Supporting Information

In-Situ Spectroscopic Investigation of the Cobalt-Catalyzed Oxidation of Lignin Model Compounds in Ionic Liquids

Joseph Zakzeski, Pieter C. A. Bruijnincx, and Bert M. Weckhuysen*^[a]

 [[]a] Dr. J. Zakzeski, Dr. P. C. A. Bruijnincx, Prof. dr. ir. B. M. Weckhuysen Inorganic Chemistry and Catalysis group Debye Institute for Nanomaterials Science Utrecht University Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands Fax: (+31 30 251 1027) E-mail: b.m.weckhuysen@uu.nl

Table of Contents:

Figure S1: Schematic depiction of the ATR-IR apparatus.

Figure S2: ATR-IR spectra of [EMIM][DEP].

Table S1: IR and Raman bands of [EMIM][DEP] and their vibrational assignments.

Table S2: IR and Raman bands of [EMIM][MeSO₃] and their vibrational assignments.

Figure S3: Raman spectra of [EMIM][DEP].

Figure S4: ATR-IR spectra of [EMIM][DEP]/OH.

Figure S5: Raman spectra of [EMIM][DEP]/OH.

Figure S6: UV-vis spectra of [EMIM][DEP]/OH.

Figure S7: ATR-IR spectra of Co/[EMIM][DEP].

Figure S8: Raman spectra of Co/[EMIM][DEP].

Figure S9: UV-vis spectra of Co/[EMIM][DEP].

Figure S10: ATR-IR spectra of [EMIM][MeSO₃].

Figure S11: Raman spectra of [EMIM][MeSO₃].

Figure S12: ATR-IR spectra of [EMIM][MeSO₃]/OH.

Figure S13: Raman spectra of [EMIM][MeSO₃]/OH.

Figure S14: UV-vis spectra of [EMIM][MeSO₃]/OH.

Figure S15: ATR-IR spectra of Co/[EMIM][MeSO₃].

Figure S16: Raman spectra of Co/[EMIM][MeSO₃].

Figure S17: UV-vis spectra of Co/[EMIM][MeSO₃].

Figure S18: Mass spectra of a) veratraldehyde and b) veratraldehyde produced via Co/[EMIM][DEP]/OH catalyzed veratryl alcohol oxidation using ¹⁸O₂.

Figure S19: Reproduction of Figure 1 using ${}^{18}O_2$ as the oxidant.

Figure S20. Vibrational intensities associated with 16 O (1683 cm⁻¹) and 18 O (1657 cm⁻¹) labelled veratraldehyde versus time using 18 O₂ as the oxidant.

Figure S21: In-situ IR spectrum of Co/[EMIM][DEP]/OH catalyzed veratryl alcohol oxidation using ${}^{18}O_2$ for comparison with Figure 2. Vibrations associated with cobalt complexes are marked with arrows.

Scheme S1: Proposed catalytic mechanism depicting the exemplary oxidation of veratryl alchol to veratraldehyde in the ionic liquid [EMIM][DEP] using ${}^{18}O_2$ as the oxidant.

Supporting Information References

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2011

Figure S1: Schematic depiction of the ATR-IR apparatus.

Table S1. iR and Raman bands of [EMIM][DEP] and their vibrational 4638 Signments.5 Asym Emails Signments.5 Asym			
piane, op 1571	= out-of-pia 26	ne, sin = si 1482	iouider. C=N str
intrared ((17 10)	หeiative In teภิชา ty	катап ((45 6)	viorational assignment Ring ip asym str, CH3(N) str
1457	18	3799	Rଲ⊎ Hotth asym stend, CH₃(N) HCH sym bend
3147 1385	/ 23		Ring HCCH sym str Ring ip asym str, $CH_2(N)$ bend
3046 1362	17 12	3070 1337	$CH_3(N)$ HCH asym str Ring ip sym str, $CH_2(N)$ str
2975 1336	32 11	2973 1279	CH ₂ HCH asym str P=O str
2934 1243	22 89	2931	Terminal CH $_3$ HCH asym str Ring ip asym str, CC str, (N)CH $_2$ and
2889	90	2890	ស្រែការាភូនាល់ទារ HCH sym str
2828	∮ §h	2837	ÇC str
2795	4 0	2989	PO ₂ sym str
2982	6 9	2954	Ring sym str, $CH_3(N)$ str, $CH_2(N)$ str
1969	9 9	1021	₽-O-C vibration

1049	100	959	CC str
960	24sh	939	P-O-C vibration
933	76	811	CCH bend
806	40sh	785	P-O-C sym str
776	87	748	Ring HCCH asym bend
728	56	731	Ring HCCH sym bend
706	29sh	704	Ring ip bend, $CH_3(N)$ bend, $CH_2(N)$ bend
653	37	654	Ring op asym bend
		600	Ring ip sym bend

cm⁻¹ is assigned to this mode.

With [EMIM][DEP], the diethylphosphate anion also has several vibrational modes that were detected by infrared spectroscopy. The stretching vibration of the P=O group is reported to be strong and in the region of 1350-1150 cm⁻¹ and therefore the strong vibration at 1243 cm⁻¹ is assigned to this functional group.¹ The assignment is also in agreement with previous studies of the diethylphosphate anion.² The symmetric PO₂⁻ stretch appears at 1082 cm⁻¹. P-O-C vibrations give very strong bands between 1050-970 cm⁻¹ with another additional strong band typically between 985 and 940 cm⁻¹.¹ The very strong bands at 1049 cm⁻¹ and 933 cm⁻¹ are thus assigned to the P-O-C asymmetric stretching vibration. The symmetric P-O-C vibrations also typically exhibit strong bands between 830-740 cm⁻¹,¹ so the band at 776

			<u>This journal is @ The Royal So</u>	<u>ciety of</u>	Chemis	try 201	
Table S2. IR and Raman bands of [EMIM][MeSO ₃] and their vibrational assignments. Asym = antisymmetric, sym = symmetric, str = stretch, ip = inplane, op = out-of-plane, sh = shoulder.				Table S2 (continued). IR and Raman bands of [EMIM][MeSO ₃] and their vibrational assignments. Asym = antisymmetric, sym = symmetric, str = stretch, ip = in-plane, op = out-of-plane, sh = shoulder.			
Infrared (cm ⁻¹)	Relative Intensity	Raman (cm ⁻¹)	Vibrational assignment	Infrared (cm ⁻¹)	Relative Intensity	Raman (cm ⁻¹)	Vibrational assignment
		3161	Ring HCCH asym str	963	12	960	CC str
3148	14		Ring HCCH sym str	873	23		SO str
3094	26	3100	CH ₃ (N) HCH asym str	847	25		SO str
3038	17sh		SCH ₃ asym astr	806	23		CCH bend
3008	15		SCH_3 sym str	765	77		CS str
2986	14	2965	CH ₂ HCH asym str	702	18	702	Ring HCCH sym bend
2938	10	2935	Terminal CH ₃ HCH asym str	649	36	651	Ring op asym bend
2881	6	2890	Terminal CH ₃ HCH sym str			599	Ring ip sym bend
2832	3	2834	?			553	SO_3 sym bend
		2760	?			527	SO_3 asym bend
1635	8		?				
1571	33	1569	C=N str	Several of the vibrational characteristics of the [EMIM] ⁺ cation in [EMIM][MeSO ₃] resembled that of			
1467	17	1477	Ring ip asym str, $CH_3(C)$ str	[EMIM][DEP] with some exceptions. The CH ₃ (N) HCH asymmetric stretch for [EMIM][MeSO ₂] appeared at			
1456	17	1455	CCH HCH asym bend, CH.(N) HCH sym bend	asymmetric subton for [Elvinvi][ivies O_3] appealed at			

Supplementary Material (ESI) for Green Chemistry

Several of the vibrational characteristics of the $[\text{EMIM}]^+$ cation in $[\text{EMIM}][\text{MeSO}_3]$ resembled that of [EMIM][DEP] with some exceptions. The CH₃(N) HCH asymmetric stretch for $[\text{EMIM}][\text{MeSO}_3]$ appeared at 3094 cm⁻¹ relative to 3046 cm⁻¹ for [EMIM][DEP] because of reduced influence from the less basic $[\text{MeSO}_3]^-$ anion relative to $[\text{DEP}]^-$. In previous studies of methanesulfonic vibrations, the SO₂ asymmetric and symmetric stretching modes appear in the regions 1357-1467 cm⁻¹ and 1140-1200 cm⁻¹, respectively^{3, 4}, so the vibration observed at 1426 cm⁻¹ is assigned to the SO₂ asymmetric stretch and 1198 cm⁻¹ to the symmetric stretch in $[\text{MeSO}_3]^-$. The shoulder at 1310 cm⁻¹ is assigned to the CH₃ symmetric deformation of MeSO₃.^{3, 4} Increasing the temperature from 298 K to 353 K resulted in a shift of the SCH₃ rocking mode to 1030 cm⁻¹ and the CS stretch to 750 cm⁻¹.

2032	3	2034	ť
		2760	?
1635	8		?
1571	33	1569	C=N str
1467	17	1477	Ring ip asym str, $CH_3(C)$ str
1456	17	1455	CCH HCH asym bend, $CH_3(N)$ HCH sym bend
1426	14	1425	${\rm SO}_2$ asym str or ${\rm CH}_3$ asym deform
1389	11	1389	Ring ip asym str, $CH_2(N)$ bend
1359	10		Ring ip sym str, $CH_2(N)$ and $CH_3(N)$ str
1329	19	1337	Ring ip sym str, $CH_2(N)$ str
1310	12sh		CH ₃ sym deform
		1256	SO ₂ ⁻ asym str
1198	98	1204	SO ₂ ⁻ sym str
1176	100	1170	Ring ip asym str, CC str, (N)CH_2 and (N)CH_3CN str
1123	33sh		SOH bend
		1092	SO ₂ ⁻ sym str
1038	89sh	1041	SCH ₃ rocking
		1024	SO ₃ sym str

Figure S2: In-Situ ATR-IR spectra of [EMIM][DEP] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S3: In-Situ Raman spectra of [EMIM][DEP] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S4: In-Situ ATR-IR spectra of [EMIM][DEP]/OH measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S5: In-Situ Raman spectra of [EMIM][DEP]/OH measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S6: In-Situ UV-vis spectra of [EMIM][DEP]/OH measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S7: In-Situ ATR-IR spectra of Co/[EMIM][DEP] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S8: In-Situ Raman spectra of Co/[EMIM][DEP] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S9: In-Situ UV-Vis spectra of Co/[EMIM][DEP] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S10: In-Situ ATR-IR spectra of [EMIM][MeSO₃] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S11: In-Situ Raman spectra of [EMIM][MeSO₃] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S12: In-Situ ATR-IR spectra of [EMIM][MeSO₃]/OH measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S13: In-Situ Raman spectra of [EMIM][MeSO₃]/OH measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S14: In-Situ UV-vis spectra of [EMIM][MeSO₃]/OH measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S15: In-Situ ATR-IR spectra of Co/[EMIM][MeSO₃] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S10: In-Situ Raman spectra of Co/[EMIM][MeSO₃] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S17: In-Situ UV-Vis spectra of Co/[EMIM][MeSO₃] measured at (-) 298 K, (-) 303 K, (-) 313 K, (-) 323 K, (-) 333 K, (-) 343 K, and (-) 353 K.

Figure S18: Mass spectra of a) veratraldehyde and b) veratraldehyde produced via Co/[EMIM][DEP]/OH catalyzed veratryl alcohol oxidation using $^{18}O_2$.

Figure S19: Reproduction of Figure 1 using ${}^{18}O_2$ as the oxidant.

Figure S20. Vibrational intensities associated with ¹⁶O (1683 cm⁻¹) and ¹⁸O (1657 cm⁻¹) labelled veratraldehyde versus time using ¹⁸O₂ as the oxidant. Initially, only the ¹⁶O veratraldehyde is observed. Each catalytic turnover (see Scheme S1) results in the formation of $H_2^{18}O_2$, which disproportionates to form $H_2^{18}O$. This $H_2^{18}O$ reacts with veratraldehyde to form a diol, and the reverse reaction results in either the formation of ¹⁶O or ¹⁸O labelled veratraldehyde. As the reaction proceeds, $H_2^{18}O$ concentrations increase, which results in increased incorporation of ¹⁸O in the veratraldehyde as observed by the eventual increase in vibrational intensity at 1657 cm⁻¹.

Figure S21: In-situ IR spectrum of Co/[EMIM][DEP]/OH catalyzed veratryl alcohol oxidation using ¹⁸O₂ for comparison with Figure 2. Vibrations associated with cobalt complexes are marked with arrows.

Scheme S1: Proposed catalytic mechanism depicting the exemplary oxidation of veratryl alchol to veratraldehyde in the ionic liquid [EMIM][DEP] using ¹⁸O₂ as the oxidant. The mechanism clearly indicates the mix of ¹⁶O and ¹⁸O-labelled veratraldehyde.

Supporting Information References

- 1 G. Socrates, *Infrared and Raman characteristic group frequencies: tables and charts*, Wiley, New York, 2001.
- 2 L. Azéma, S. Ladame, C. Lapeyre, A. Zwick and F. Lakhdar-Ghazal, *Spectrochim. Acta, Pt. A: Mol. Spectrosc.*, 2005, **62**, 287-292.
- 3 M. E. Tuttolomondo, A. Navarro, T. Pena, E. L. Varetti, S. F. Parker and A. B. Altabef, *J. Phys. Chem. A*, 2009, **113**, 8401-8408.
- 4 A. Givan, A. Loewenschuss and C. J. Nielsen, J. Mol. Struct., 2005, 748, 77-90.