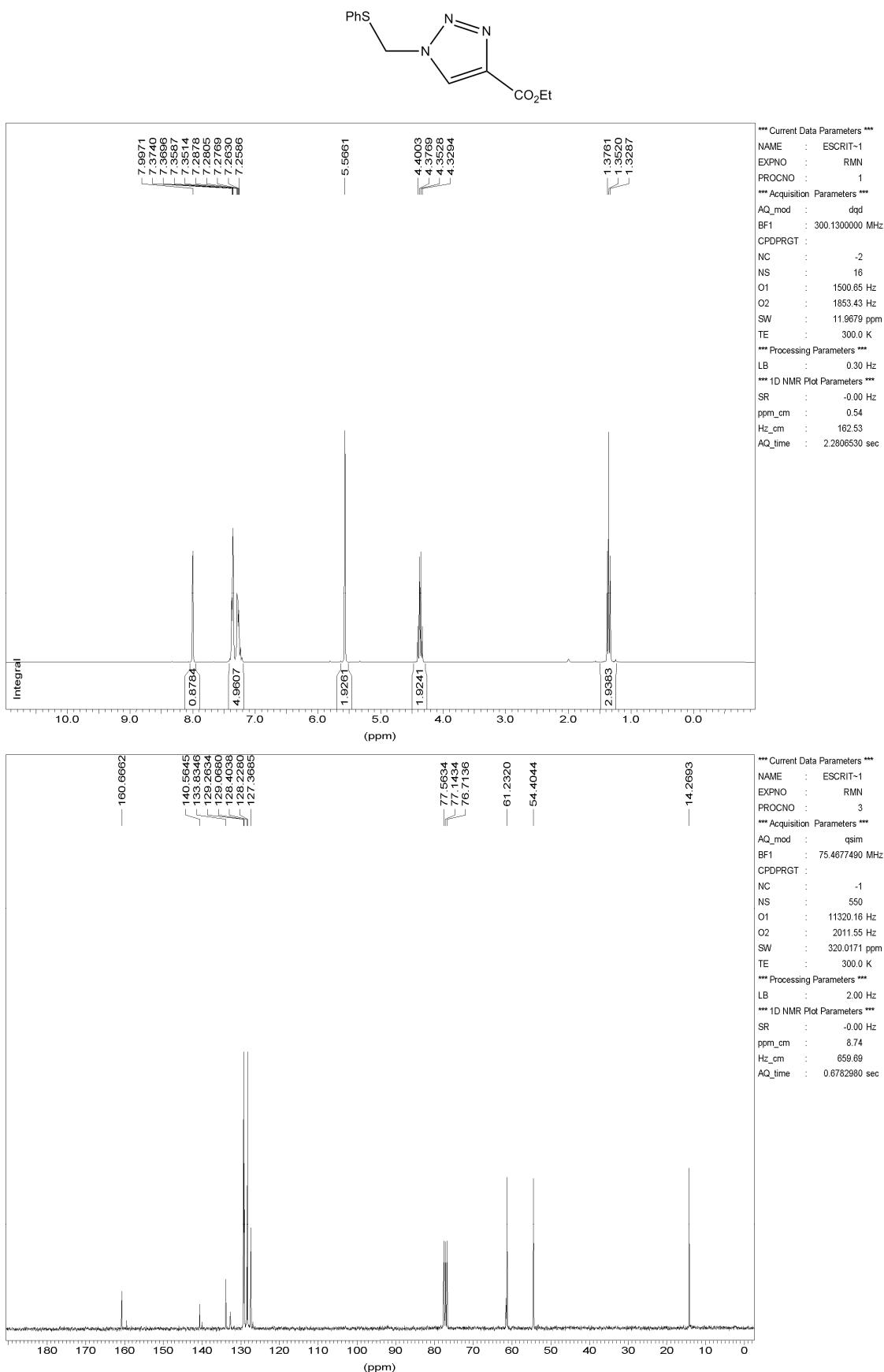
1-adamantyl-4-cyclohexenyl-1H-1,2,3-triazole (6c) Synthesized from 1-ethynylcyclohexene (1mmol, 0.117 mL) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.269 g, 95%, white solid; Anal. Calcd for $\text{C}_{18}\text{H}_{25}\text{N}_3$: C, 76.28; H, 8.89; N, 14.83. Found: C, 76.37; H, 8.81; N 14.85. IR (cm^{-1}): ν 668, 796, 1017, 1053, 1217, 1456, 1653, 2851, 2916. ^1H NMR (CDCl_3): δ 1.71 (m, 10H), 2.20 (m, 11H), 2.41 (m, 2H), 6.50 (m, 1H), 7.46 (s, 1H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 22.29, 22.54, 25.27, 26.41, 35.95, 42.97, 59.16, 114.67, 124.28, 127.66, 148.42 ppm.


(1-Adamantyl-1H-1,2,3-triazol-4-yl)diphenylmethanol (6d) Synthesized from 1,1-diphenyl-2-propyn-1-ol (1mmol, 0.208 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.385 g, 99%, white solid; Anal. Calcd for $\text{C}_{25}\text{H}_{27}\text{N}_3\text{O}$: C, 77.89; H, 7.06; N, 10.90. Found: C, 77.98; H, 7.11; N 10.97. IR (cm^{-1}): ν 636, 682, 700, 764, 802, 899, 1036, 1061, 1141, 1180, 1360, 1446, 1489, 2849, 2912, 3247. ^1H NMR (CDCl_3): δ 1.78 (bs, 6H), 2.23 (bs, 9H), 4.24 (s, 1H), 7.21 (s, 1H), 7.33 (m, 10H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 29.44, 35.88, 42.95, 59.71, 67.95, 118.83, 127.29, 127.36, 127.98, 146.09, 152.90 ppm.

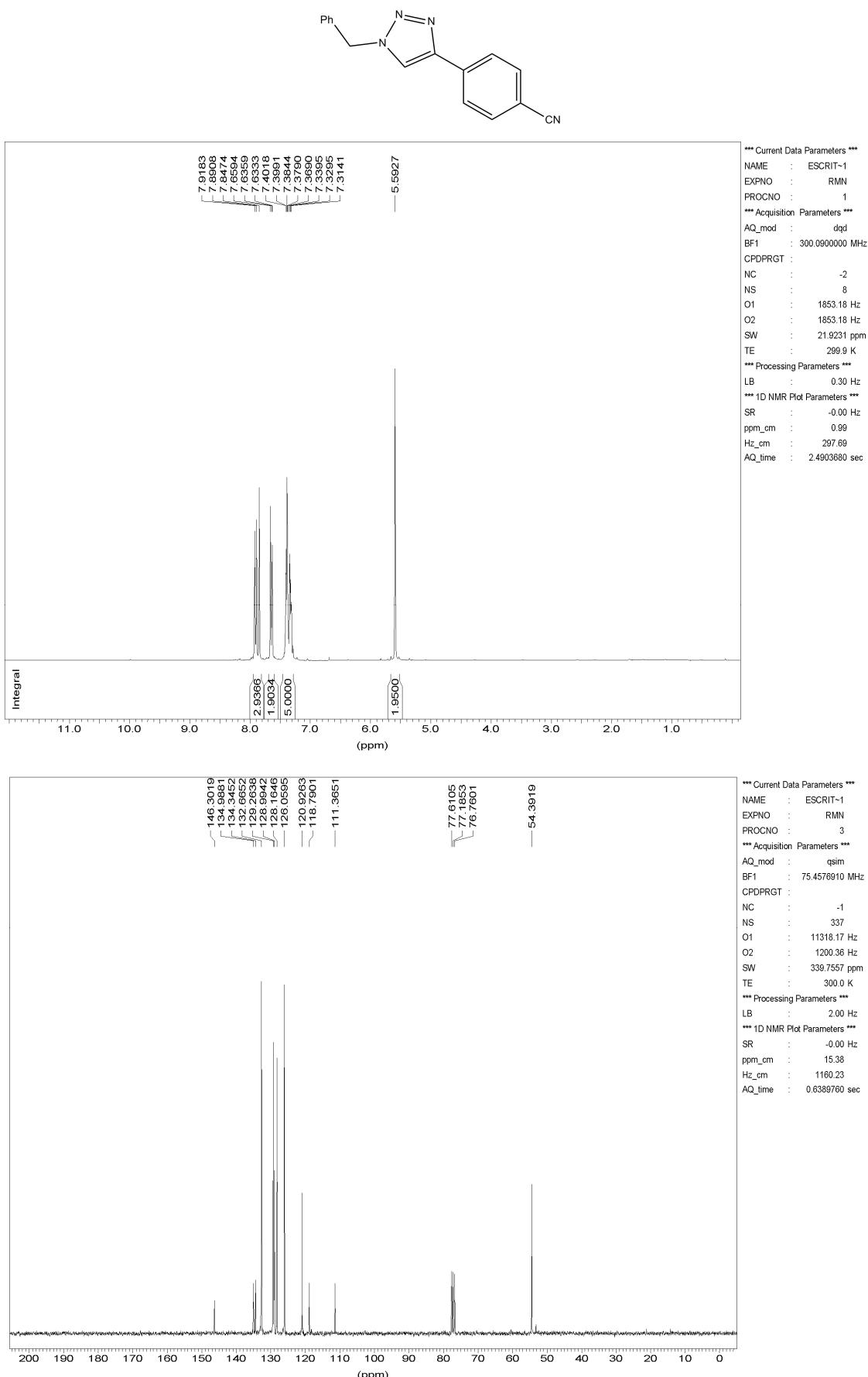
4-(1-Adamantyl-1H-1,2,3-triazol-4-yl)benzonitrile (6f) Synthesized from 4-ethynylbenzonitrile (1mmol, 0.127 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.286 g, 94%, white solid; Anal. Calcd for $\text{C}_{19}\text{H}_{20}\text{N}_4$: C, 74.97; H, 6.62; N, 18.41. Found: C, 74.87; H, 6.67; N 18.47. IR (cm^{-1}): ν 558, 841, 851, 1015, 1093, 1237, 1307, 1434, 1611, 2223, 2851, 2907. ^1H NMR (CDCl_3): δ 1.81 (bs, 6H), 2.28 (bs, 9H), 7.67 (m, 2H), 7.96 (m, 3H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 29.43, 35.81, 42.98, 60.09, 111.01, 117.52, 125.94, 132.63, 135.58, 144.90 ppm.

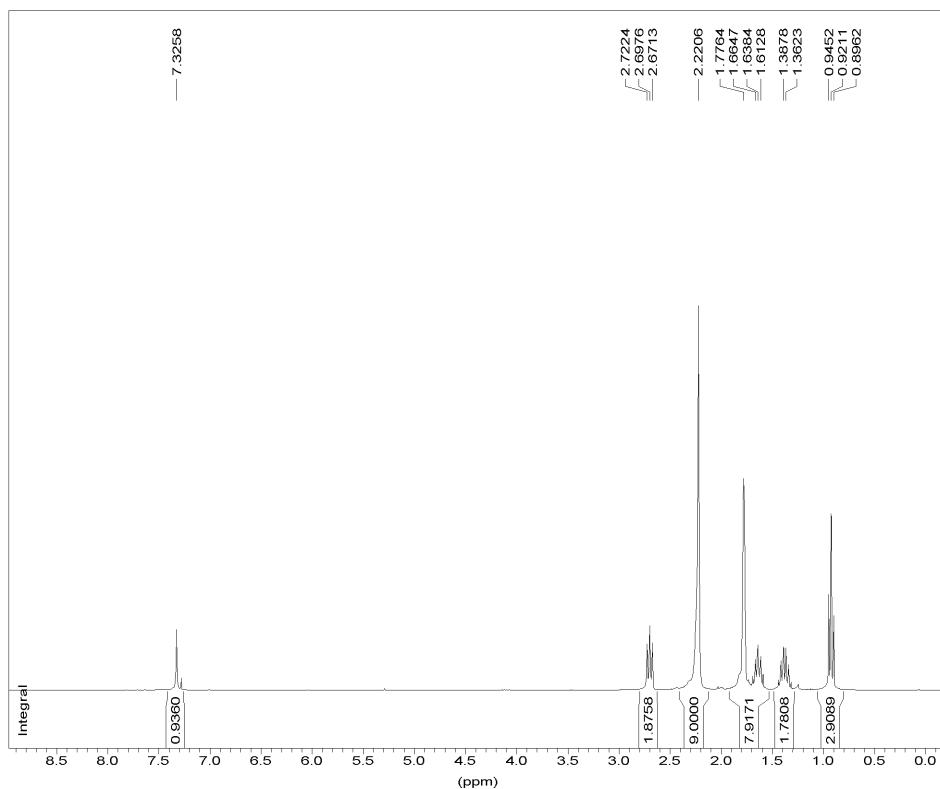
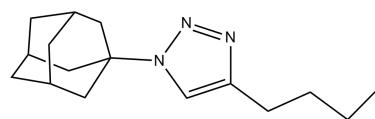

4-butyl-1-(phenylthiomethyl)-1H-1,2,3-triazole (4b)

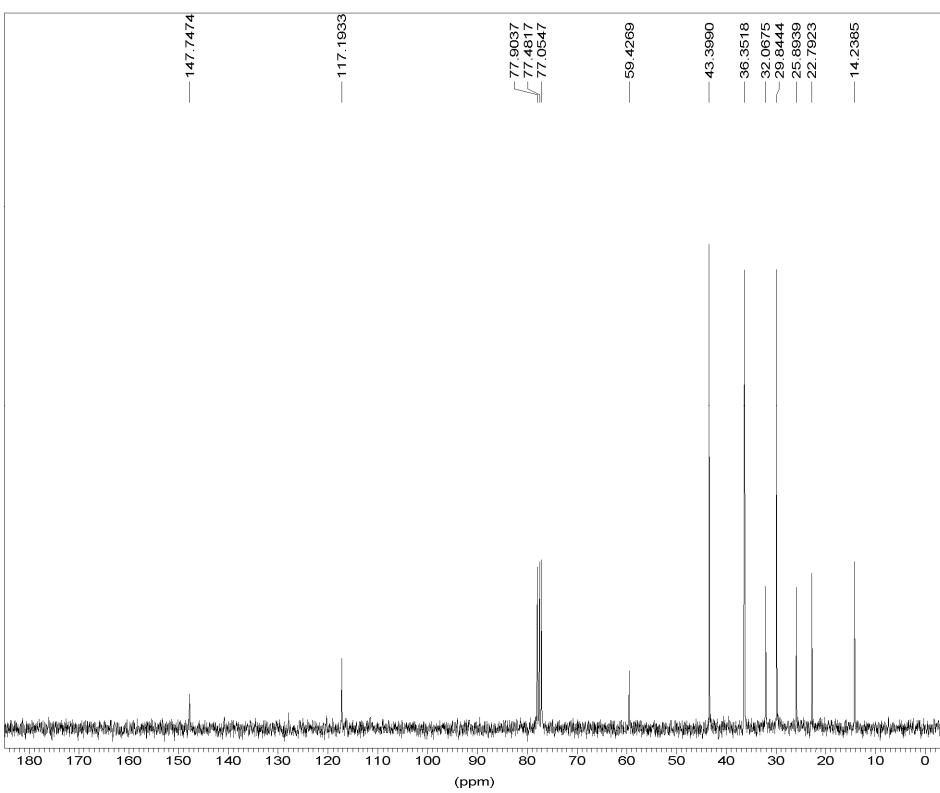

4-cyclohexenyl-1-(phenylthiomethyl)-1*H*-1,2,3-triazole (4c)


diphenyl(1-(phenylthiomethyl)-1*H*-1,2,3-triazol-4-yl)methanol (4d**)**

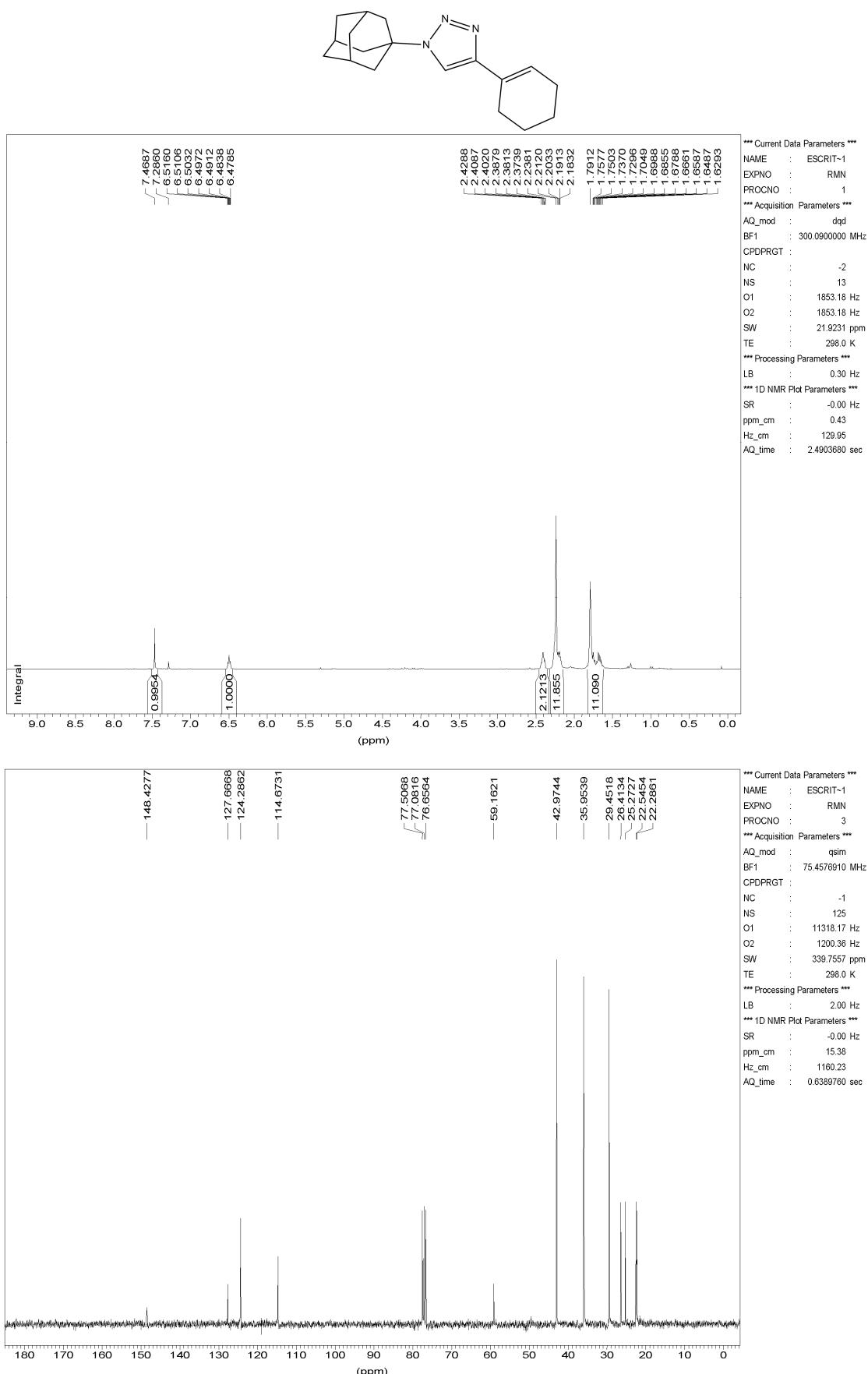
4-(1-(phenylthiomethyl)-1H-1,2,3-triazol-4-yl)benzonitrile (4f)


ethyl 1-(phenylthiomethyl)-1H-1,2,3-triazole-4-carboxylate (4g)

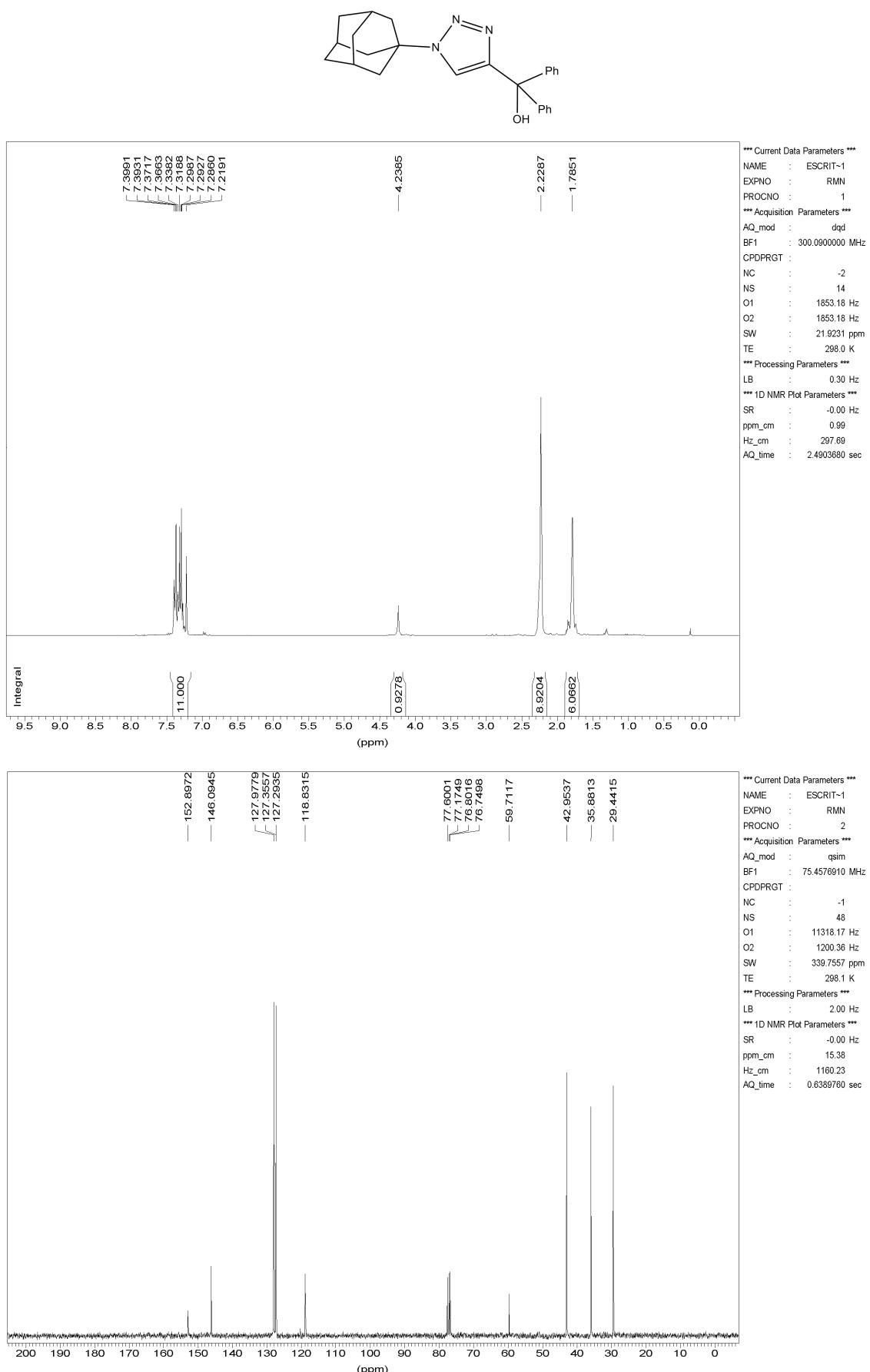


(1-benzyl-1H-1,2,3-triazol-4-yl)diphenylmethanol (5d)


4-(1-benzyl-1H-1,2,3-triazol-4-yl)benzonitrile (5f)

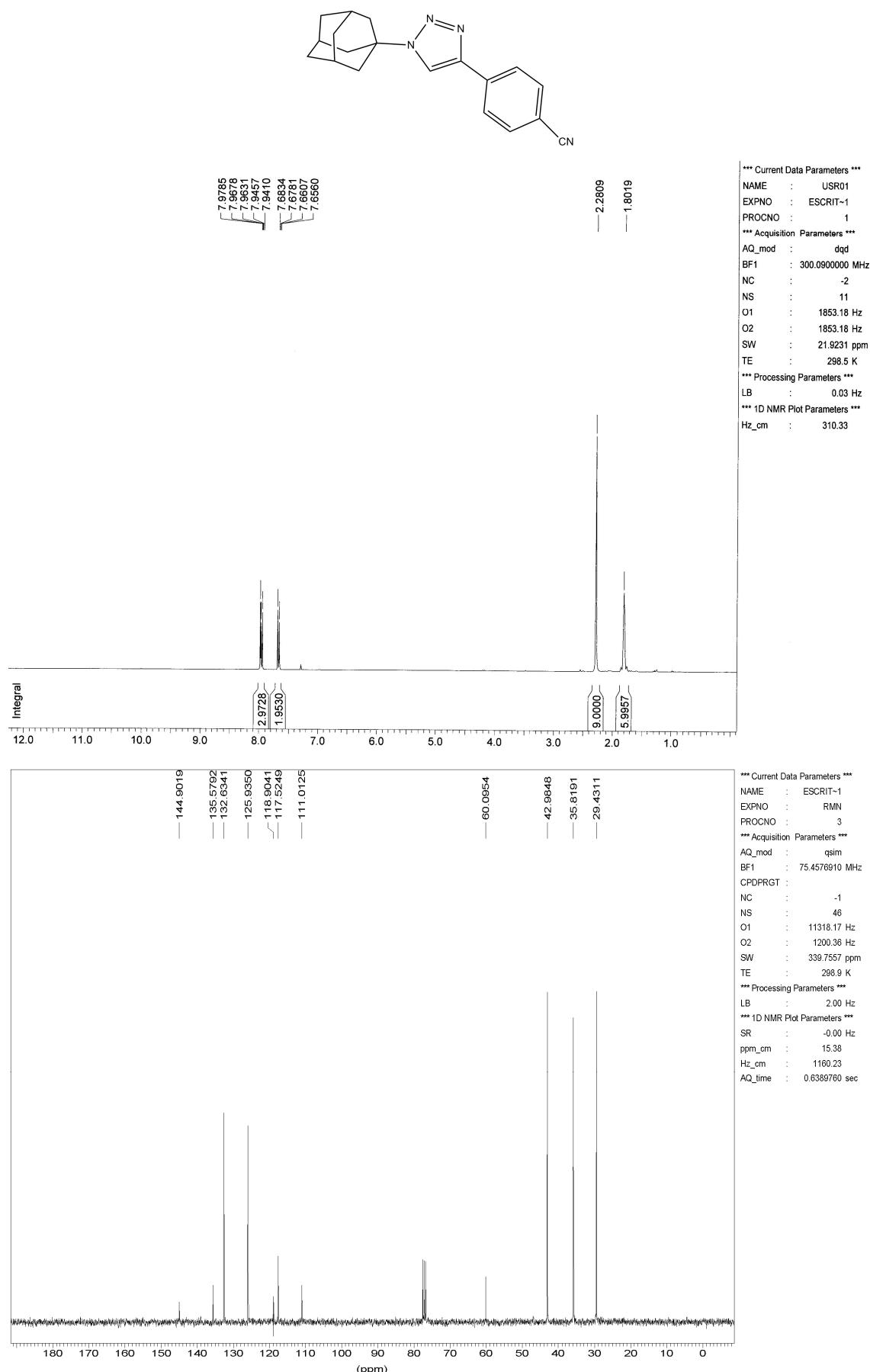
1-adamantyl-4-butyl-1H-1,2,3-triazole (6b)



*** Current Data Parameters ***
 NAME : Joaquin
 EXPNO : RMN1
 PROCNO : 1
 *** Acquisition Parameters ***
 AQ_mod : dqd
 BF1 : 300.1300000 MHz
 CPDPRT :
 NC : -2
 NS : 45
 O1 : 1500.65 Hz
 O2 : 1650.71 Hz
 SW : 23.9359 ppm
 TE : 298.2 K
 *** Processing Parameters ***
 LB : 0.30 Hz
 *** 1D NMR Plot Parameters ***
 SR : -0.00 Hz
 ppm_cm : 0.42
 Hz_cm : 124.88
 AQ_time : 1.7104900 sec



*** Current Data Parameters ***
 NAME : Joaquin
 EXPNO : RMN1
 PROCNO : 2
 *** Acquisition Parameters ***
 AQ_mod : qsim
 BF1 : 75.4677190 MHz
 CPDPRT :
 NC : -1
 NS : 42
 O1 : 11320.16 Hz
 O2 : 1200.52 Hz
 SW : 321.5707 ppm
 TE : 298.2 K
 *** Processing Parameters ***
 LB : 2.00 Hz
 *** 1D NMR Plot Parameters ***
 SR : 0.00 Hz
 ppm_cm : 14.55
 Hz_cm : 1098.27
 AQ_time : 1.3500420 sec


1-adamantyl-4-cyclohexenyl-1H-1,2,3-triazole (6c)

(1-Adamantyl-1H-1,2,3-triazol-4-yl)diphenylmethanol (6d)

4-(1-Adamantyl-1H-1,2,3-triazol-4-yl)benzonitrile (6f)

General procedure for the synthesis of 5-iodo-1,2,3-triazoles

All reagents were obtained from commercial suppliers and used without further purification with the exception of 1-iodoalkynes, which were prepared by following the method reported in the literature.⁵ For the synthesis of 5-iodo-1,2,3-triazoles; synthesis of 5-iodo-4-phenyl-1-(phenylthiomethyl)-1*H*-1,2,3-triazole (**7a**): 0.0168 g (2 mol%) of catalyst **3** were dissolved in 2 mL of H₂O under air. 1-iodo-phenylacetylene (1mmol, 0.228 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) were added in the presence of 0.012 mL (10 mol%) of 2,6-lutidine. The reaction was stirred at room temperature for 8h, after which time a yellow powder had formed. The crude of the reaction was washed with CH₂Cl₂ (3x10mL) and the combined organic fractions were concentrated by evaporation to give **7a** as a white solid (0.377 g, 96%).

The identity of the 5-iodo-1,2,3-triazoles **8a**,^{5a} **8b**,^{4d} **8e**,⁶ and **9a**^{5a} was assessed by comparison of their ¹H a ¹³C{¹H} NMR spectroscopic data with those previously reported in the literature and by their fragmentation in GC/MS.

We note that these reactions can be performed in a preparative scale. Representative example **7a**: 0.336 g of catalyst **3** were dissolved in 40 mL of H₂O under air. 1-iodo-phenylacetylene (20 mmol, 4.560 g) and (azidomethyl)(phenyl)sulfane (20 mmol, 2.84 mL) were added in the presence of 0.24 mL of 2,6-lutidine. The reaction was stirred at room temperature for 12h, after which time a yellow powder had formed. The crude of the reaction was washed with CH₂Cl₂ (3x40mL) and the combined organic fractions were concentrated by evaporation to give **7a** as a white solid (6.99 g, 89%).

5-iodo-4-phenyl-1-(phenylthiomethyl)-1*H*-1,2,3-triazole (7a) Synthesized from 1-iodo-phenylacetylene (1mmol, 0.228 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.377 g, 96%, white solid; Anal. Calcd for C₁₅H₁₂IN₃S: C, 45.81; H, 3.08; N, 10.69. Found: C, 45.90; H, 3.04; N 10.65. IR (cm⁻¹): ν 687, 742, 765, 982, 1065, 1234, 1418, 1467, 2998. ¹H NMR (CDCl₃): δ 5.74 (s, 2H), 7.42 (m, 8H), 7.97 (m, 2H) ppm. ¹³C{¹H} NMR (CDCl₃): δ 55.04, 75.87, 127.45, 128.60, 128.75, 128.96, 129.41, 130.06, 131.56, 133.37, 150.30 ppm.

4-butyl-5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole (7b) Synthesized from 1-iodohexyne (1mmol, 0.208 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.347 g, 93%, white solid; Anal. Calcd for C₁₃H₁₆IN₃S: C, 41.83; H, 4.32; N, 11.26. Found: C, 41.91; H, 4.28; N 11.30. IR (cm⁻¹): ν 496, 690, 740, 1059, 1216, 1437, 2972, 2951. ¹H NMR (CDCl₃): δ 0.95 (m, 3H), 1.37 and 1.67 (m, 2H each), 2.65 (m, 2H), 5.61 (s, 2H), 7.32 (m, 4H) ppm. ¹³C{¹H} NMR (CDCl₃): δ 13.84, 22.21, 25.73, 30.99, 54.56, 77.75, 128.85, 129.31, 131.58, 133.38, 152.63 ppm.

4-cyclohexenyl-5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole (7c) Synthesized from 1-(iodoethynyl)cyclohex-1-ene (1mmol, 0.232 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.373 g, 94%, white solid; Anal. Calcd for C₁₅H₁₆IN₃S: C, 45.35; H, 4.06; N, 10.58. Found: C, 45.28; H, 4.01; N 10.63. IR (cm⁻¹): ν 485, 684, 738, 764, 842, 920, 1066, 1231, 1287, 1419, 2929. ¹H NMR (CDCl₃): δ 1.73 (m, 4H), 2.23 (m, 2H), 2.55 (m, 2H), 5.54 (s, 2H), 6.47 (m, 1H), 7.34 (m, 5H), ppm. ¹³C{¹H} NMR (CDCl₃): δ 21.89, 22.61, 25.46, 27.20, 54.75, 74.54, 127.90, 128.74, 128.79, 129.32, 131.83, 133.11, 151.70 ppm.

(5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazol-4-yl)diphenylmethanol (7d)
Synthesized from 3-iodo-1,1-diphenylprop-2-yn-1-ol (1mmol, 0.334 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.464 g, 93%, white solid; Anal. Calcd for C₂₂H₁₈IN₃OS: C, 52.91; H, 3.63; N, 8.41. Found: C, 53.01; H, 3.59; N 8.47. IR (cm⁻¹): 697, 764, 907, 1011, 1159, 1298, 1441, 1492, 3552. ¹H NMR (CD₂Cl₂): δ 4.10 (s, 1H), 5.69 (s, 2H), 7.33 (m, 15H) ppm. ¹³C{¹H} NMR (CD₂Cl₂): δ 54.97, 77.64, 78.20, 127.83, 127.97, 128.08, 129.11, 129.34, 131.16, 133.93, 144.27, 154.89 ppm.

4-(4-fluorophenyl)-5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole (7e) Synthesized from 1-fluoro-4-(iodoethynyl)benzene (1mmol, 0.246 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.399 g, 97%, white solid; Anal. Calcd for C₁₅H₁₁FIN₃S: C, 43.81; H, 2.70; N, 10.22. Found: C, 43.90; H, 2.68; N 10.26. IR (cm⁻¹): ν 499, 696, 752, 839, 987, 1093, 1157, 1255, 1279, 1470, 1540. ¹H NMR (CDCl₃): δ 5.74 (s, 2H), 7.18 (m, 2H), 7.33 (m, 3H), 7.43 (m, 2H), 7.94 (m, 2H) ppm. ¹³C{¹H} NMR (CDCl₃): δ 55.07, 75.73, 115.65 (d, *J* = 21.9 Hz), 126.20 (d, *J* = 3.1 Hz), 128.97, 129.33 (d, *J* = 8.6 Hz), 129.42, 149.55, 162.99 (d, *J* = 249.8 Hz) ppm. ¹⁹F NMR (CDCl₃): -112.30 ppm.

4-(5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazol-4-yl)benzonitrile (7f) Synthesized from 4-(iodoethynyl)benzonitrile (1mmol, 0.253 g) and (azidomethyl)(phenyl)sulfane (1

mmol, 0.142 mL) using general procedure, 0.396 g, 95%, white solid; Anal. Calcd for C₁₆H₁₁IN₄S: C, 45.95; H, 2.65; N, 13.40. Found: C, 45.91; H, 2.63; N 13.43. IR (cm⁻¹): ν 549, 696, 723, 843, 985, 1235, 1338, 1445, 1612, 2230. ¹H NMR (CDCl₃): δ 5.73 (s, 2H), 7.35 (m, 5H), 8.11 (m, 2H), 8.13 (m, 2H) ppm. ¹³C{¹H} NMR (CDCl₃): δ 55.15, 76.85, 112.08, 118.58, 127.54, 129.03, 129.40, 131.20, 132.35, 132.29, 134.41, 148.14 ppm.

ethyl 5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole-4-carboxylate (7g) Synthesized from ethyl 3-iodopropionate (1mmol, 0.224 g) and (azidomethyl)(phenyl)sulfane (1 mmol, 0.142 mL) using general procedure, 0.373 g, 96%, yellow solid; Anal. Calcd for C₁₂H₁₂IN₃O₂S: C, 37.03; H, 3.11; N, 10.80 . Found: C, 37.10; H, 3.15; N 10.85. IR (cm⁻¹): ν 474, 687, 766, 1032, 1046, 1250, 1388, 1491, 1734, 2942, 3133. ¹H NMR (CDCl₃): δ 1.45 (t, 3H, *J* = 7.2 Hz), 4.46 (q, 2H, *J* = 7.2 Hz), 5.70 (s, 2H), 7.33 (m, 5H) ppm. ¹³C{¹H} NMR (CD₂Cl₂): δ 13.76, 54.87, 61.16, 83.71, 128.80, 129.04, 130.41, 133.23, 141.87, 159.66 ppm.

1-benzyl-4-cyclohexenyl-5-iodo-1H-1,2,3-triazole (8c) Synthesized from 1-(iodoethynyl)cyclohex-1-ene (1mmol, 0.232 g) and benzylazide (1 mmol, 0.125 mL) using general procedure, 0.347 g, 95%, white solid; Anal. Calcd for C₁₅H₁₆IN₃: C, 49.33; H, 4.42; N, 11.51. Found: C, 49.21; H, 4.44; N 11.55. IR (cm⁻¹): ν 689, 720, 918, 1065, 1233, 1432, 1497, 2934. ¹H NMR (CDCl₃): δ 1.73 (m, 4H), 2.21 (m, 2H), 2.57 (m, 2H), 5.60 (s, 2H), 6.46 (m, 1H), 7.30 (m, 5H), ppm. ¹³C{¹H} NMR (CDCl₃): δ 21.92, 22.63, 25.44, 27.22, 54.13, 75.11, 127.73, 128.05, 128.35, 128.52, 128.82, 134.58, 151.58 ppm.

(1-benzyl-5-iodo-1H-1,2,3-triazol-4-yl)diphenylmethanol (8d) 3-iodo-1,1-diphenylprop-2-yn-1-ol (1mmol, 0.334 g) and benzylazide (1 mmol, 0.125 mL) using general procedure, 0.444 g, 95%, white solid; Anal. Calcd for C₂₂H₁₈IN₃O: C, 56.54; H, 3.88; N, 8.99. Found: C, 56.59; H, 3.84; N 8.97. IR (cm⁻¹): 628, 698, 723, 763, 1009, 1161, 1447, 3551. ¹H NMR (CD₂Cl₂): δ 4.25 (s, 1H), 5.62 (s, 2H), 7.44 (m, 15H) ppm. ¹³C{¹H} NMR (CD₂Cl₂): δ 54.35, 77.80, 78.51, 126.15, 127.75, 127.86, 128.06, 128.21, 128.40, 128.51, 128.95, 134.32, 144.17, 154.92 ppm.

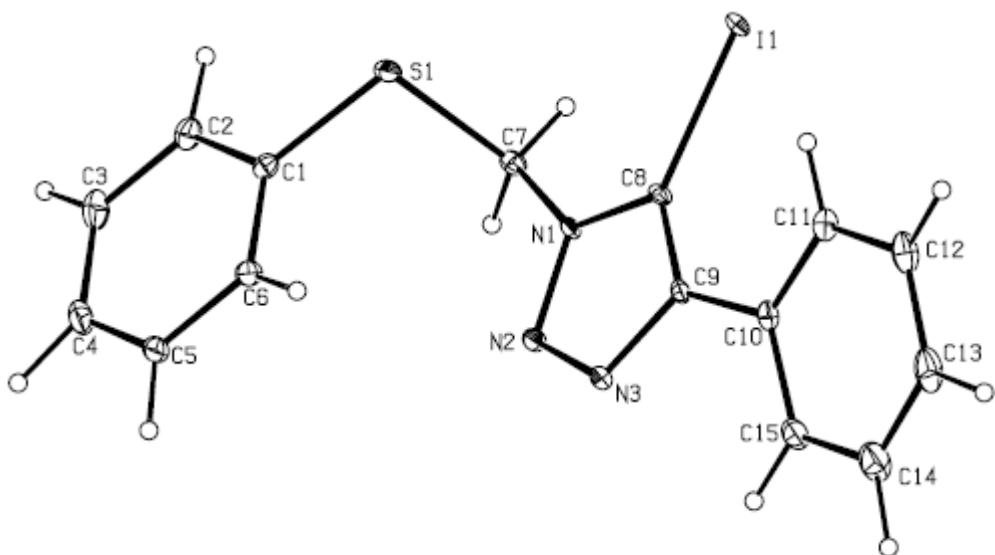
4-(1-benzyl-5-iodo-1H-1,2,3-triazol-4-yl)benzonitrile (8f) Synthesized from 4-(iodoethynyl)benzonitrile (1mmol, 0.253 g) and benzylazide (1 mmol, 0.125 mL) using general procedure, 0.355 g, 92%, white solid; Anal. Calcd for C₁₆H₁₁IN₄: C, 49.76; H, 2.87; N, 14.51. Found: C, 49.69; H, 2.91; N 13.54. IR (cm⁻¹): ν 555, 686, 732, 845, 981, 1235, 1409, 1611, 2229. ¹H NMR (CDCl₃): δ 5.71 (s, 2H), 7.35 (m, 5H), 7.75 (m, 2H),

8.14 (m, 2H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 54.50, 77.19, 111.97, 118.60, 127.55, 127.79, 128.63, 128.94, 132.30, 133.84, 134.61, 148.10, ppm

ethyl 1-benzyl-5-iodo-1H-1,2,3-triazole-4-carboxylate (8g) Synthesized from ethyl 3-iodopropiolate (1mmol, 0.224 g) and benzylazide (1 mmol, 0.125 mL) using general procedure, 0.336 g, 94%, yellow solid; Anal. Calcd for $\text{C}_{12}\text{H}_{12}\text{IN}_3\text{O}_2$: C, 40.36; H, 3.39; N, 11.77. Found: C, 40.40; H, 3.34; N 11.81. IR (cm^{-1}): ν 488, 686, 743, 1053, 1126, 1222, 1518, 1719. ^1H NMR (CDCl_3): δ 1.43 (m, 3H), 4.44 (m, 2H), 5.67 (s, 2H), 7.31 (m, 5H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CD_2Cl_2): δ 14.18, 54.43, 61.50, 84.56, 127.76, 128.65, 128.90, 133.53, 142.24, 160.17 ppm.

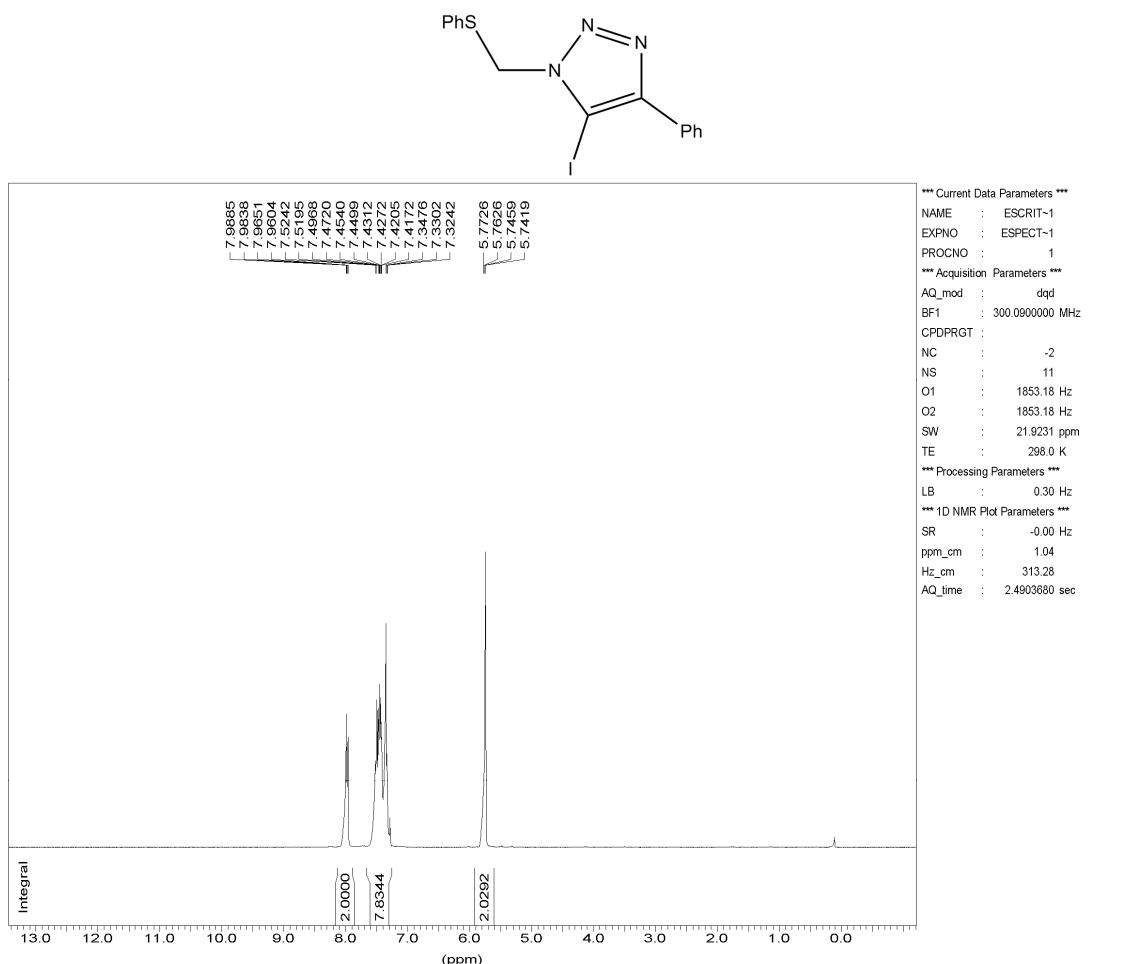
1-adamantyl-4-butyl-5-iodo-1H-1,2,3-triazole (9b) Synthesized from 1-iodo-hexyne (1mmol, 0.208 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.377 g, 98%, white solid; Anal. Calcd for $\text{C}_{16}\text{H}_{24}\text{IN}_3$: C, 49.88; H, 6.28; N, 10.91. Found: C, 49.81; H, 6.33; N 10.87. IR (cm^{-1}): ν 698, 760, 816, 837, 1016, 1148, 1232, 1310, 1356, 1450, 1464, 1517, 2912. ^1H NMR (CDCl_3): δ 0.95 (t, 3H, J = 7.4 Hz), 1.40 and 1.66 (m, 2H each), 1.78 (bs, 6H), 2.27 (bs, 3H), 2.52 (bs, 6H), 2.66 (t, 2H, J = 7.7 Hz) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 13.37, 21.93, 25.22, 29.30, 30.64, 35.44, 40.95, 62.87, 69.92, 152.49 ppm.

1-adamantyl-4-cyclohexenyl-5-iodo-1H-1,2,3-triazole (9c) Synthesized from 1-(iodoethynyl)cyclohex-1-ene (1mmol, 0.232 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.380 g, 93%, white solid; Anal. Calcd for $\text{C}_{18}\text{H}_{24}\text{IN}_3$: C, 52.82; H, 5.91; N, 10.27. Found: C, 52.75; H, 5.85; N 10.30. IR (cm^{-1}): ν 687, 713, 801, 848, 920, 1017, 1145, 1240, 1308, 1357, 2904. ^1H NMR (CDCl_3): δ 1.71 (m, 10H), 2.23 (m, 5H), 2.44 (m, 2H), 2.54 (6H), 6.18 (m, 1H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 21.42, 22.24, 24.97, 27.62, 29.35, 35.43, 40.98, 63.38, 68.12, 127.84, 129.57, 152.98 ppm.


(1-Adamantyl-5-iodo-1-1H-1,2,3-triazol-4-yl)diphenylmethanol (9d) Synthesized from 3-iodo-1,1-diphenylprop-2-yn-1-ol (1mmol, 0.334 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.496 g, 97%, white solid; Anal. Calcd for $\text{C}_{25}\text{H}_{26}\text{IN}_3\text{O}$: C, 58.72; H, 5.12; N, 8.22. Found: C, 58.79; H, 5.07; N 8.26. IR (cm^{-1}): ν 634, 697, 758, 887, 1006, 1017, 1140, 1235, 1357, 1446, 2851, 2903, 3539. ^1H NMR (CDCl_3): δ 1.78 (bs, 6H), 2.28 (bs, 3H), 2.58 (bs, 6H), 4.26 (s, 1H), 7.31 (m, 10H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 28.85, 34.84, 40.41, 63.90, 69.43, 77.04, 126.67, 126.90, 127.22, 143.40, 154.10 ppm.

1-adamantyl-4-(4-fluorophenyl)-5-iodo-1H-1,2,3-triazole (9e) Synthesized from 1-fluoro-4-(iodoethynyl)benzene (1mmol, 0.246 g) and 1-azidoadamantane (1 mmol,

0.177 g) using general procedure, 0.393 g, 97%, white solid; Anal. Calcd for Chemical Formula: $C_{18}H_{19}FIN_3$: C, 51.08; H, 4.52; N, 9.93. Found: C, 51.01; H, 4.59; N 9.90. IR (cm^{-1}): ν 531, 611, 811, 840, 1015, 1092, 1155, 1188, 1234, 1308, 1494, 1555, 2853, 2908. ^1H NMR (CDCl_3): δ 1.81 (bs, 6H), 2.29 (bs, 9H), 7.10 (m, 2H), 7.81 (m, 2H), ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 28.99, 35.44, 42.55, 59.20, 76.80, 115.23 (d, J = 21.4 Hz), 126.84, 126.79, 145.43, 162.03 (d, J = 247.1 Hz) ppm. ^{19}F NMR (CDCl_3): -114.17 ppm.


4-(1-adamantyl-5-iodo-1H-1,2,3-triazol-4-yl)benzonitrile (9f) Synthesized from 4-(iodoethynyl)benzonitrile (1mmol, 0.253 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.400 g, 93%, white solid; Anal. Calcd for $C_{19}H_{19}IN_4$: C, 53.04; H, 4.45; N, 13.02. Found: C, 53.12; H, 4.51; N 13.07. IR (cm^{-1}): ν 589, 751, 884, 948, 1025, 1113, 1287, 1374, 1456, 1712, 2228,. ^1H NMR (CDCl_3): δ 1.68 (bs, 6H), 2.15 (bs, 9H), 6.96 (m, 2H), 7.69 (m, 2H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CDCl_3): δ 28.60, 35.34, 42.51, 59.62, 76.88, 110.53, 117.05, 125.45, 132.15, 135.10, 144.43 ppm.

ethyl 1-adamantyl-5-iodo-1H-1,2,3-triazole-4-carboxylate (9g) Synthesized from ethyl 3-iodopropiolate (1mmol, 0.224 g) and 1-azidoadamantane (1 mmol, 0.177 g) using general procedure, 0.369 g, 92%, yellow solid; Anal. Calcd for $C_{15}H_{20}IN_3O_2$: C, 44.90; H, 5.02; N, 10.47. Found: C, 44.84; H, 5.09; N 10.41 IR (cm^{-1}): ν 560, 812, 1308, 1358, 1553, 1640, 2984. ^1H NMR (CDCl_3): δ 1.64 (bs, 9H), 1.94 (bs, 6H), 2.03 (bs, 3H), 3.48 (bs, 2H) ppm. $^{13}\text{C}\{\text{H}\}$ NMR (CD_2Cl_2): δ 28.90, 35.76, 41.04, 76.79, 140.55, 167.84 ppm.

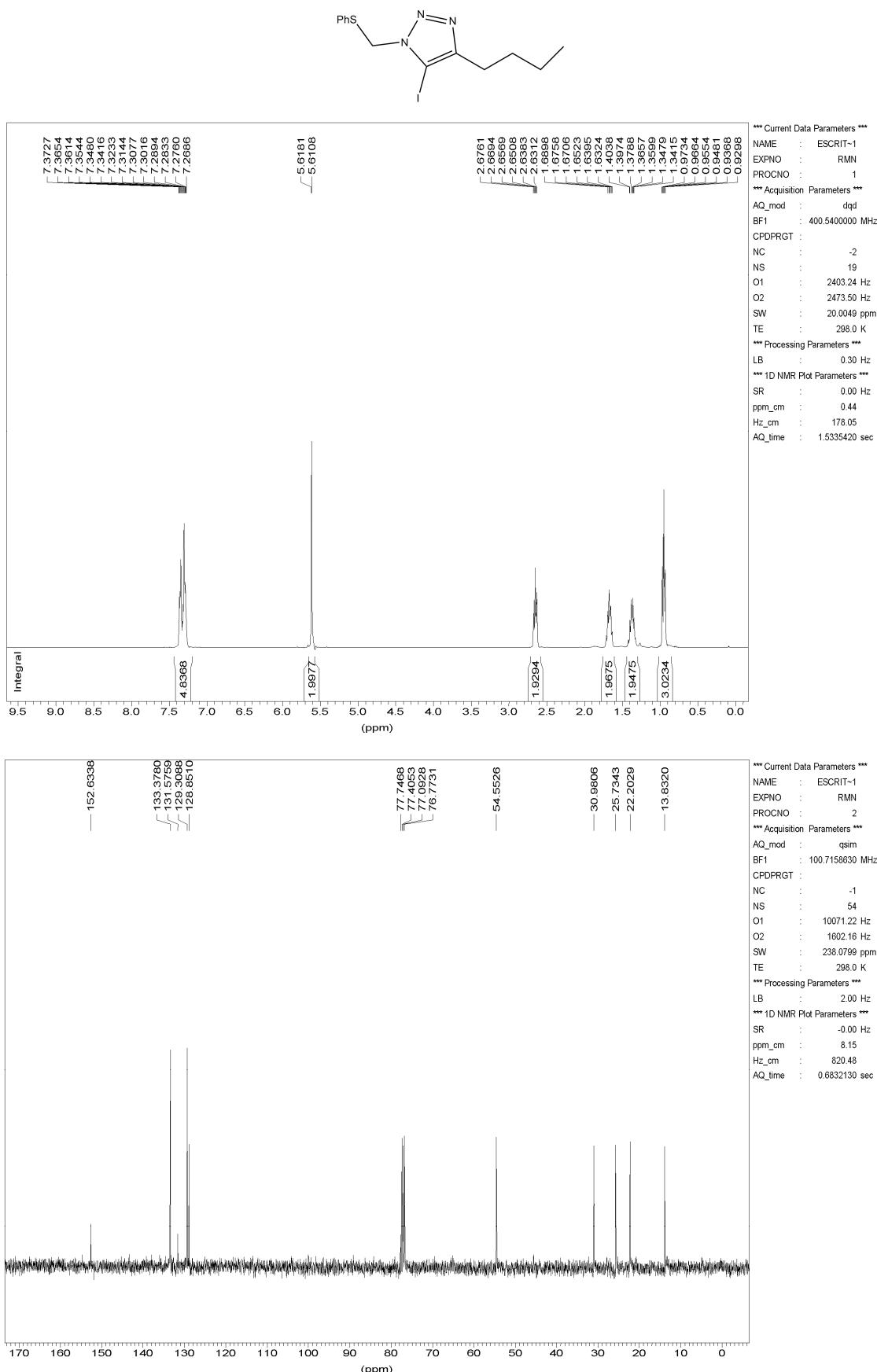
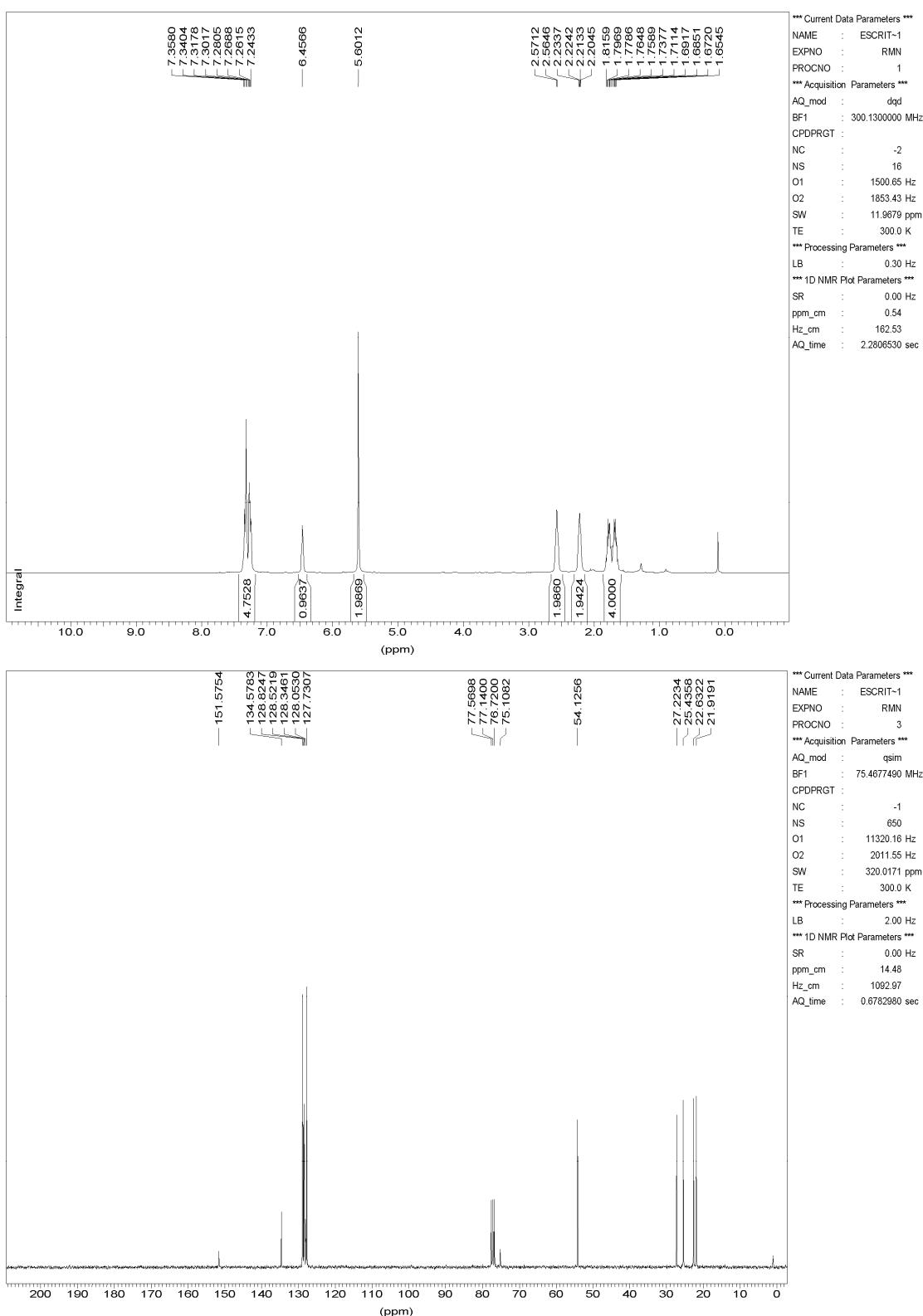
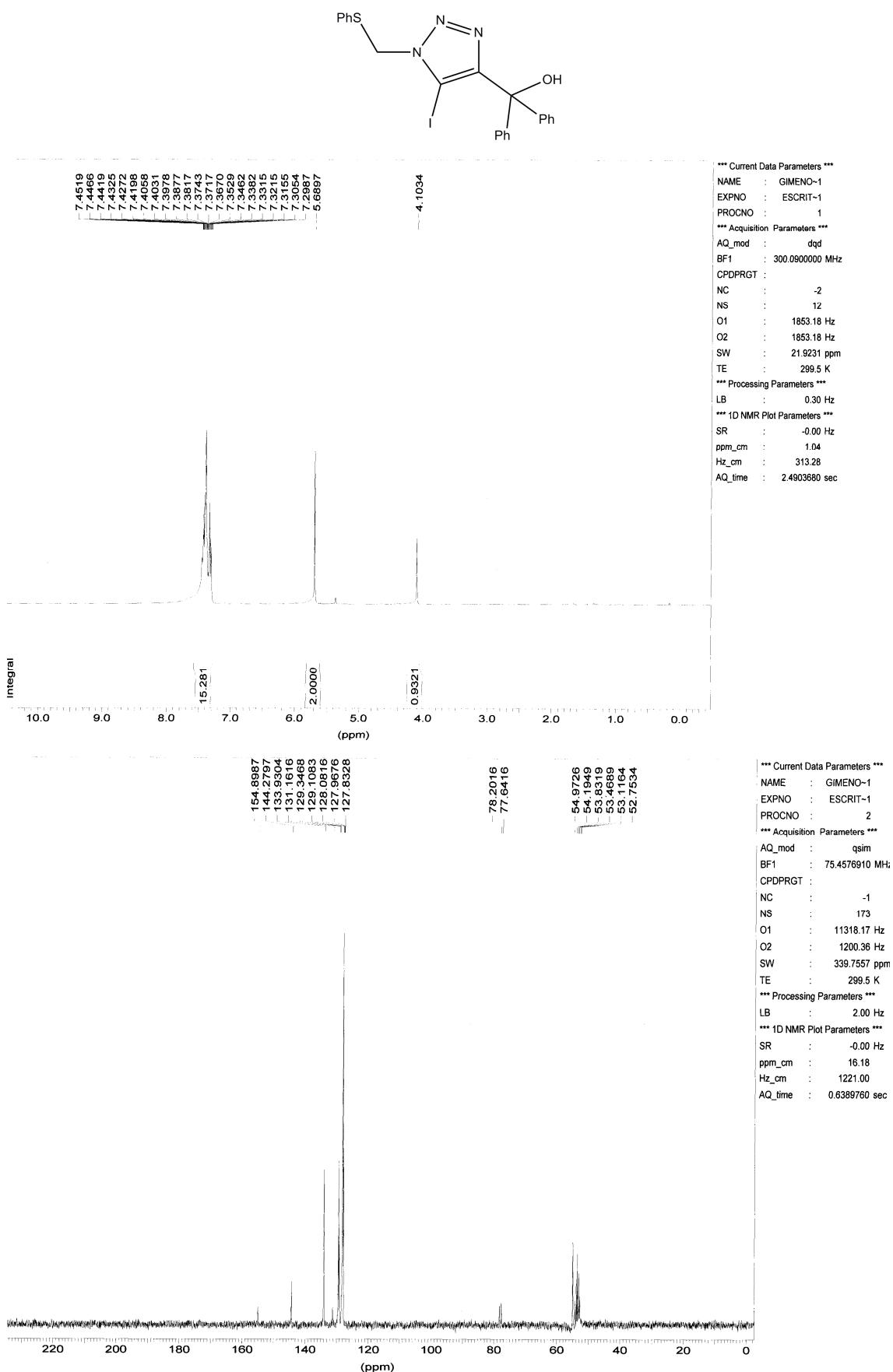
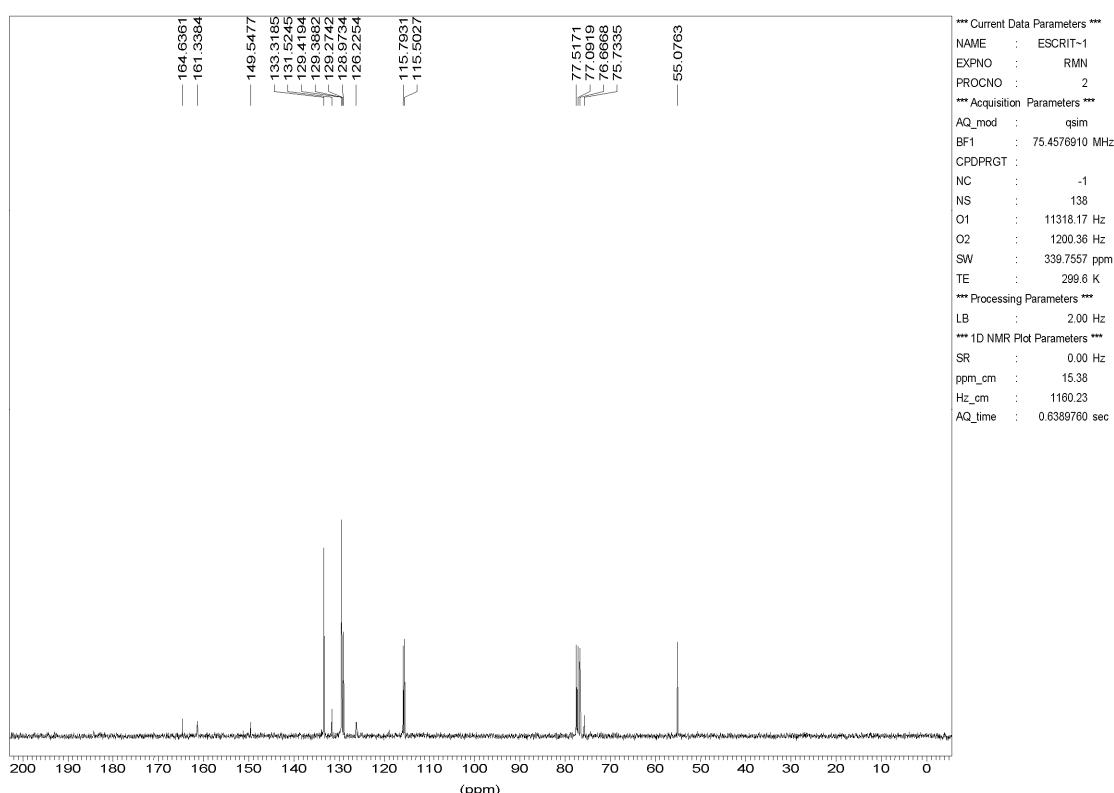
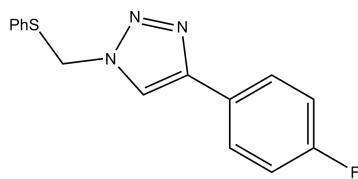
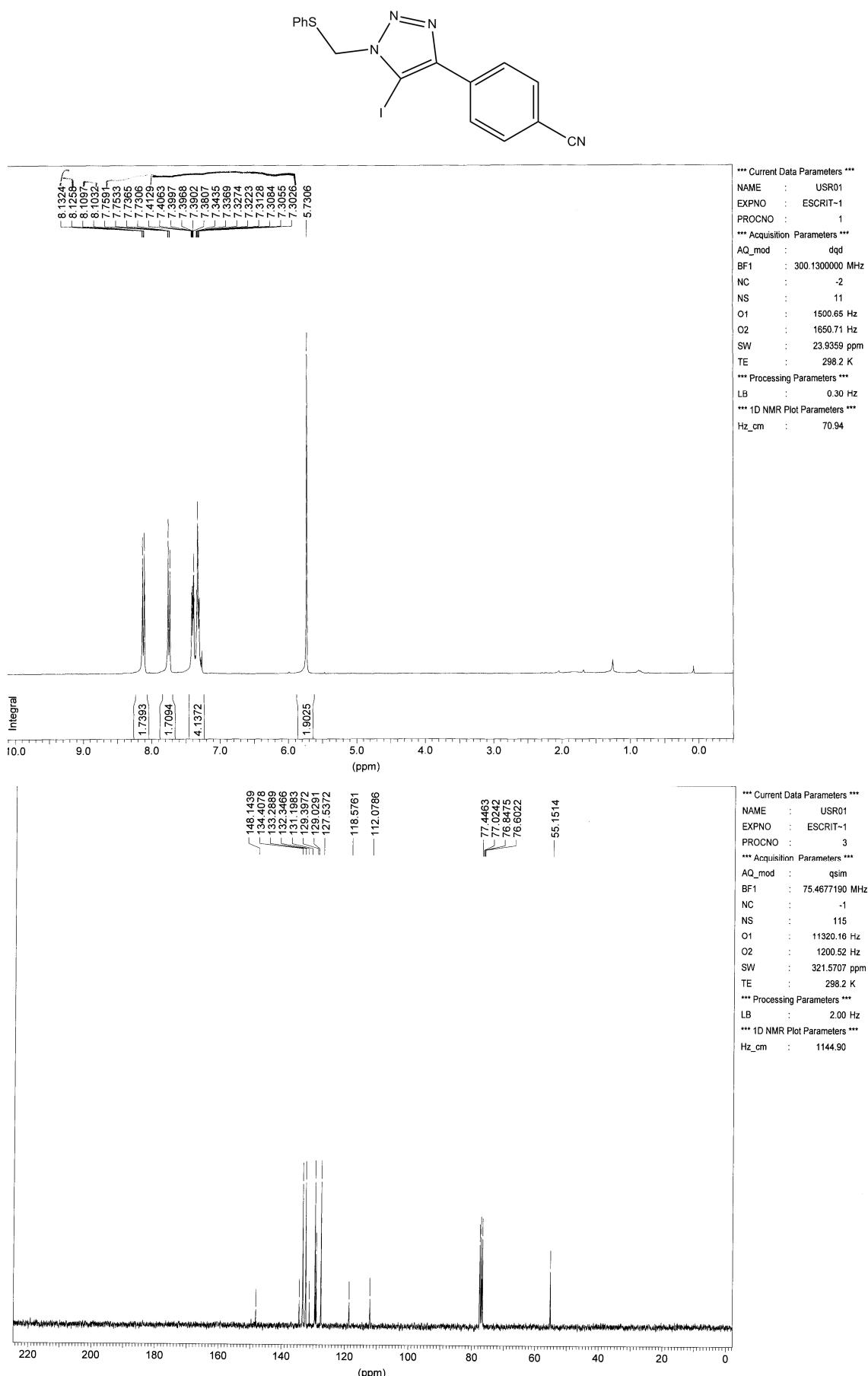


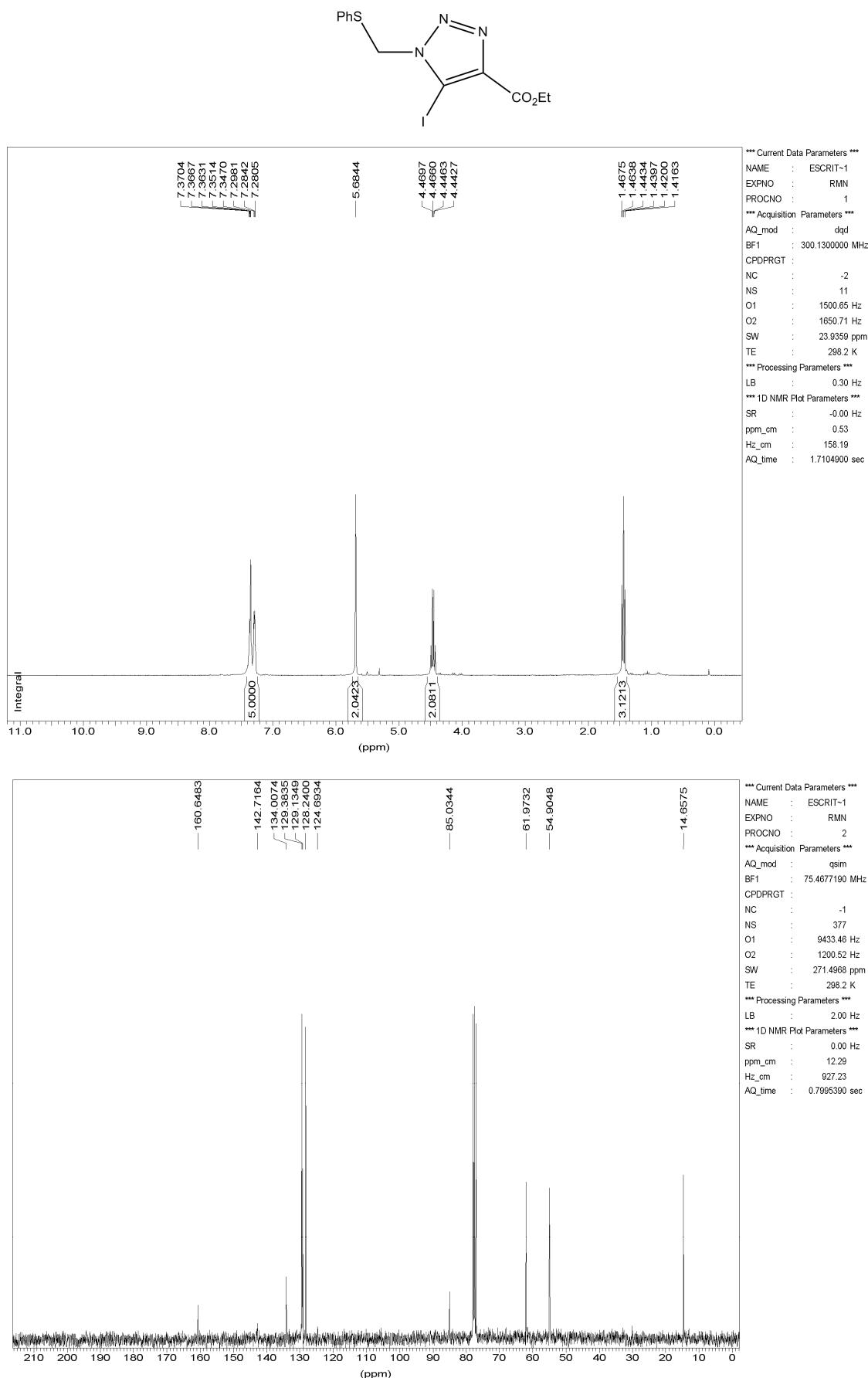
Figure ESI-2. ORTEP-type view of the structure of compound **7a** showing the crystallographic labelling scheme. Thermal ellipsoids are drawn at 20% probability level. Selected bond lengths (Å): N(1)-N(2) = 1.346(3); N(2)-N(3) = 1.311(4); N(3)-C(9) = 1.364(5); C(9)-C(8) = 1.373(5); C(8)-N(1) = 1.356(4); C(8)-I(1) = 2.094(4). Selected bond angles (°): N(1)-N(2)-N(3) = 106.7(2); N(2)-N(3)-C(9) = 110.3(3); N(3)-C(9)-C(8) = 106.9(3); C(9)-C(8)-N(1) = 105.5(3); C(9)-C(8)-I(1) = 134.0(3); N(1)-C(8)-I(1) = 120.6(3).

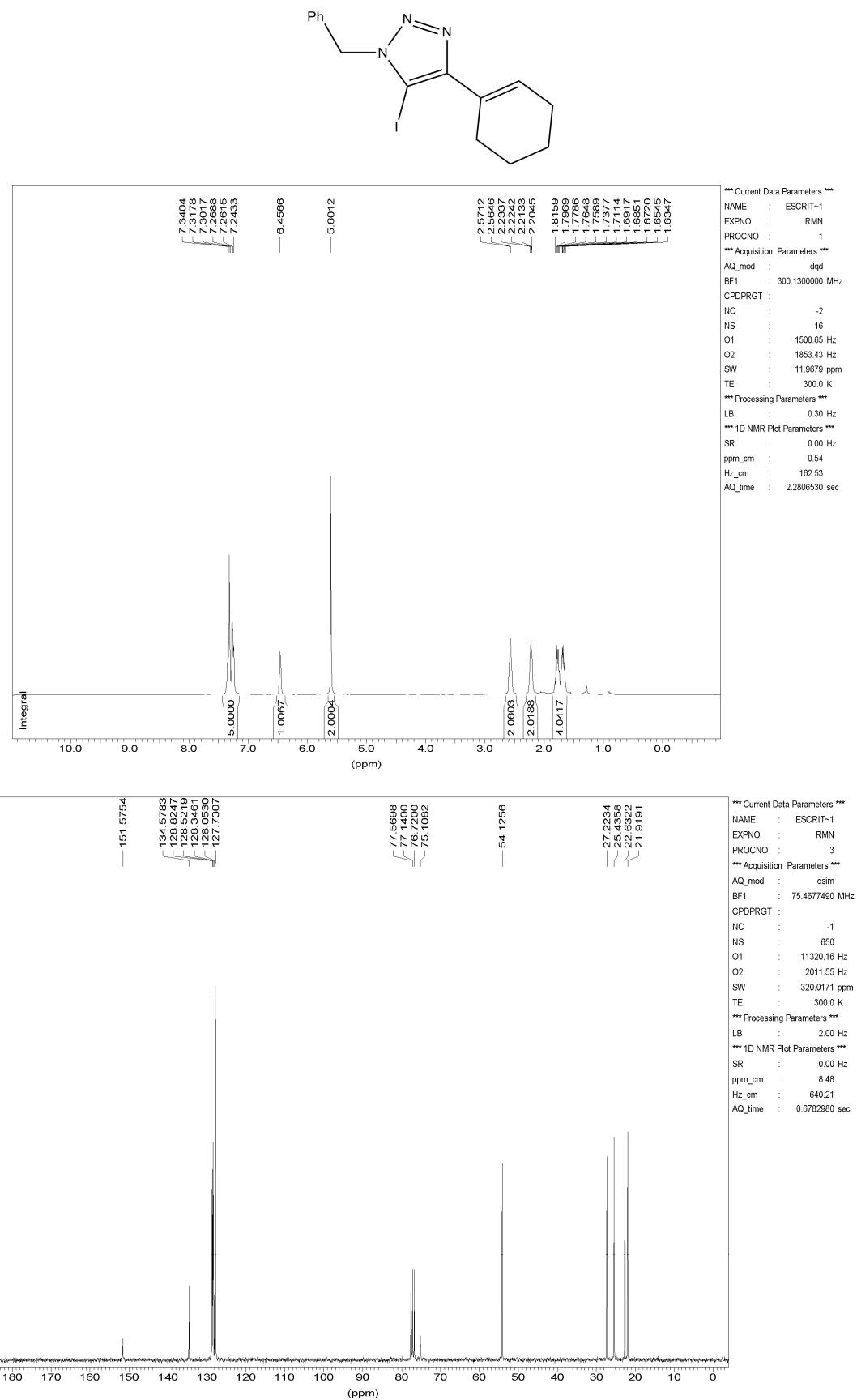

5-iodo-4-phenyl-1-(phenylthiomethyl)-1H-1,2,3-triazole (7a)

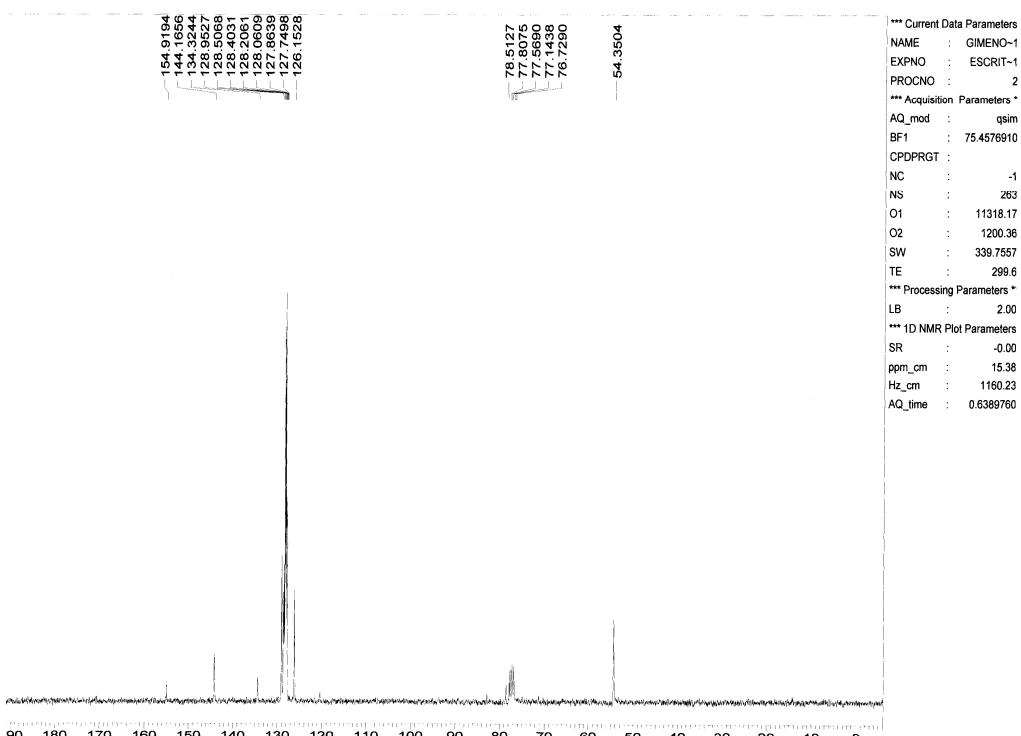
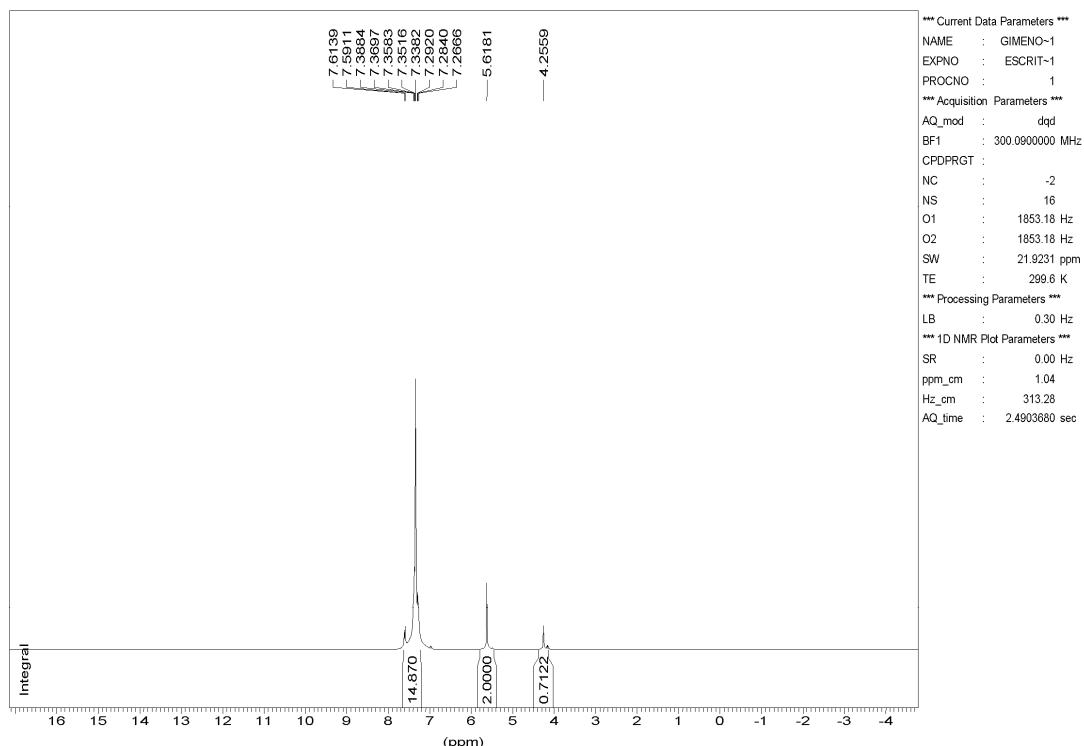
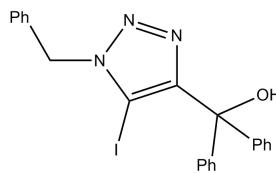

4-butyl-5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole (7b)

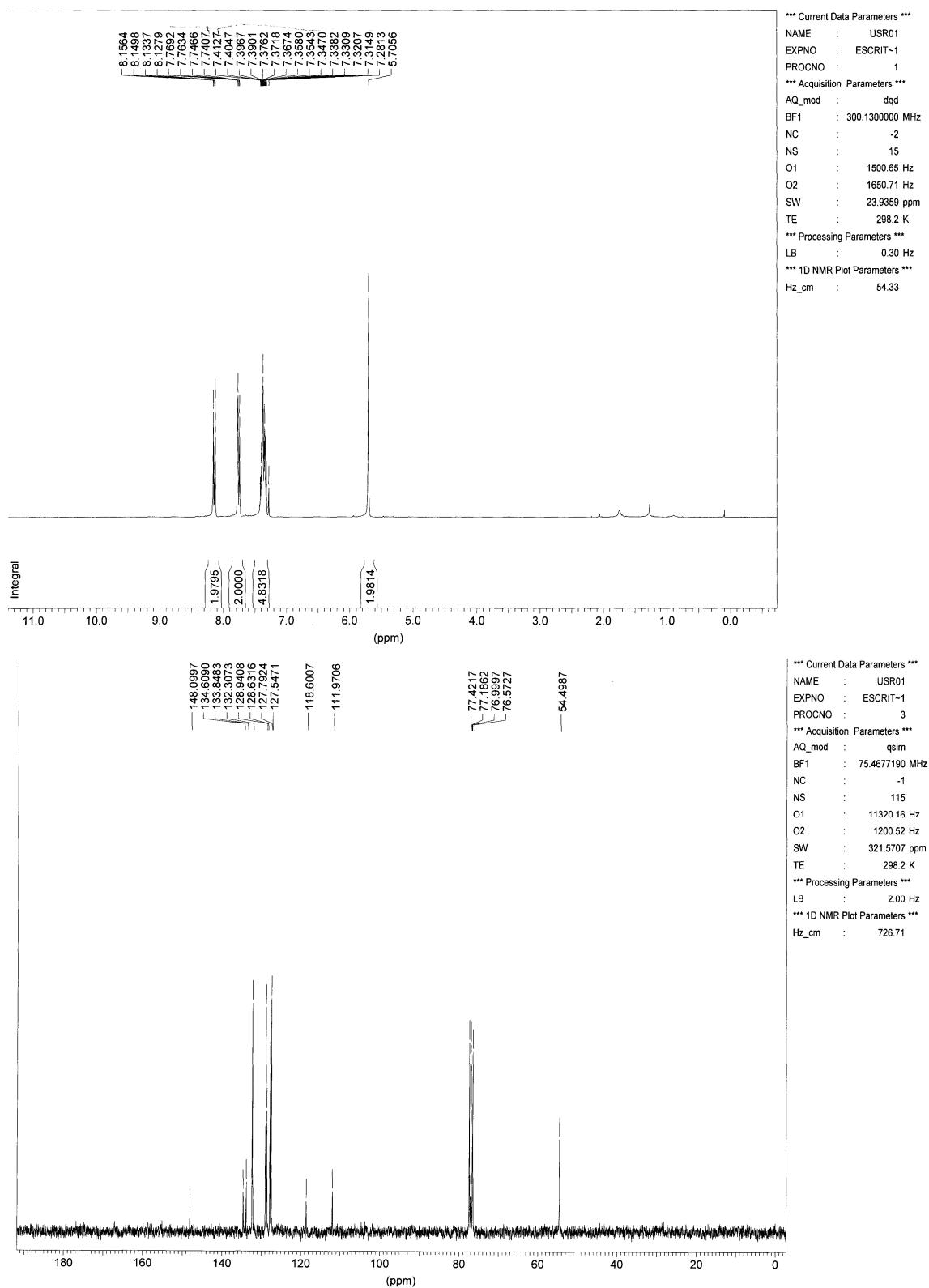
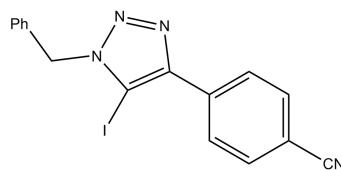


4-cyclohexenyl-5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole (7c)

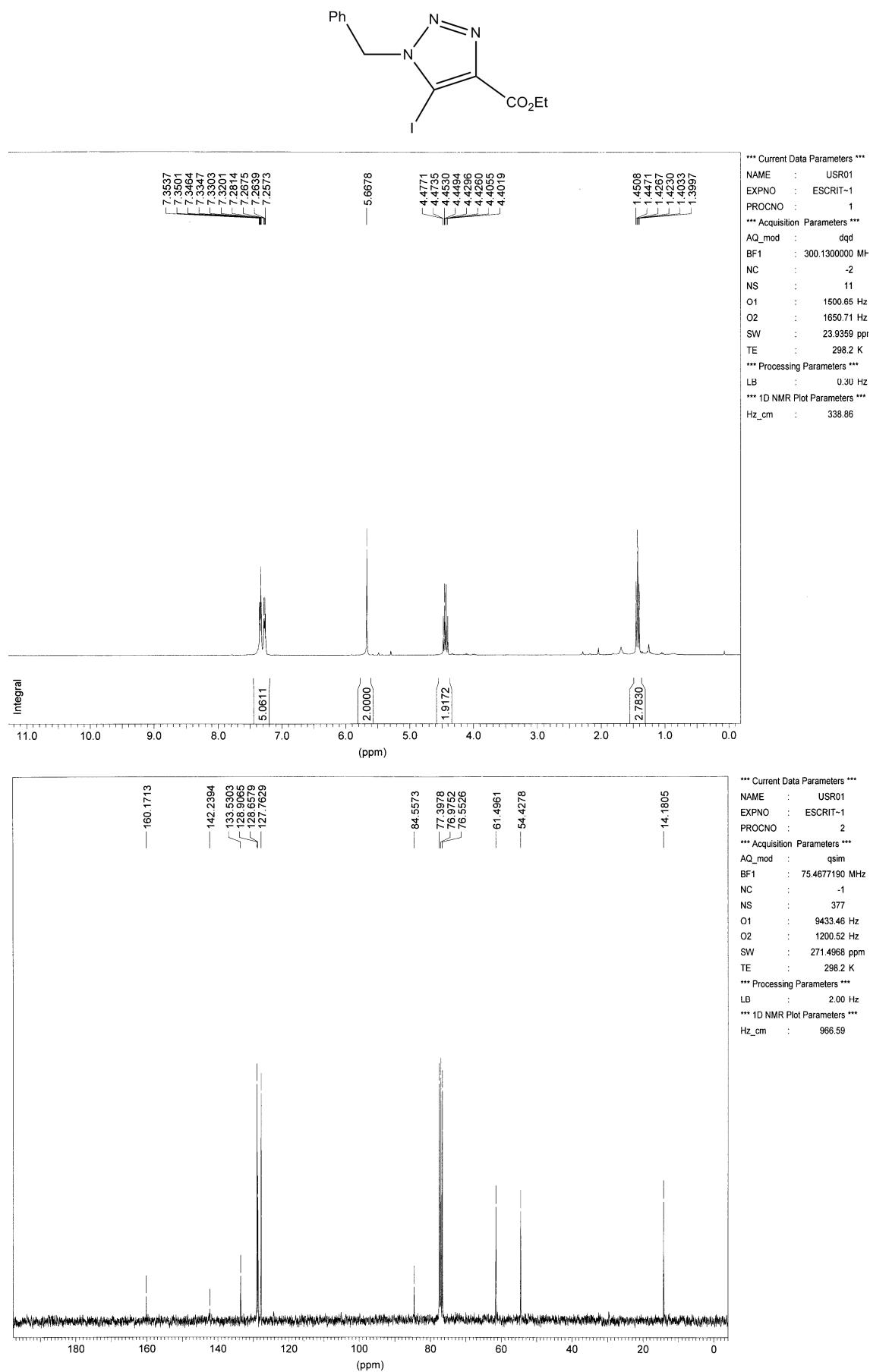

(5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazol-4-yl)diphenylmethanol (7d)

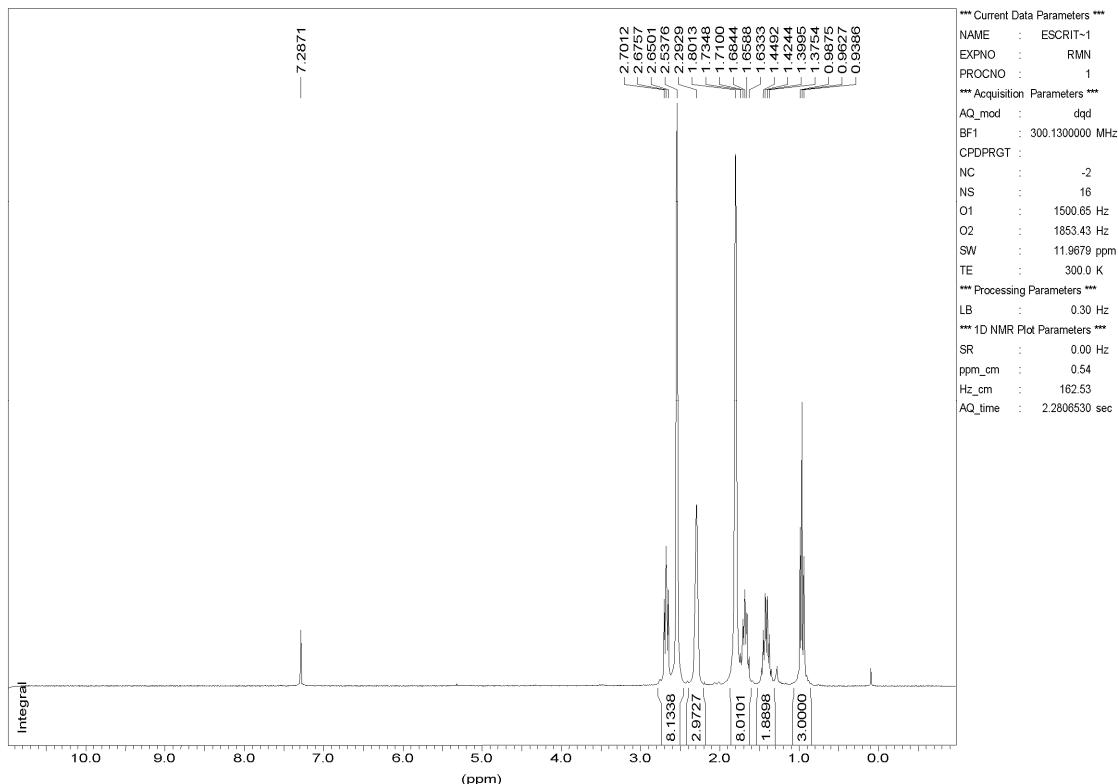
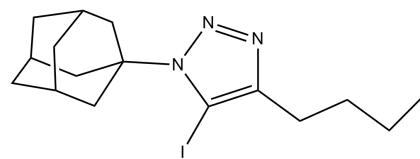

4-(4-fluorophenyl)-5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole (7e)

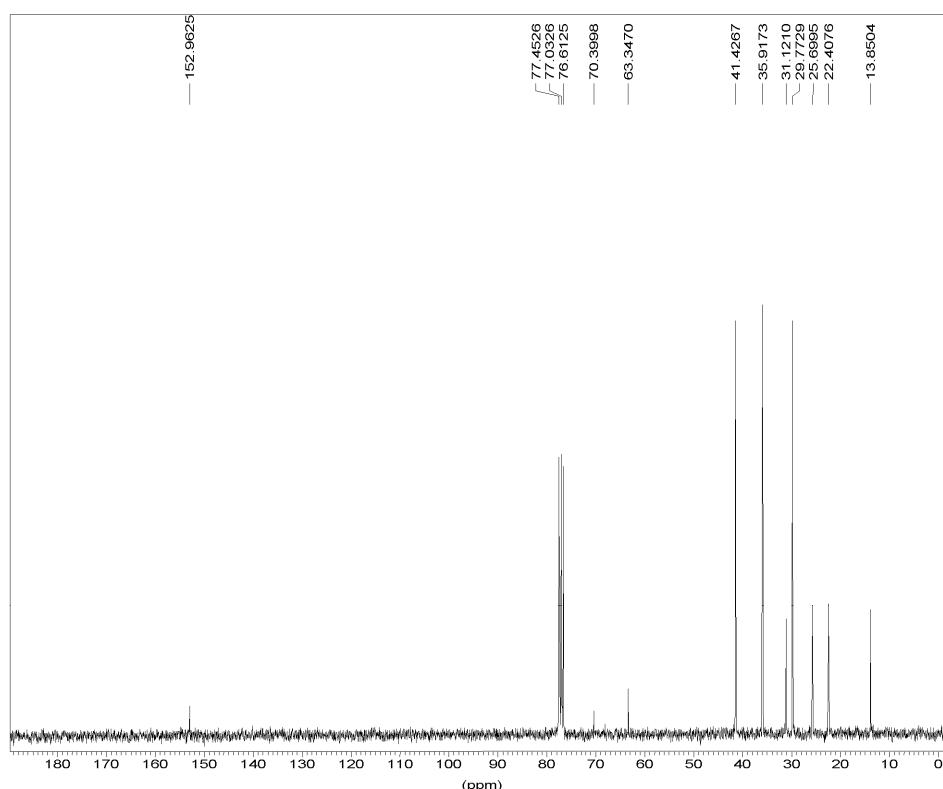

4-(5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazol-4-yl)benzonitrile (7f)




ethyl 5-iodo-1-(phenylthiomethyl)-1H-1,2,3-triazole-4-carboxylate (7g)

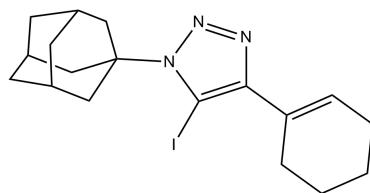


1-benzyl-4-cyclohexenyl-5-iodo-1H-1,2,3-triazole (8c)


(1-benzyl-5-iodo-1H-1,2,3-triazol-4-yl)diphenylmethanol (8d)

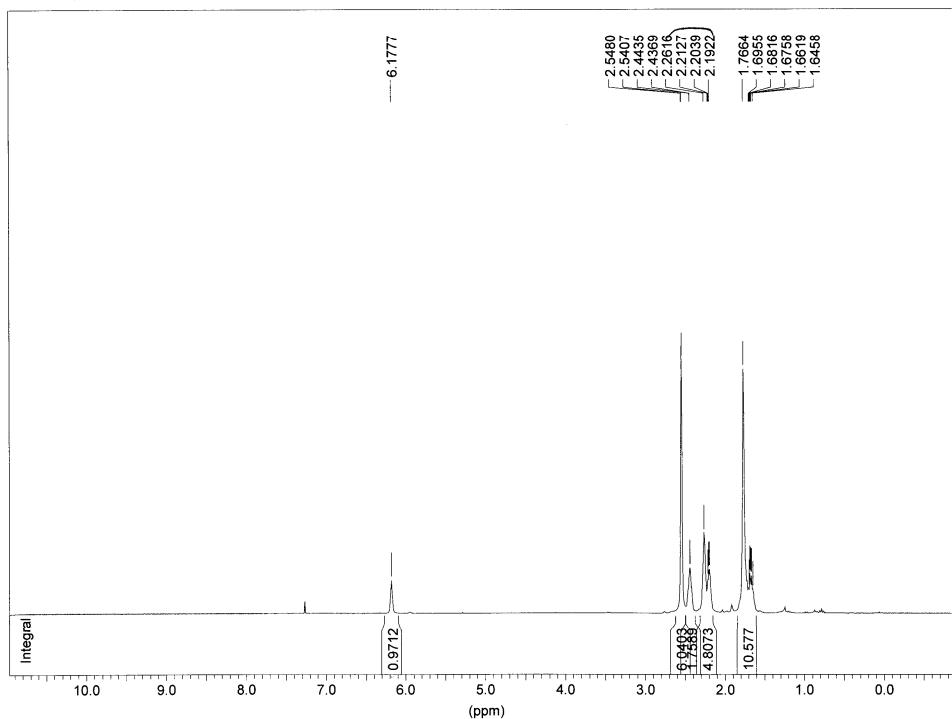


4-(1-benzyl-5-iodo-1H-1,2,3-triazol-4-yl)benzonitrile (8f)


ethyl 1-benzyl-5-iodo-1H-1,2,3-triazole-4-carboxylate (8g)

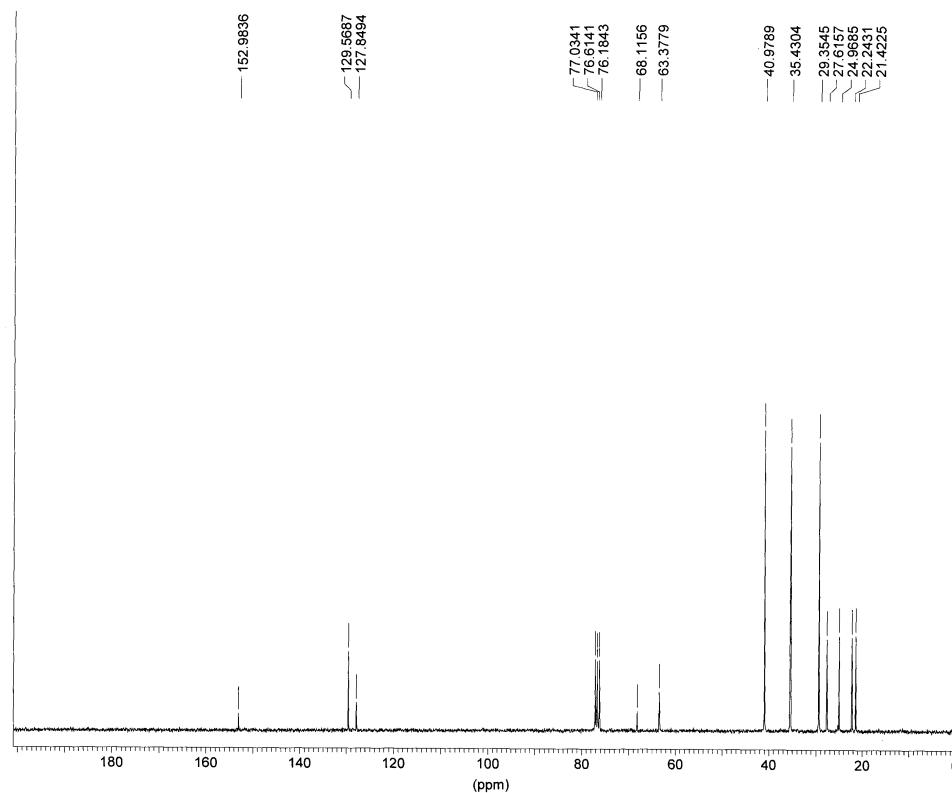
1-adamantyl-4-butyl-5-iodo-1H-1,2,3-triazole (9b)



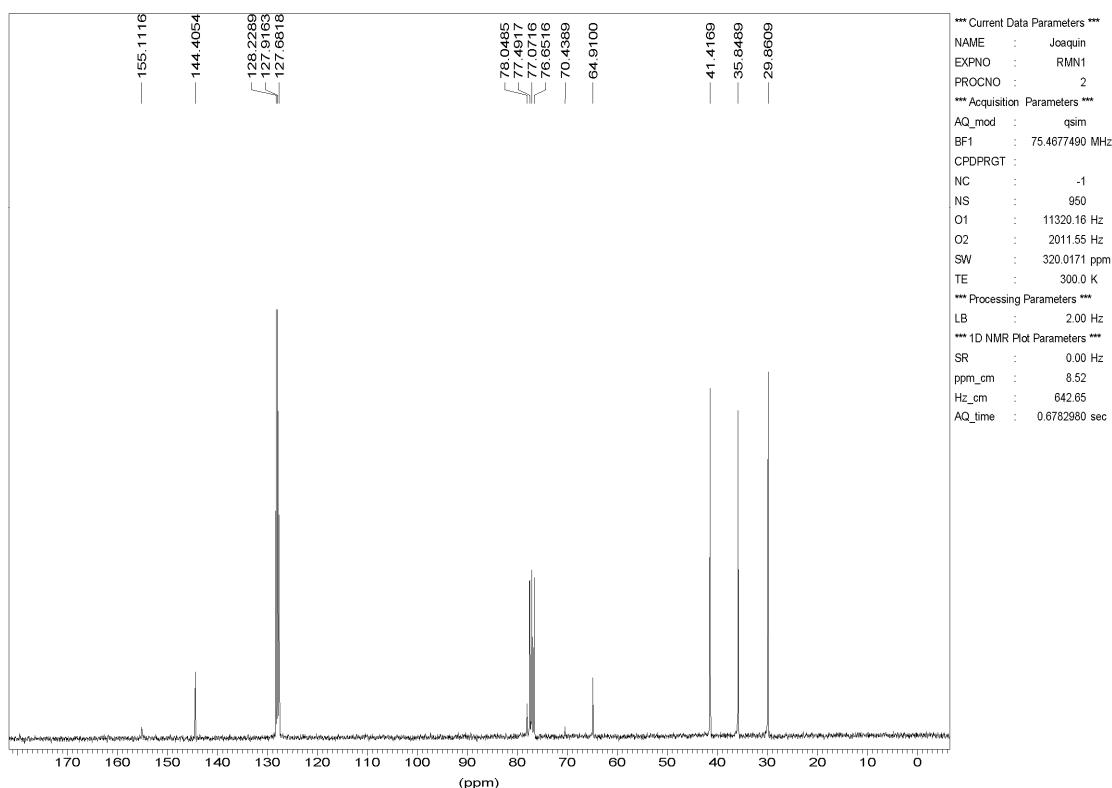
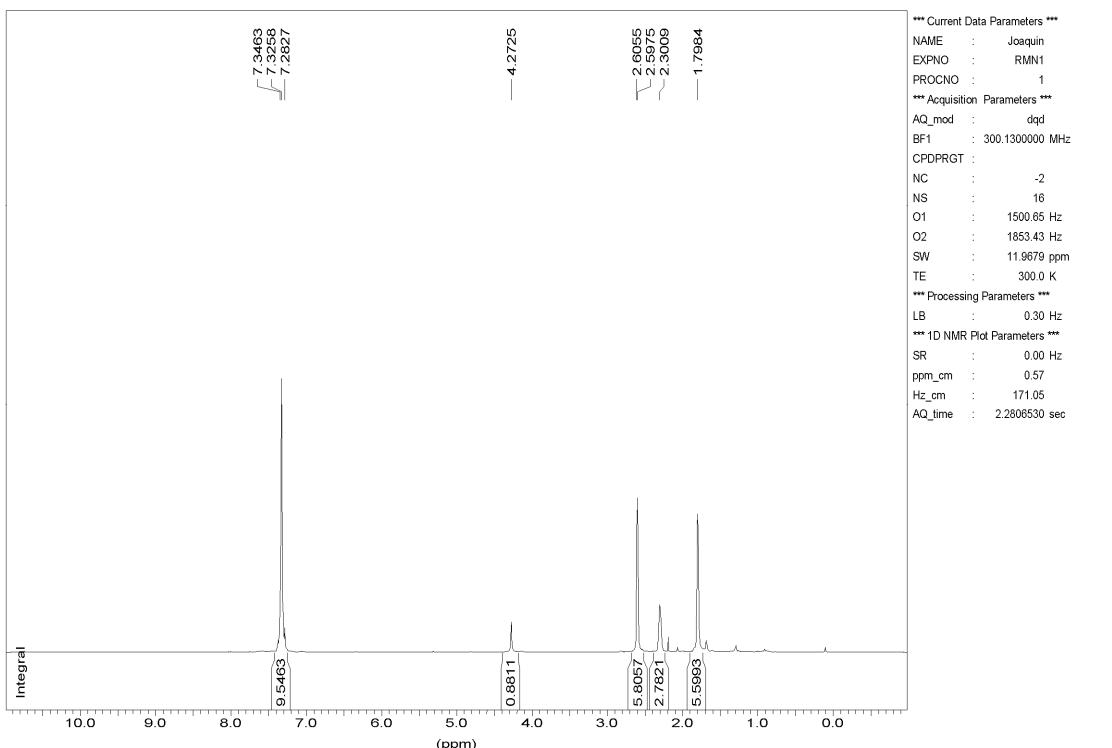
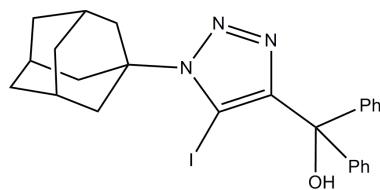
*** Current Data Parameters ***
 NAME : ESCRIT-1
 EXPNO : RMN
 PROCNO : 1
 *** Acquisition Parameters ***
 AQ_mod : dqd
 BF1 : 300.1300000 MHz
 CPDPRT :
 NC : -2
 NS : 16
 O1 : 1500.65 Hz
 O2 : 1853.43 Hz
 SW : 11.9679 ppm
 TE : 300.0 K
 *** Processing Parameters ***
 LB : 0.30 Hz
 *** 1D NMR Plot Parameters ***
 SR : 0.00 Hz
 ppm_cm : 0.54
 Hz_cm : 162.53
 AQ_time : 2.2806530 sec



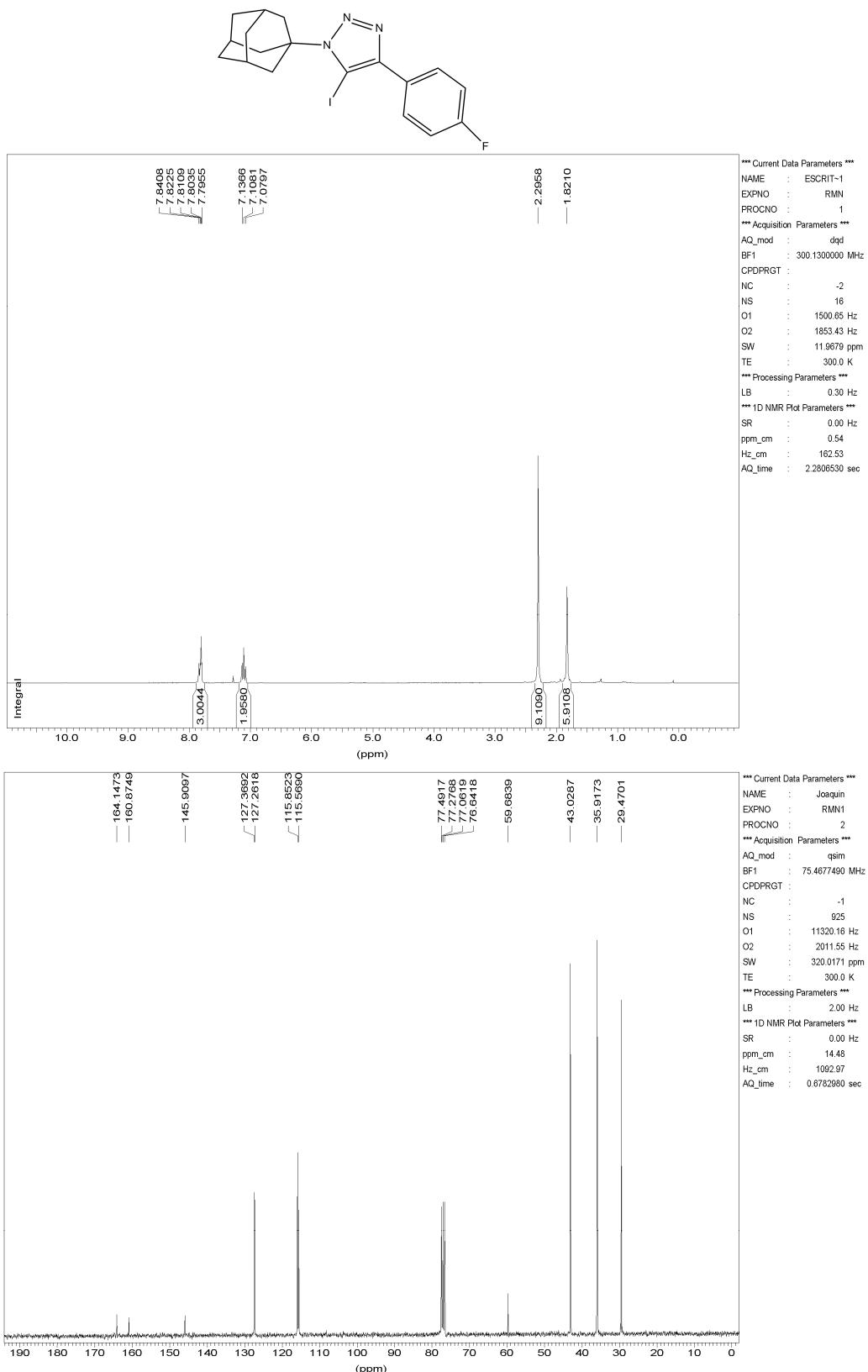
*** Current Data Parameters ***
 NAME : ESCRIT-1
 EXPNO : RMN
 PROCNO : 2
 *** Acquisition Parameters ***
 AQ_mod : qsim
 BF1 : 75.4677490 MHz
 CPDPRT :
 NC : -1
 NS : 650
 O1 : 11320.16 Hz
 O2 : 2011.55 Hz
 SW : 320.0171 ppm
 TE : 300.0 K
 *** Processing Parameters ***
 LB : 2.00 Hz
 *** 1D NMR Plot Parameters ***
 SR : 0.00 Hz
 ppm_cm : 14.48
 Hz_cm : 1092.97
 AQ_time : 0.6782980 sec


1-adamantyl-4-cyclohexenyl-5-iodo-1H-1,2,3-triazole (9c)

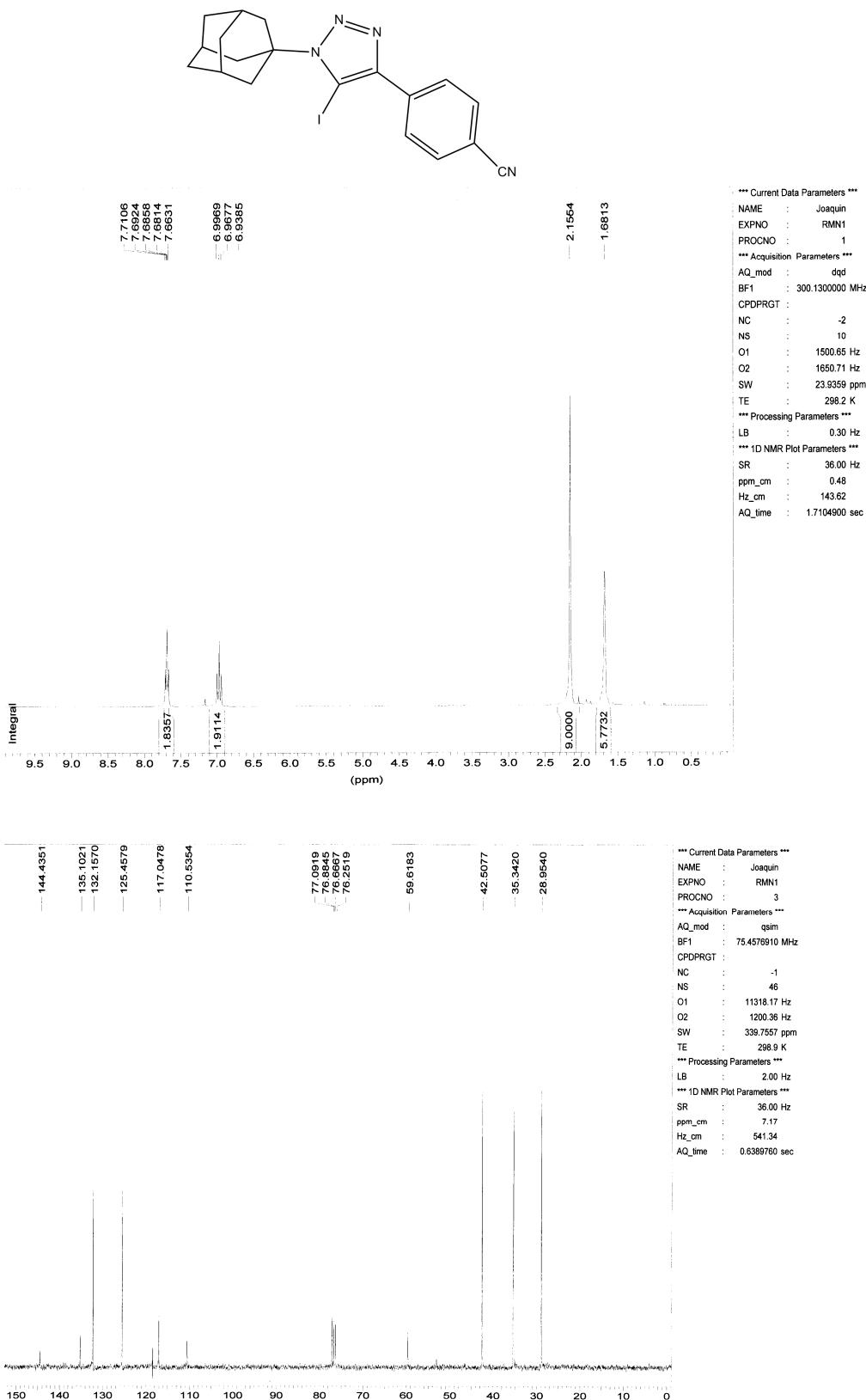
facturar a gi
 triazol Ad enl
 h1.10 CDCl3 (c:\bruker\bacs) bruker 47

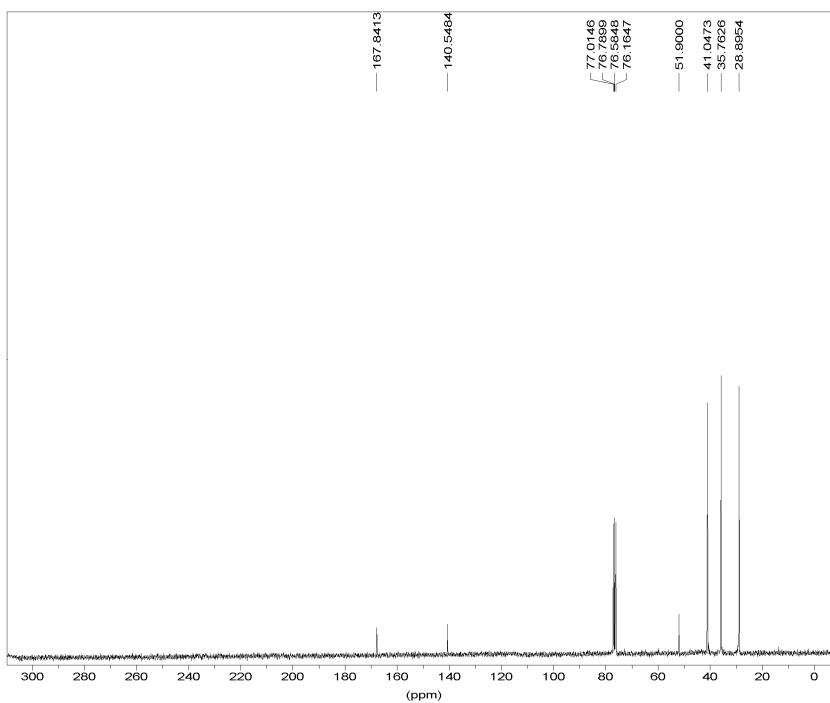
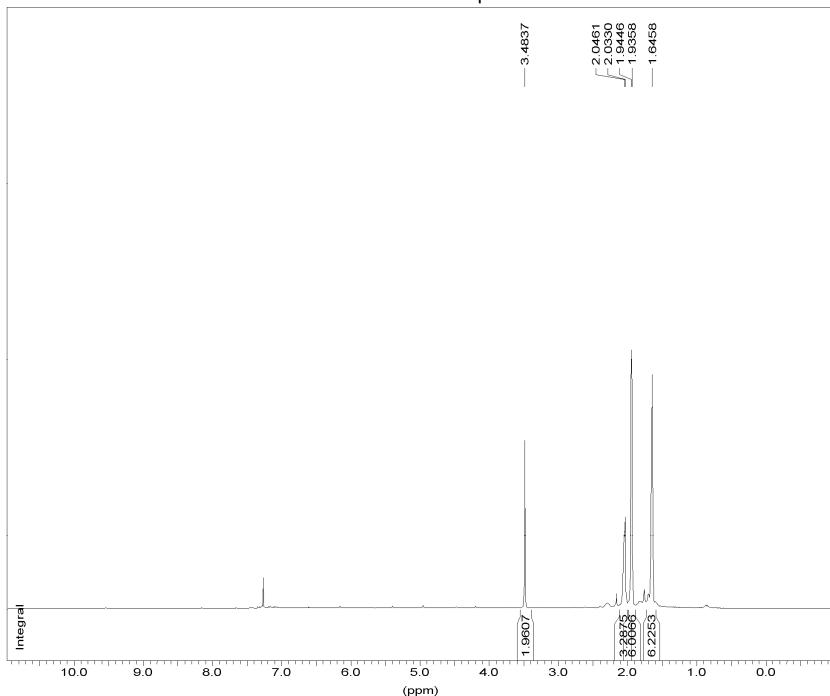
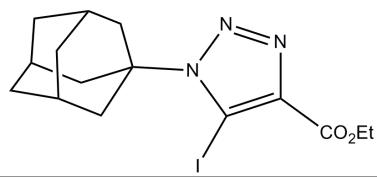




*** Current Data Parameters ***
 NAME : USR01
 EXPNO : ESCRIT-1
 PROCNO : 1
 *** Acquisition Parameters ***
 AQ_mod : dqf
 BF1 : 300.1300000 MHz
 NC : -2
 NS : 16
 O1 : 1500.65 Hz
 O2 : 1853.43 Hz
 SW : 11.9679 ppm
 TE : 300.0 K
 *** Processing Parameters ***
 LB : 0.30 Hz
 *** 1D NMR Plot Parameters ***
 Hz_cm : 169.43



*** Current Data Parameters ***
 NAME : USR01
 EXPNO : ESCRIT-1
 PROCNO : 3
 *** Acquisition Parameters ***
 AQ_mod : qsim
 BF1 : 75.4677490 MHz
 NC : -1
 NS : 550
 O1 : 11320.16 Hz
 O2 : 2011.55 Hz
 SW : 320.0171 ppm
 TE : 300.0 K
 *** Processing Parameters ***
 LB : 2.00 Hz
 *** 1D NMR Plot Parameters ***
 Hz_cm : 1139.37


(1-Adamantyl-5-iodo-1-1H-1,2,3-triazol-4-yl)diphenylmethanol (9d)




1-adamantyl-4-(4-fluorophenyl)-5-iodo-1H-1,2,3-triazole (9e)

4-(1-adamantyl-5-iodo-1H-1,2,3-triazol-4-yl)benzonitrile (9f)

ethyl 1-adamantyl-5-iodo-1H-1,2,3-triazole-4-carboxylate (9g)

X-Ray Crystal Structure Determination of Compounds **3** and **7a**.

Crystals suitable for X-ray diffraction analysis were obtained, for **3**, by slow diffusion of hexane into a saturated solution of the complex in acetone, and for **7a**, by slow evaporation of a saturated solution of the triazole in dichloromethane. The most relevant crystal and refinement data are collected in Table S.I.-2.

For **3** diffraction data were recorded on a Nonius KappaCCD single crystal diffractometer, using Mo-K α radiation ($\lambda = 0.71073$ Å). Images were collected at a 30 mm fixed crystal-detector distance, using the oscillation method, with 1° oscillation and 35 s exposure time per frame. Data collection strategy was calculated with the program Collect⁷ (Bruker, 2004). Data reduction and cell refinement were performed with the programs HKL Denzo and Scalepack⁸ (Otwinowski & Minor, 1997). A semi-empirical absorption correction was applied using the program SORTAV⁹ (Blessing, 1995).

For **7a** data collection was performed on a Oxford Diffraction Xcalibur Nova single crystal diffractometer, using Cu-K α radiation ($\lambda = 1.5418$ Å). Images were collected at a 65 mm fixed crystal-detector distance, using the oscillation method, with 1° oscillation and (1.5 – 3 s) variable exposure time per image. Data collection strategy was calculated with the program CrysAlis Pro CCD.¹⁰ Data reduction and cell refinement was performed with the program CrysAlis Pro RED.¹⁰ An empirical absorption correction was applied using the SCALE3 ABSPACK algorithm as implemented in the program CrysAlis Pro RED.¹⁰

In all cases the software package WINGX¹¹ was used for space group determination, structure solution and refinement. The structure for the complex **3** was solved by Patterson interpretation and phase expansion using DIRDIF,¹² and for **7a** was solved by direct methods using SIR2004¹³

Isotropic least-squares refinement on F^2 using SHELXL97¹⁴ was performed. During the final stages of the refinements, all the positional parameters and the anisotropic temperature factors of all the non-H atoms were refined. The H atoms were geometrically located and their coordinates were refined riding on their parent atoms for **3**. For **7a** the coordinates of H atoms were found from different Fourier maps and

included in a refinement with isotropic parameters. The function minimized was $([\Sigma w F_O^2 - F_C^2]/\Sigma w(F_O^2)]^{1/2}$ where $w = 1/[\sigma^2(F_O^2) + (aP)^2 + bP]$ (a and b values are collected in Table?) with $\sigma(F_O^2)$ from counting statistics and $P = (\text{Max } (F_O^2, 0) + 2F_C^2)/3$.

Atomic scattering factors were taken from the International Tables for X-Ray Crystallography International.¹⁵ Geometrical calculations were made with PARST.¹⁶ (Nardelli, 1983). The crystallographic plots were made with PLATON.¹⁷

Table ESI-2 Crystal data and structure refine for compounds **3** and **7a**

	3	7a
Empirical formula	CuC ₂₀ H ₄₄ F ₆ N ₈ P ₅ O ₄ S ₂	C ₁₅ H ₁₂ IN ₃ S
Formula weight	857.15	393.24
Temperature/K	293(2)	100(2)
Wavelength/Å	0.71073	1.84184
Crystal system	triclinic	monoclinic
Space group	P-1	P2 ₁ /C
<i>a</i> /Å; α°	10.4612(2); 80.696(1)	14.5177(2); 90
<i>b</i> /Å; β°	11.6733(2); 70.225(1)	7.2359(1); 101.588(2)
<i>c</i> /Å; γ°	15.4752(2); 83.182(1)	14.3593(2); 90(1)
<i>Z</i>	2	4
Volume/Å ³	1750.69(5)	1477.68(4)
Calculated density/Mg m ⁻³	1.626	1.768
μ/mm^{-1}	1.045	18.284
<i>F</i> (000)	884	768
Crystal size/mm	0.25 x 0.22 x 0.15	0.055 x 0.112 x 0.198
θ range/ $^{\circ}$	1.41 to 25.39	3.11 to 73.87
Index ranges	-11 \leq <i>h</i> \leq 12, -13 \leq <i>k</i> \leq 14, 0 \leq <i>l</i> \leq 18	-17 \leq <i>h</i> \leq 17, -7 \leq <i>k</i> \leq 8, -17 \leq <i>l</i> \leq 12
No. of reflns. collected	6395	6667
No. of unique reflns.	6394 [R(int) = 0.0000]	2903 [R(int) = 0.0297]
Completeness to θ_{max}	99.2	97.4
No. of parameters/restraints	419/0	229/0
Goodness-of-fit on <i>F</i> ²	1.166	1.038
Weight function (a, b)	0.0803, 0.4186	0.0748, 0
<i>R</i> ₁ [<i>I</i> > 2 σ (<i>I</i>)] ^a	0.0420	0.0357
<i>wR</i> ₂ [<i>I</i> > 2 σ (<i>I</i>)] ^a	0.1269	0.0.0959
Largest diff. peak and hole/e Å ⁻³	1.232 and -1.047	0.928 and -1.786

^a $R_1 = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|$; $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}$

References

- (1) a) D. J. Daigle, A. B. Pepperman Jr., S. L. Vail *Heterocycl. Chem.* 1974, **11**, 407. b) For the synthesis of compound **2** we followed the experimental procedure previously described by Majoral and co-workers for the preparation of PTA iminophosphorane derivatives in: M. Benhammou, R. Kraemer, H. Germa, J. P. Majoral, J. Navech, *Phosphorus and Sulfur*, 1982, **14**, 105.
- (2) A. A. Khodak, V. A. Gilyarov, M. I. Kabachnik, *Zh. Obshch. Kim.* 1974, **44**, 27.
- (3) R. F. C. Brown, F. W. Eastwood, K. J. Harrington, G. L. McMullen, *Aust. J. Chem.* 1974, **27**, 2393.
- (4) a) G. Garcia-Muñoz, R. Madroñero, M. Rico, M. C. Saldaña, *J. Heterocycl. Chem.*, 1969, **6**, 921. b) G. M. Pawar, B. Bantu, J. Weckesser, S. Blechert, K. Wurst, M. R. Buchmeiser, *Dalton Trans.*, 2009, 9043. c) N. Candelier, D. Lastécouères, A. K. Diallo, J. Ruiz Aranzaes, D. Astruc, J.-M Vincent, *Chem. Commun.*, 2008, 741. d) J. Deng, Y. Wu, Q.-Y. Chen, *Synthesis* 2005, 2730. e) I. S. Park, M. S. Kwon, Y. Kim, J. S. Lee, J. Park, *Org. Lett.*, 2008, **10**, 497. f) S. T. Abu-Orabi, M. Adnan Atfah, I. Jibril, F. M. Mari'i, A. Al-Sheikh Ali, *J. Heterocycl. Chem.*, 1989, **26**, 1461. g) T. Sasaki, S. Eguchi, M. Yamaguchi, T. Esaki, *J. Org. Chem.*, 1981, **46**, 1800. h) K. Kamata, Y. Nakagawa, K. Yamaguchi, N. Mizuno, *J. Am. Chem. Soc.*, 2008, **130**, 15304.
- (5) a) 1-iodo-phenylacetylene: J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless, V. V. Fokin, *Angew. Chem. Int. Ed.*, 2009, **48**, 8018. b) 1-iodo-hexyne and 1-fluoro-4-(iodoethynyl)benzene: J. Yan, J. Li, D. Cheng, *Synlett*, 2007, 2442. c) 1-(iodoethynyl)cyclohex-1-ene: F. Bellina, A. Carpita, L. Mannocci, R. Rossi, *Eur. J. Org. Chem.*, 2004, 2610. d) G. Jaeger, E. Klauke, W. Brandes, P. E. Frohberger, *Ger. Offen.*, 1979, 23. e) 4-(iodoethynyl)benzonitrile: H. Abe, H. Suzuki, *Bull. Chem. Soc. Japan*, 1999, **72**, 787. f) ethyl 3-iodopropiolate: T. Jefrey, *J. Chem. Soc., Chem. Commun.* 1988, 909.

- (6) P. Dinér, T. Andersson, J. Kjellén, K. Elbing, S. Hohmann, M. Grøtli, *New J. Chem.*, 2009, 1010.
- (7) Bruker 2004. *Collect* data collection software. Bruker AXS, Delft, The Netherlands.
- (8) Z. Otwinowski, W. Minor, *Methods Enzymol.*, 1997, **276**, 307.
- (9) SORTAV. R.H. Blessing, *Acta Cryst.* 1995, **A51**, 33.
- (10) *CrysAlis^{Pro} CCD*, *CrysAlis^{Pro} RED*. Oxford Diffraction Ltd., Abingdon, Oxfordshire, U.K. 2008.
- (11) L. Farrugia, *J. J. Appl. Crystallogr.* 1999, **32**, 837.
- (12) P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. García-Granda, R. O. Gould, J. M. M. Smits, C. Smykalla, *The DIRDIF Program System*; Technical Report of the Crystallographic Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1999.
- (13) M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, *SIR2004*, *J. Appl. Cryst.* 2005, **38**, 381.
- (14) G. M. Sheldrick, *SHELXL97: Program for the Refinement of Crystal Structures*; University of Göttingen: Göttingen, Germany, 1997.
- (15) *Tables for X-Ray Crystallography*; Kynoch Press; Birmingham, U.K., 1974; Vol. IV (present distributor: Kluwer Academic Publishers; Dordrecht, The Netherlands).
- (16) PARST . M. Nardelli, *Comput. Chem.* 1983, **7**, 95.
- (17) A. L. Spek, *PLATON: A Multipurpose Crystallographic Tool*; University of Utrecht, The Netherlands, 2007.