Supporting Information

Eco-Friendly Liquid Chromatographic Separations Based On The Use Of Cyclodextrins As Mobile Phase Additives

Víctor González-Ruiz,^a Andrés G. León,^{a‡} Ana I. Olives,^a M. Antonia Martín,*^a J. Carlos Menéndez^b

^aSección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain. Fax: +34 91 3941754; Tel: +34 91 3941756; E-mail: mantonia@farm.ucm.es

^bDepartamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.

[‡]Present address: Laboratorio de Análisis de Medicamentos, Departamento de Análisis y Control, Facultad de Farmacia, Universidad de Los Andes, Mérida, Venezuela.

Figure S1: (Supporting Information): ¹H-NMR spectrum of the complex harmane/HP β -CD (1:1) (A) and ¹H-NMR spectrum of HP β -CD (B). The spectra were obtained at 250 MHz in d₆-DMSO. The spectral region corresponds to the CD protons both on carbon and oxygen.

Figure S2: ¹³C-NMR spectrum of β -CD obtained in at 250 MHz in d₆-DMSO.

Figure S3: ¹³C-NMR spectrum of HP β -CD obtained in at 250 MHz in d₆-DMSO.

Figure S4: ¹³C-NMR spectrum of norharmane obtained in at 250 MHz in d₆-DMSO.

Figure S5: ¹³C-NMR spectrum of harmane obtained in at 250 MHz in d₆-DMSO.

Figure S6: ¹³C-NMR spectrum of harmine obtained in at 250 MHz in d₆-DMSO.

Figure S7: ¹³C-NMR spectrum of the norharmane/ β -CD (1:2) inclusion complex obtained in at 250 MHz in d₆-DMSO.

Figure S8: ¹³C-NMR spectrum of the norharmane/HP β -CD (1:2) inclusion complex obtained in at 250 MHz in d₆-DMSO.

Figure S9: ¹³C-NMR spectrum of the harmane/ β -CD (1:1) inclusion complex obtained in at 250 MHz in d₆-DMSO.

Figure S10: ¹³C-NMR spectrum of the harmine/ β -CD (1:2) inclusion complex obtained in at 250 MHz in d₆-DMSO.

Figure S11: Partial contour plot of the 2D-ROESY experiment (D₂O, 250 MHz) corresponding to the inclusion complex norharmane/HPβ-CD (1:1)

Figure S12: Partial contour plot of 2D-ROESY experiment (D₂O, 250 MHz) corresponding to the inclusion complex norharmane/HPβ-CD (1:2)

Figure S13: Contour plot of 2D-ROESY experiment (D₂O, 250 MHz) corresponding to the inclusion complex harmane/HPβ-CD (1:1)

Figure S14: Contour plot of 2D-ROESY experiment (D₂O, 250 MHz) corresponding to the inclusion complex harmane/HPβ-CD (1:2)

Figure S15: Partial contour plot of 2D-ROESY experiment (D₂O, 250 MHz) corresponding to the inclusion complex harmine/HP β -CD (1:1)

Figure S16: Effect of CDs as MPA on the inter-day precision obtained in the separation of norharmane. Mobile phase: EtOH : buffered aqueous solution, 30 : 70 (v : v).